Moldavites: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
Coesite Inclusions: Microbarometers in Diamond
Coesite Inclusions: Microbarometers in Diamond Ren Lu GIA Laboratory, New York Mineral inclusions in diamond provide valuable information for decoding their thermobarometric, mechanical, and mineralogical conditions during and after diamond formation deep within the earth’s mantle. Coesite, a polymorph of silica (SiO2), shares the same chemical composition as quartz but has a different crystal structure and a higher Mohs hardness Anthony et al., 1990). Coesite forms at pressures greater than 2 GPa (i.e., 20,000 times atmospheric pressure). It has been found in high-impact meteorite craters and as inclusions in minerals and diamonds in ecologites in ultrahigh-pressure metamorphic terrains (Sobolev et al., 1999). Mineral inclusions in diamonds record the physical and chemical history of diamond formation; consequently, they provide a window to processes occurring in the deep interior of the mantle. Microscopic Raman spectroscopy is a very effective “fingerprint” technique for identifying unknown materials such as inclusions in gems, because Raman spectral features closely correlate to the crystal structure and chemistry of a material. Furthermore, this technique is nondestructive and requires virtually no sample preparation. We recently examined a suite of high-quality pink diamonds set in a bracelet. These stones were type Ia and exhibited gemological and spectral characteristics typical of the rarest group of high-quality Argyle pink diamonds (refer to table 2 in Shigley et al., 2001). A cluster of mineral inclusions were present in a 0.21 ct marquise in the intense to vivid purple-pink color range (figure 1). Raman spectra were collected with a Renishaw inVia confocal Raman system interfaced with 488, 514, 633, and 830 nm laser excitations. -
Planetary Surfaces
Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I]. -
Relict Zircon Inclusions in Muong Nong-Type Australasain Tektites: Implications Regarding the Location of the Source Crater
Lunar and Planetary Science XXXI 1196.pdf RELICT ZIRCON INCLUSIONS IN MUONG NONG-TYPE AUSTRALASAIN TEKTITES: IMPLICATIONS REGARDING THE LOCATION OF THE SOURCE CRATER. B. P. Glass, Geology Department, University of Delaware, Newark, DE 19716, USA ([email protected]) Introduction: Over the last thirty years we Australasian tektite samples from which we have have recovered crystalline inclusions from ap- identified inclusions; however, not all of the recov- proximately forty Muong Nong-type tektites from ered inclusions have been identified by XRD. the Australasian tektite strewn field in order to Based on appearance, the percent of inclusion- learn more about the nature of the parent material bearing specimens containing zircon is probably and the formation process [e.g., 1, 2]. More re- 100% or very close to it. Nearly all the zircons cently we have used geographic variations in con- are opaque white and their X-ray patterns show centration (number/gm) of crystalline inclusions to extreme X-ray asterism. However, of the 28 zir- indicate the possible location of the source crater cons identified by X-ray diffraction, only two [3]. The purpose of this abstract is to summarize (both from the same specimen whose place of ori- all the presently available data regarding relict gin is unknown) produced X-ray diffraction pat- zircon inclusions recovered from Australasian terns indicating that baddeleyite may be present. Muong Nong-type tektites and to discuss implica- The X-ray patterns from these two grains con- tions regarding the possible location of the source tained the two strongest lines for baddeleyite and crater which has still not been found. -
NEW HIGH-PRECISION POTASSIUM ISOTOPES of TEKTITES. Y. Jiang1,2, H
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1311.pdf NEW HIGH-PRECISION POTASSIUM ISOTOPES OF TEKTITES. Y. Jiang1,2, H. Chen2, B. Fegley, Jr.2, K. Lodders2, W. Hsu3, S. B. Jacobsen4, K. Wang (王昆)2. 1CAS Key Laboratory of Planetary Sciences, Purple Moun- tain Observatory, Chinese Academy of Sciences ([email protected]), 2Dept. Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis ([email protected]), 3Space Sci- ence Institute, Macau University of Science and Technology, 4Dept. Earth & Planetary Sciences, Harvard University. Introduction: Tektites are natural glassy objects crater of Hawaii (BHVO-1), are also analyzed. Hainan formed from the melting and rapid cooling of terrestri- Tektite is a typical splash-form tektite from Hainan al rocks during the high-energy impacts of meteorites, Island, China and of a dumbbell shape. We analyzed K comets, or asteroids upon the surface of the Earth [1]. isotopes of 15 chips along the longitudinal axis of its Chemical and isotopic compositions indicate that pre- profile, on a Neptune Plus MC-ICP-MS at Washington cursor components of tektites are the upper terrestrial University in St. Louis [14]. Except for Hainan tektite, continental crust, rather than extraterrestrial rocks. all other samples were only analyzed in bulk, with a Tektites are characterized by the depletion of volatile GV Instruments IsoProbe P MC-ICP-MS at Harvard elements and water, and heavy Cd, Sn, Zn and Cu iso- University following the description in [13]. K isotope topic compositions [2-5]. Since volatilities of elements compositions are reported using the per mil (‰) nota- 41 41 39 41 39 are defined by their 50% condensation temperature (Tc) tion, where δ K = ([( K/ K)sample/( K/ K)standard – of the solar nebula gas at 10-4 bars [6], there is no rea- 1]×1000). -
A Review of Evidence for a Gulf of Tonkin Location for the Australasian Tektite Source Crater Aubrey Whymark* Consultant Wellsite Geologist, Manila, Philippines
Thai Geoscience Journal 2(2), 2021, p. 1-29 1 Copyright © 2021 by the Department of Mineral Resources of Thailand ISSN-2730-2695; DOI-10.14456/tgj.2021.2 A review of evidence for a Gulf of Tonkin location for the Australasian tektite source crater Aubrey Whymark* Consultant Wellsite Geologist, Manila, Philippines. *Corresponding author: [email protected] Received 5 March 2021; Accepted 17 June 2021. Abstract Australasian tektites (AAT) occur across Southeast Asia, Australia, the Indian Ocean, and southwest Pacific Ocean. AAT form the youngest and most extensive major tektite strewn field. Unlike other tektite strewn fields, AAT have no known source crater. Review of the literature establishes that a single ~ 43 km post-impact diameter crater exists, possibly significantly enlarged by slumping. The obliquity of the impact that formed the AAT would result in a crater that is less pervasive in depth but with greater downrange shock effects and melt ejection. Multiple lines of evidence, historically viewed in isolation, were examined, concatenated, contextualized, and discussed. Tektite morpho- logy and distribution; microtektite regressions; geochemical considerations, comparisons, and iso- -concentration regressions; lithological characteristics; age of source rock; and regional geological considerations are reviewed. The source material is predicted to be an abnormally thick sequence of rapidly deposited, poorly compacted, deltaic to shallow marine, shales to clay-rich siltstones of early Pleistocene to Pliocene age. The impact likely occurred in a shallow marine environment. Forty- two maps of positive and negative parameters are presented and overlain. These indicate the AAT source crater probably lies in the central to northwestern Yinggehai - Song Hong Basin / Gulf of Tonkin. -
The Hamburg Meteorite Fall: Fireball Trajectory, Orbit and Dynamics
The Hamburg Meteorite Fall: Fireball trajectory, orbit and dynamics P.G. Brown1,2*, D. Vida3, D.E. Moser4, M. Granvik5,6, W.J. Koshak7, D. Chu8, J. Steckloff9,10, A. Licata11, S. Hariri12, J. Mason13, M. Mazur3, W. Cooke14, and Z. Krzeminski1 *Corresponding author email: [email protected] ORCID ID: https://orcid.org/0000-0001-6130-7039 1Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7, Canada 2Centre for Planetary Science and Exploration, University of Western Ontario, London, Ontario, N6A 5B7, Canada 3Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 3K7, Canada ( 4Jacobs Space Exploration Group, EV44/Meteoroid Environment Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 USA 5Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland 6 Division of Space Technology, Luleå University of Technology, Kiruna, Box 848, S-98128, Sweden 7NASA Marshall Space Flight Center, ST11, Robert Cramer Research Hall, 320 Sparkman Drive, Huntsville, AL 35805, USA 8Chesapeake Aerospace LLC, Grasonville, MD 21638, USA 9Planetary Science Institute, Tucson, AZ, USA 10Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA 11Farmington Community Stargazers, Farmington Hills, MI, USA 12Department of Physics and Astronomy, Eastern Michigan University, Ypsilanti, MI, USA 13Orchard Ridge Campus, Oakland Community College, Farmington Hills, MI, USA 14NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Alabama 35812, USA Accepted to Meteoritics and Planetary Science, June 19, 2019 85 pages, 4 tables, 15 figures, 1 appendix. Original submission September, 2018. 1 Abstract The Hamburg (H4) meteorite fell on January 17, 2018 at 01:08 UT approximately 10km North of Ann Arbor, Michigan. -
Bílá Skála U Jamolic Str
603-656_ZN_uzemi 1.4.2008 15:04 Stránka 603 ■ ■ ■ ■ ■ ■ ■ ■ ■ C M Y K Okres Znojmo GEOLOGIE Hluboké údo- lí fieky Jihlavy je zde zahloubeno ve velmi pevn˘ch granulitech agranulitov˘ch rulách. Svûtlé granulity pfiedstavují kyselé pre- kambrické magmatity, které by- ly v prÛbûhu tuhnutí vystaveny intenzivnímu tlaku. Tyto horni- ny odpovídají nejvy‰‰ímu stup- ni regionální metamorfózy – ka- tazónû moldanubika. Lokálnû se ve v˘chozech spolu s granulitem vyskytují men‰í polohy a uzavfie- 3 niny svûtl˘ch i tmav˘ch migma- titov˘ch rul a tmavého hadce. Pfii hranû svahu byly erozí vy- preparovány izolované skalky a skalní útvary mrazového srubu, pod srázy vznikly sutû a suÈové proudy. Pokryv skály tvofií nevyvi- nuté pÛdy (litozem typická s ran- kerem typick˘m a kambick˘m), které se místy prolínají se silnû kyselou kambizemí dystrickou. KVùTENA Stromové patro na granulitovém hfibítku tvofií 4 dub zimní (Quercus petraea), (Pinus sylvestris), 1 borovice lesní bfiíza bûlokorá (Betula pendu- VYUÎITÍ Chránûné území la), jefiáb ptaãí (Sorbus aucu- je ohroÏeno zámûrem zafiadit tu- paria) a j. muk (S. aria). Vke- to plochu mezi v˘hledová loÏis- fiovém patru najdeme lísku ka tûÏby surovin. Bílá skála obecnou (Corylus avellana), Pfiírodní mahalebku obecnou (Padellus BIBLIOGRAFIE 486 památka uJamolic mahaleb), na v˘slunném hfibetu MAPA ÚZEMÍ strana 644 jalovec obecn˘ (Juniperus comu- Skalnatá vyv˘‰enina na pravém bfiehu fieky Jihlavy s útva- nis). Borovice jsou ve velké mífie rem Bílá skála (389,7 m n. m.) holoroviny Mohelenské napadeny jmelím bíl˘m borovi- vrchoviny na styku s Bíte‰skou vrchovinou, asi 1,5 km zá- cov˘m (Viscum album subsp. -
Geochemical Characterization of Moldavites from a New Locality, the Cheb Basin, Czech Republic
Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic Item Type Article; text Authors Řanda, Zdeněk; Mizera, Jiři; Frána, Jaroslav; Kučera, Jan Citation Řanda, Z., Mizera, J., Frána, J. and Kučera, J. (2008), Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics & Planetary Science, 43(3), 461-477. DOI 10.1111/j.1945-5100.2008.tb00666.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 30/09/2021 11:07:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656405 Meteoritics & Planetary Science 43, Nr 3, 461–477 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic ZdenÏk ÿANDA1, Ji¯í MIZERA1, 2*, Jaroslav FRÁNA1, and Jan KU»ERA1 1Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 ÿež, Czech Republic 2Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V HolešoviËkách 41, 182 09 Praha 8, Czech Republic *Corresponding author. E-mail: [email protected] (Received 02 June 2006; revision accepted 15 July 2007) Abstract–Twenty-three moldavites from a new locality, the Cheb Basin in Western Bohemia, were analyzed by instrumental neutron activation analysis for 45 major and trace elements. Detailed comparison of the Cheb Basin moldavites with moldavites from other substrewn fields in both major and trace element composition shows that the Cheb Basin is a separate substrewn field. -
Bakalářská Práce Periferní Sídla, Obce a Oblasti Okresu Znojmo – Vymezení, Typy a Stabilita
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra geografie Bakalářská práce Periferní sídla, obce a oblasti okresu Znojmo – vymezení, typy a stabilita Vypracovala: Barbora Holíková Vedoucí práce: doc. RNDr. Jan Kubeš, CSc. České Budějovice 2019 Prohlášení Prohlašuji, že svoji bakalářskou práci jsem vypracovala samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své bakalářské práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce. Rovněž souhlasím s porovnáním textu mé kvalifikační práce s databází kvalifikačních prací Theses.cz provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů. Datum: Podpis studenta Poděkování Ráda bych poděkovala panu doc. RNDr. Janu Kubešovi, CSc. za vedení mé bakalářské práce, trpělivost, ochotu a cenné rady, které mi věnoval v průběhu zpracování. HOLÍKOVÁ, B. (2019): Periferní sídla, obce a oblasti okresu Znojmo – vymezení, typy a stabilita. Bakalářská práce. Jihočeská univerzita v Českých Budějovicích, Pedagogická fakulta, katedra geografie, 55 s. Anotace Bakalářská práce je zaměřena na vyhodnocování rozvinutosti (stability) obcí a sídel různých polohových typů v okrese Znojmo. Nejprve jsou vymezena sídelní střediska s odlišnou hierarchií (mikroregionální, nano, piko a femto střediska) a také nestřediskové obce na základě počtu druhů sledovaných služeb, počtu obyvatel, počtu spojů veřejné dopravy a dojížďky za prací a studiem. -
6 Výkres Širších Vztahů
Petráveè 674 Osové Kuøimská Nová Ves Kuøimské Jestøabí Níhov Batouchovice Oslavièka Jabloòov u Velkého Meziøíèí Osová Ruda u Velkého Meziøíèí Osová Bítýška Bøezské Katov ±echtín Blahoòov Vlèatín Vlkov u Osové Bítýšky Benetice Záblatí u Osové Bítýšky Prosatín Hroznatín Rohy Køižínkov KRAMOLÍN Tøebíèský ±íchov Vìstoòovice Dolní Heømanice ±ervená Lhota Hodov Lhotka u Velkého Meziøíèí Rudíkov Pánov Horní Vilémovice 559 Studnice Bezdìkov u Velké Bíteše Køoví Pøeckov ±íhalín Oslava Tasov Holubí Zhoø Klementice Nové Sady u Velké Bíteše Svatoslav u Tišnova Okøešice u Tøebíèe 491 Bøezka u Velké Bíteše Budišov Velká Bíteš Nárameè Kamenná nad Oslavou Nové Petrovice Raèerovice Budíkovice Nová Ves u Tøebíèe 521 Trnava u Tøebíèe Radoškov ±ikov Pøibyslavice u Velké Bíteše Jestøabí u Velké Bíteše Vaneè Jindøichov u Velké Bíteše Petrovice u Tøebíèe Pocoucov Košíkov Valdíkov Pyšel Jasenice Ludvíkov u Velké Bíteše Lesní Hluboké Kojatín Sokolí Krahulov Týn u Tøebíèe Zahrádka na Moravì Ptáèov Hostákov Pucov Pozïatín Zálesná Zhoø Podklášteøí ±astotice Krokoèín Øípov Smrk na Moravì HRANICE KRAJE OcmaniceNalouèany ±echoèovice Tøebíè Stanovištì na Moravì HRANICE ØEŠENÉHO ÚZEMÍ (OBEC KRAMOLÍN) Rudka Jinošov 498 Jedov HRANICE KATASTRÁLNÍCH ÚZEMÍ Staøeè Vladislav ZASTAVÌNÉ ÚZEMÍ OBCE KRAMOLÍN Hluboké Kracovice Kožichovice ZASTAVÌNÉ ÚZEMÍ MÌST A OBCÍ Pozïátky Újezd u Rosic ±ímìø nad Jihlavou Otradice OBEC S ROZŠÍØENOU PÙSOBNOSTÍ Støítež u Tøebíèe Støížov u Tøebíèe Okarec Zbraslav na Moravì Litostrov Studenec u Tøebíèe Námìš• nad Oslavou OBEC S POVÌØENÝM OBECNÍM ÚØADEM Mastník Vícenice u Námìštì nad Oslavou Horní Lhotice Slavice VODNÍ PLOCHY Okrašovice Konìšín Lesní Jakubov Kralice nad Oslavou LESY, KRAJINNÁ ZELEÒ Zòátky Slavièky ŽELEZNICE - STAV Mikulovice Kozlany Tøesov Rapotice Pøíbram na Moravì Kluèov ŽELEZNÍ TRA• - REZERVA Kojetice na Moravì Petrùvky Tøebenice na Moravì OSA KORIDORU VYSOKORYCHLOSTÍ TRATI - REZERVA Hartvíkovice Sudice u Námìštì nad Oslavou Plešice DÁLNICE D1 - STAV Ostašov na Moravì Vysoké Popovice Sedlec u Námìštì nad Oslavou Chroustov u Tøebenic Bøezník SILNICE I. -
Konečné Výsledky 2019.Pdf
TŘIKRÁLOVÁ SBÍRKA 2019 obec/městys/město č. pokl. vedoucí skupinky koledníků výtěžek v Kč celkem v Kč Euro Bantice 6-700/220 P. Čoupek Jindřich 1 392,00 Bantice 6-700/221 P. Čoupek Jindřich 1 570,00 Bantice 6-700/222 P. Čoupek Jindřich 1 373,00 Bantice 6-700/223 P. Čoupek Jindřich 3 177,00 Bantice 6-700/233 P. Čoupek Jindřich 2 790,00 10 302,00 Běhařovice 6-700/146 Horáková Helena 6 830,00 6 830,00 Bezkov 6-700/033 Coufal Lukáš 6 490,00 6 490,00 Bítov 6-700/377 Weidenthalerová Karin 7 180,00 7 180,00 Blanné 6-700/043 Kratochvílová Lenka 2 350,00 2 350,00 Blížkovice 6-700/260 Bc. Kříž Petr 4 490,00 Blížkovice 6-700/261 Vaňková Jana 3 150,00 Blížkovice 6-700/262 Janíková Adéla 4 845,00 Blížkovice 6-700/263 Chrástová Ivana 3 780,00 Blížkovice 6-700/264 Finda Lukáš 5 723,00 Blížkovice 6-700/265 Tesařová Jana 4 682,00 Blížkovice 6-700/266 Ing. Kříž Petr 4 715,00 31 385,00 Bohutice 6-700/045 Novosadová 4 874,00 Bohutice 6-700/091 Mgr. Eva Petržílková 2 387,00 7 261,00 Bojanovice 6-700/495 Hanzalová Dominika 4 935,00 4 935,00 Borotice 6-700/350 Bartolčicová Michala 3 520,00 Borotice 6-700/351 Pikartová Jana 698,00 4 218,00 0,06 € Boskovštejn 6-700/191 Müller Pavel 4 413,00 4 413,00 Božice 6-700/373 Benkovičová Ludmila 3 456,00 Božice 6-700/374 Baráková Růžena 4 136,00 Božice 6-700/375 Látalová Petra 6 149,00 Božice 6-700/376 Juhaňáková Simona 7 000,00 Božice 6-700/429 Jiří Čada 3 148,00 23 889,00 Branišovice 6-700/090 Kateřina Řeřuchová 17 776,00 17 776,00 Břežany 6-700/352 Kratochvíl Jiří 1 644,00 Břežany 6-700/353 Vlčková Hana 1 881,00 Břežany 6-700/354 Gambas Jan 3 745,00 7 270,00 Citonice 6-700/271 Coufal Marek 3 461,00 Citonice 6-700/272 Valová Jana 4 640,00 Citonice 6-700/273 Kania Jakub 2 090,00 Citonice 6-700/274 Hedbávná Eva 4 100,00 Citonice 6-700/316 P.