The Belle-II Experiment at Superkekb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BABAR Studies Matter-Antimatter Asymmetry in Τ Lepton Decays
BABAR studies matter-antimatter asymmetry in τττ lepton decays Humans have wondered about the origin of matter since the dawn of history. Physicists address this age-old question by using particle accelerators to recreate the conditions that existed shortly after the Big Bang. At an accelerator, energy is converted into matter according to Einstein’s famous energy-mass relation, E = mc 2 , which offers an explanation for the origin of matter. However, matter is always created in conjunction with the same amount of antimatter. Therefore, the existence of matter – and no antimatter – in the universe indicates that there must be some difference, or asymmetry, between the properties of matter and antimatter. Since 1999, physicists from the BABAR experiment at SLAC National Accelerator Laboratory have been studying such asymmetries. Their results have solidified our understanding of the underlying micro-world theory known as the Standard Model. Despite its great success in correctly predicting the results of laboratory experiments, the Standard Model is not the ultimate theory. One indication for this is that the matter-antimatter asymmetry allowed by the Standard Model is about a billion times too small to account for the amount of matter seen in the universe. Therefore, a primary quest in particle physics is to search for hard evidence for “new physics”, evidence that will point the way to the more complete theory beyond the Standard Model. As part of this quest, BABAR physicists also search for cracks in the Standard Model. In particular, they study matter-antimatter asymmetries in processes where the Standard Model predicts that asymmetries should be very small or nonexistent. -
The Belle-II Experiment at Superkekb
Gary S. Varner, Hawai’i The Belle-II Experiment at SuperKEKB Gary S. Varner University of Hawai’i at Manoa Boston (Cambridge), July 26, 2011 Luminosity at the B Factories Gary S. Varner, Hawai’i Fantastic performance much beyond design values! Need O(100x) more data Next generation B-factories Gary S. Varner, Hawai’i SuperKEKB + SuperB 40 times higher luminosity KEKB PEP-II Asymmetric B factories Gary S. Varner, Hawai’i √s=10.58 GeV + - B e e z ~ c Υ(4s) B Υ(4s) B ~ 200m BaBar p(e-)=9 GeV p(e+)=3.1 GeV =0.56 Belle p(e-)=8 GeV p(e+)=3.5 GeV =0.42 Belle II p(e-)=7 GeV p(e+)=4 GeV =0.28 Full Reconstruction Method Gary S. Varner, Hawai’i • Fully reconstruct one of the B’s to – Tag B flavor/charge – Determine B momentum – Exclude decay products of one B from further analysis Decays of interest B BXu l , BK e e+(3.5GeV) (8GeV) BD, Υ(4S) B full reconstruction BD etc. (~0.5%) Offline B meson beam! Powerful tool for B decays with neutrinos “Super” B Factory motivation Gary S. Varner, Hawai’i For details on physics opportunities: See Kay Kinoshita talk 17:20 B factories is SM with CKM right? Thursday, July 28 – Section 5I Super B factories How is the SM wrong? Need much more data (two orders!) because the SM worked so well until now Super B factory e+e- machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more to LHCb and BESIII Recent update of the physics reach with 50 ab-1 (75 ab-1): Physics at Super B Factory (Belle II authors + guests) hep-ex > arXiv:1002 .5012 SuperB Progress Reports: Physics (SuperB authors + guests) hep-ex > arXiv:1008.1541 TSUKUBA Area (Belle) High Energy Ring (HER) for Electron HER LER How to do it? Interaction Region Low Energy Ring (LER) for Positron Gary S. -
Belle II Experiment: Status and Physics Prospects
Belle II Experiment: Status and Physics Prospects Hideki Miyake (KEK) On behalf of Belle II collaboration 2018 June 8th, FPCapri 2018, Anacapri, Capri, Italy Introduction and Hot topics 2018/6/8 Belle II Experiment: Status and Physics Prospects 2 B-factory: Belle to Belle II • e+e- B-factories have been a driving force to establish the standard model and search for new physics • Recently some anomalies measured in B decays… a hint of BSM! Observation machines! • Belle II provides • Complementary measurements to LHC experiments • Rich physics program (not only B decays) … x40 luminosity than Belle 2018/6/8 Belle II Experiment: Status and Physics Prospects 3 Belle II + SuperKEKB • KEK is located in Tsukuba, Japan (50km away from Tokyo) Mt. Tsukuba (877m) SuperKEKB Belle II LINAC main ring: 3km e- (HER): 7GeV KEK e+ (LER): 4GeV Tsukuba Campus 2018/6/8 Belle II Experiment: Status and Physics Prospects 4 SuperKEKB • SuperKEKB is successor of former KEKB but refurbished with the new design KEKB SuperKEKB “nano-beam” scheme Beam squeezing: x20 smaller at IR x2 ∗ 휸± 흈풚 푰±휻±풚 푹푳 퐋퐮퐦퐢퐧퐨퐬퐢퐭퐲 = ퟏ + ∗ ∗ ퟐ풆풓풆 흈풙 휷풚 푹풚 X1/20 Target luminosity: 8x1035cm-2s-1 KEKB x 40! 2018/6/8 Belle II Experiment: Status and Physics Prospects 5 Challenge: high beam background • x40 times peak luminosity also brings severe beam related backgrounds • Belle II detector was designed to overcome the issue • Finer granularity • Better timing resolution • High trigger rate through pipeline readout Initial assumption: Belle detector with KEKB x20 BG 2018/6/8 Belle II Experiment: -
Superkekb VACUUM SYSTEM K
SuperKEKB VACUUM SYSTEM K. Shibata#, KEK, Tsukuba, Japan Abstract size in the horizontal and vertical directions at the IP, I is SuperKEKB, which is an upgrade of the KEKB B- the beam current, y is the vertical beam-beam * factory (KEKB), is a next-generation high-luminosity parameter, y is the vertical beta function at the IP, RL electron-positron collider. Its design luminosity is 8.0× and Ry are the reduction factors for the luminosity and 1035 cm-2s-1, which is about 40 times than the KEKB’s vertical beam-beam tune-shift parameter, respectively, record. To achieve this challenging goal, bunches of both owing to the crossing angle and the hourglass effect. The beams are squeezed extremely to the nanometer scale and subscripts + and – indicate a positron or electron, the beam currents are doubled. To realize this, many respectively. At the SuperKEKB, crossing the beams by upgrades must be performed including the replacement of using the “nanobeam scheme” [3] makes it possible to * th beam pipes mainly in the positron ring (LER). The beam squeeze y to about 1/20 of KEKB’s size. In the pipes in the LER arc section are being replaced with new nanobeam scheme, bunches of both beams are squeezed aluminium-alloy pipes with antechambers to cope with extremely to the nanometer scale (0.3 mm across and 100 the electron cloud issue and heating problem. nm high) and intersect only in the highly focused region Additionally, several types of countermeasures will be of each bunch at a large crossing angle (4.8 degrees). -
Commissioning of the KEKB B-Factoryinvited
Proceedings of the 1999 Particle Accelerator Conference, New York, 1999 COMMISSIONING OF THE KEKB B–FACTORY K. Akai, N. Akasaka, A. Enomoto, J. Flanagan, H. Fukuma, Y. Funakoshi, K. Furukawa, J. Haba, S. Hiramatsu, K. Hosoyama, N. Huang∗, T. Ieiri, N. Iida, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, S.–I. Kurokawa, M. Masuzawa, S. Michizono, T. Mimashi, T. Nakamura, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, N. Ohuchi, K. Oide,D.Pestrikov†,K.Satoh, M. Suetake, Y. Suetsugu, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Yamamoto, M. Yoshida, S. Yoshimoto, M. Yoshioka, KEK, Oho, Tsukuba, Ibaraki 305-0801, Japan, T. Browder, Univ. of Hawaii, 2505 Correa Road, Honolulu, HI 96822, U.S.A. Abstract The commissioning of the KEKB B–Factory storage rings started on Dec. 1, 1998. The two rings both achieved a stored current of over 0.5 A after operating for four months. The two beams were successfully collided several times. The commissioning stopped on Apr. 19, taking a 5-week break to install the Belle detector. 1 BRIEF HISTORY OF THE COMMISSIONING The KEKB B–Factory[1] consists of two storage rings, the LER (3.5 GeV, e+) and the HER (8 GeV, e−), and the in- jector Linac/beam-transport (BT) system. The Linac was upgraded from the injector for TRISTAN, and was com- missioned starting in June 1997, including part of the BT line. The injector complex was ready before the start of commissioning of the rings.[2] Figure 1 shows the growth of the stored currents in the two rings through the period of commissioning. -
Superb Report Intensity Frontier Workshop 1 Introduction
SuperB Report Intensity Frontier Workshop 1 Introduction The Standard Model (SM) has been very successful in explaining a wide range of electroweak and strong processes with high precision. In the flavor sector, observation of CP violation in B decays at BABAR and Belle, and the extraordinary consistency between the CKM matrix elements, established the SM as the primary source of CP violation in nature (leading to the 2008 Nobel Prize in physics). However, the remarkable success of the SM in describing all known flavor-physics measurements presents a puzzle to the search for New Physics (NP) at the LHC. New particles below the TeV scale should contribute to low-energy processes through virtual loop diagrams and cause observable effects in the flavor sector. The lack of any such effects suggests that either the NP mass scale is much higher than the TeV scale, or that NP flavor-violating operators are suppressed. In either scenario, flavor physics at the intensity frontier is poised to remain a central element of particle physics research in the coming decades. The INFN-sponsored SuperB project [1–3] in Italy is an asymmetric-energy electron- positron collider in the 10 GeV energy region with an initial design average luminosity of 1036 cm−2s−1, which will deliver up to 75 ab−1 in five years of operation (see Fig. 1 for details) to a new SuperB detector derived from the existing BABAR. A new innovative concept in accelerator design, employing very low-emittance beams and a “crab waist” final focus, makes possible this large increase (100-fold) in instantaneous luminosity over present B Factory colliders with no corresponding increase in power consumption, and similar backgrounds for the detector. -
Present Status of Kekb Project
PRESENT STATUS OF KEKB PROJECT Shin-ichi Kurokawa KEK, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, Japan Abstract GeV electron and a 5.3-GeV positron collide and produce a pair of B meson and anti-B meson at rest at the Υ(4S) The KEK B-Factory, KEKB, is an asymmetric-energy, resonance. In the laboratory frame where an 8-GeV two-ring, electron-positron collider for B physics. Eight- electron and a 3.5-GeV positron collide, the B and anti-B GeV electrons stored in a high-energy ring (HER) and mesons move along the direction of the incoming 3.5- GeV positrons in a low-energy ring (LER) collide at electron, travel over a few hundred µm, and decay at an interaction point (IP), which BELLE detector different positions. By detecting the decay products, we surrounds. In order to facilitate detection of CP-violation can identify the B and anti-B mesons. This identification effect at the bottom-quark sector, the machine is designed is essential for studying CP-violation, which is a subtle to reach a luminosity of 1034cm-2s-1. Even with a high difference in behavior between particles and anti- beam-beam tuneshift of 0.052 and a small βy* of 1 cm at particles. IP, necessary currents in the rings amount to 1.1 A at HER and 2.6 A at LER. KEKB adopts new schemes to reach TSUKUBA IP the goal, such as ±11 mrad finite-angle collision at IP, non-interleaved-sextupole chromaticity correction to have HER LER HER large dynamic apertures, higher-order-mode-free normal LER conducting cavity called ARES and single-cell, single- mode, superconducting cavities to prevent coupled-bunch instabilities and combat heavy beam-loading, among others. -
First New Particle-‐Smasher Since the LHC Comes
www.coepp.org.au Media release for immediate release Thursday 3 March 2016 First new particle-smasher since the LHC comes online A new particle collider, SuperKEKB, located at the KEK laboratory in Tsukuba, Japan has achieved “First Turns” and is now in the test operation stage. This is the newest “particle-smasher” to go online since the LHC at CERN in Geneva. SuperKEKB will be the world’s highest-luminosity collider and, in association with the Belle II experiment, it will collide electrons with their antiparticles – positrons – in the search for new physics. Designed and built at KEK by a team of Japanese accelerator physicists, SuperKEKB, along with the Belle II detector at the interaction point, will search for new physics beyond the Standard Model by measuring rare decays of elementary particles such as beauty quarks, charm quarks and tau leptons. In contrast to the LHC, which is the world's highest energy machine, SuperKEKB/Belle II is designed to have the world’s highest luminosity or rate of collisions (40 times higher than its predecessor KEKB). This will make SuperKEKB the world’s “highest luminosity” machine and the leading accelerator on the “luminosity frontier”. Key milestones: • 10 February, 2016: SuperKEKB succeeded in circulating and storing a positron beam moving close to the speed of light around the 3.0 kilometre circumference of its main ring. • 26 February, 2016: SuperKEKB electron-positron collider succeeded in circulating and storing a seven billion electron-volt energy (7 GeV) electron beam around its ring of magnets in the opposite direction. The achievement of these “first turns” – i.e. -
Status of Super-Kekb and Belle Ii∗
Vol. 41 (2010) ACTA PHYSICA POLONICA B No 12 STATUS OF SUPER-KEKB AND BELLE II∗ Henryk Pałka The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152, 31-342 Kraków, Poland (Received November 29, 2010) The status of preparations to Belle II experiment at the SuperKEKB collider is reviewed in this article. PACS numbers: 11.30.Er, 12.15.Hh, 13.20.He, 29.20.db 1. Introduction The Belle detector [1] has stopped data taking in June 2010. A decade- long operation of the experiment at the asymmetric beam energy electron- positron collider KEKB [2] resulted in a data sample of an integrated lumi- nosity exceeding 1 ab−1. This would not be possible without the excellent performance of the KEKB. The collider has reached the world record in- stantaneous luminosity of 2:2 × 1034 cm−2s−1 (Fig. 1), more than twice the design luminosity. Several technological innovations contributed to this achievement, among them crab cavities developed at KEK and successful implementation of continuous injection. Fig. 1. Time-line of KEKB peak luminosity. ∗ Lecture presented at the L Cracow School of Theoretical Physics “Particle Physics at the Dawn of the LHC”, Zakopane, Poland, June 9–19, 2010. (2595) 2596 H. Pałka By the precise measurement of the CKM angle φ1 by Belle and BaBar, its companion B-meson factory experiment at SLAC [3], the Kobayashi– Maskawa mechanism of CP violation [4] has been confirmed. Following the experimental confirmation M. Kobayashi and T. Maskawa were awarded the 2008 Nobel Prize in Physics. Numerous other physics results of B-meson factory experiments further support the hypothesis that the matrix of three- generation quark mixing is the dominant source of CP violation in B- and K-meson decays. -
Detectors for Extreme Luminosity: Belle II
Nuclear Inst. and Methods in Physics Research, A 907 (2018) 46–59 Contents lists available at ScienceDirect Nuclear Inst. and Methods in Physics Research, A journal homepage: www.elsevier.com/locate/nima Detectors for extreme luminosity: Belle II I. Adachi a,b , T.E. Browder c, P. Kriºan d,e, *, S. Tanaka a,b , Y. Ushiroda a,b,f , (on behalf of the Belle II Collaboration) a High Energy Accelerator Research Organization (KEK), Tsukuba, Japan b SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan c University of Hawaii, Honolulu, HI, United States d Faculty of Mathematics and Physics, University of Ljubljana, Slovenia e Joºef Stefan Institute, Ljubljana, Slovenia f Department of Physics, Graduate School of Science, University of Tokyo, Japan ARTICLEINFO ABSTRACT Keywords: We describe the Belle II detector at the SuperKEKB electron–positron accelerator. SuperKEKB operates at the Belle II energy of the 훶 .4S/ resonance where pairs of B mesons are produced in a coherent quantum mechanical state Super B Factory with no additional particles. Belle II, the first Super B factory detector, aims to achieve performance comparable SuperKEKB to the original Belle and BaBar B factory experiments, which first measured the large CP violating effects in the Magnetic spectrometer B meson system, with much higher luminosity collisions and larger beam-induced backgrounds. Flavor physics Contents 1. Introduction ..................................................................................................................................................................................................... -
Arxiv:1807.08680V4 [Hep-Ex] 1 Mar 2019
Noname manuscript No. (will be inserted by the editor) The Full Event Interpretation An exclusive tagging algorithm for the Belle II experiment T. Keck1, F. Abudinén2, F.U. Bernlochner1, R. Cheaib3, S. Cunliffe4, M. Feindt1, T. Ferber4, M. Gelb1, J. Gemmler1, P. Goldenzweig1, M. Heck1, S. Hollitt5, J. Kahn6, J-F. Krohn7, T. Kuhr6, I. Komarov4, L. Ligioi2, M. Lubej8, F. Metzner1, M. Prim1, C. Pulvermacher1, M. Ritter6, J. Schwab1, W. Sutcliffe1, U. Tamponi9, F. Tenchini4, N. E. Toutounji10, P. Urquijo7, D. Weyland1, and A. Zupanc8 1Karlsruhe Institute of Technology, Karlsruhe, Germany 2Max-Planck-Institut für Physik, Munich, Germany 3University of Mississippi, Mississippi, USA 4Deutsches Elektronen-Synchrotron, Hamburg, Germany 5University of Adelaide, Adelaide, Australia 6Ludwig Maximilians Universität, Munich, Germany 7University of Melbourne, Melbourne, Australia 8Jožef Stefan Institute, Ljubljana, Slovenia 9INFN - Sezione di Torino, Torino, Italy 10University of Sydney, Sydney, Australia Received: date / Accepted: date Abstract The Full Event Interpretation is presented: 1 Introduction a new exclusive tagging algorithm used by the high- energy physics experiment Belle II. The experimental The Belle II experiment is located at the SuperKEKB setup of Belle II allows the precise measurement of electron-positron collider in Tsukuba, Japan, and was otherwise inaccessible B meson decay-modes. The Full commissioned in 2018. The experiment is designed to Event Interpretation algorithm enables many of these perform a wide range of high-precision measurements in measurements. The algorithm relies on machine learn- all fields of heavy flavour physics, in particular it will ing to automatically identify plausible B meson de- investigate the decay of B mesons [1]. For this purpose, cay chains based on the data recorded by the detector. -
Overview of the KEKB Accelerators
Nuclear Instruments and Methods in Physics Research A 499 (2003) 1–7 Overview of the KEKB accelerators S. Kurokawa, E. Kikutani* KEK, National High Energy Accelerator Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801, Japan Abstract An overview of the KEKB accelerators is given as an introduction of the following articles in this issue, first by summarizing the basic features of the machines, and then describing the improvements of the performance since the start of the physics experiment. r 2002 Elsevier Science B.V. All rights reserved. PACS: 29.20. Keywords: Colliding machine; Storage ring 1. Introduction osity by Belle from the start of the physics experiment in June 1999 up to November 2001. We have witnessed a steady improvement in the This steady improvement in the performance of performance of KEKB from the start of the KEKB and the achievement of unprecedented physics experiment in June 1999 to the present luminosity of 5:47 Â 1033 cmÀ2 sÀ1 are the culmi- time. To review this improvement, we list here nation of almost a 10-year effort by KEKB staff milestone dates of the peak luminosity: the peak members. There still remain many things to be luminosity of KEKB exceeded 1:0 Â 1033 cmÀ2 sÀ1 improved in KEKB, to first reach the design in April 2000, reached 2:0 Â 1033 cmÀ2 sÀ1 in July luminosity of 1 Â 1034 cmÀ2 sÀ1; and then to 2000, surpassed 3:0 Â 1033 and 4:0 Â 1033 cmÀ2 sÀ1 eventually exceed it. The papers compiled here in March and June 2001, and finally reached 5:47 Â summarize our efforts made for KEKB and were 1033 cmÀ2 sÀ1 in November 2001.