Djvu Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Major Jenkins' Fan Palm in Thailand
PALMS Barfod et al.: Major Jenkins’ Fan Palm Vol. 54(3) 2010 ANDERS S. BARFOD Major Department of Biological Sciences, University of Aarhus, Jenkins’ Ny Munkegade bygn. 1540, DK-8000, Aarhus C., Denmark Fan Palm [email protected] in Thailand JOHN LESLIE DOWE Australian Centre for Tropical Freshwater Research, James Cook University, Townsville, Qld 4811, Australia [email protected] AND PIYAKASET SUKSATHAN Queen Sirikit Botanic Garden, P.O. Box 7, Mae Rim, Chiang Mai 50180, Thailand [email protected] 1. Habit of Livistona jenkinsiana. Phu Soi Dao. (Photo: Katja Anker) Major Jenkins’ Fan Palm, Livistona jenkinsiana, is currently under threat in northern Thailand from habitat destruction caused by unsustainable agricultural practices. Based on recent field work and other research, we discuss the historical background and the taxonomic delimitation of the species. PALMS 54(3): 109–118 109 PALMS Barfod et al.: Major Jenkins’ Fan Palm Vol. 54(3) 2010 Livistona jenkinsiana Griff. (Figs. 1 & 2) was descriptions noted above, and does not display first described by William Griffith (1845), any significant variation across its natural based on his field observations and a collection distribution. made in 1842 from Assam by Major Francis Taxonomic status relative to Livistona Jenkins, and named in his honor (Box 1). The speciosa type specimen, conserved in the herbarium of the National Botanic Garden of Belgium, Twenty-nine years after Major Jenkins’ Fan consists of an inflorescence and remnants of Palm was described from Assam, another flowers and a few fruits (Fig. 3). The protologue species of fan palm was published by the clearly described the fruit and seed as: “Drupe German botanist Wilhelm Sulpiz Kurz, who at reniform, round, slightly attenuate at the base, the the time was curator of the herbarium in size of a musket ball, of a leaden blue colour, Calcutta. -
The Taxonomy, Chorology and Reproductive Biology of Southern Afri Can Meliaceae and Ptaeroxylaceae
Bothalia 16.2: 143-168 (1986) The taxonomy, chorology and reproductive biology of southern Afri can Meliaceae and Ptaeroxylaceae F. WHITE* Keywords: chorology. Meliaceae. Ptaeroxylaceae. reproductive biology, southern Africa, taxonomy ABSTRACT Information is provided on the taxonomy, chorology and reproductive biology of 14 indigenous and two intro duced species of Meliaceae in southern Africa, and on Ptaeroxylon (Ptaeroxylaceae). Two new taxa are described: Nymanieae F. White, tribus nov. and Turraea strevi F. White & B. T. Styles, sp. nov. Nurmonia (Harms) F. White, comb, et stat. nov.. a new section of Turraea L. is created. The account complements the treatments of these families in the Flora o f southern Africa. UITTREKSEL Inligting word verskaf oor die taksonomie. chorologie en voortplantingsbiologie van 14 inheemse en twee inge- voerde spesies van Meliaceae in suidelike Afrika en oor Ptaeroxylon (Ptaeroxylaceae). Twee nuwe taksons word beskryf: Nymanieae F. White, tribus nov. en Turraea strevi F. White & B. T. Styles, sp. nov. Nurmonia (Harms) F. White, comb, et stat. nov., 'n nuwe seksie van Turraea L. word geskep. Hierdie verslag is aanvullend tot die behandelings van hierdie families in die Flora o f southern Africa. CONTENTS The position of Ptaeroxylon and Nyma nia............................................................ 163 Introduction.................................................................143 South African Trichilia: chemistry and Generic and family delimitation..................... .......144 the taxonomist's e y e .......................... 163 The position of Ptaeroxylon.................................144 Conclusions................................................... 163 The position of N ym ania.....................................144 Taxonomy as a visual a rt.............................. 163 The circumscription of Turraea..........................145 The Meliaceae and the chorology of south Notes on individual genera and species ern Africa.................................................. 164 1. -
Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Biology and Biological Control of Dalmatian and Y Ellow T Oadflax
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF DALMATIAN AND Y ELLOW T OADFLAX LINDA M. WILSON, SHARLENE E. SING, GARY L. PIPER, RICHARD W. H ANSEN, ROSEMARIE DE CLERCK-FLOATE, DANIEL K. MACKINNON, AND CAROL BELL RANDALL Forest Health Technology Enterprise Team—Morgantown FHTET-2005-13 U.S. Department Forest September 2005 of Agriculture Service he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photos: Toadflax (UGA1416053)—Linda Wilson, Beetles (UGA14160033-top, UGA1416054-bottom)—Bob Richard All photographs in this publication can be accessed and viewed on-line at www.forestryimages.org, sponsored by the University of Georgia. You will find reference codes (UGA000000) in the captions for each figure in this publication. To access them, point your browser at http://www.forestryimages.org, and enter the reference code at the search prompt. How to cite this publication: Wilson, L. M., S. E. Sing, G. L. Piper, R. W. Hansen, R. De Clerck- Floate, D. K. MacKinnon, and C. Randall. 2005. Biology and Biological Control of Dalmatian and Yellow Toadflax. USDA Forest Service, FHTET-05-13. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. -
Isaac Lawson, Physician and Naturalist Linnaeus’S Scottish Patron
E. Charles Nelson Isaac Lawson, Physician and Naturalist Linnaeus’s Scottish Patron n 19 December 1735 NS (8 December OS), Johan Frederik Gronovius Oand Isaac Lawson sent from Leiden a copy of Carl Linnaeus’s Systema naturae (1735) to Sir Hans Sloane explaining, in their jointly signed letter, that it has been “sent to the press at our own expense, with an intention to have a few copies; but at the request of several friends we have determined to communicate it fully (judging it might be agreeable to the Learned world. [)]”1 Ten days later, on 18 December 1735 OS, the English naturalist Mark Catesby (1683–1749) presented another copy that he also had received from Gronovius to the Royal Society in London.2 Whereas biographical accounts of Gronovius have been published, Lawson, who is frequently but inaccurately labelled as a botanist, and wrongly named as Andrew (Andry) or John (Johann), is not so well documented although he is accorded an entry (of about 170 words) in the Oxford dictionary of national biography.3 He is also often confused with John Lawson (c. 1674–1711), an English naturalist who explored Carolina in the early 1700s.4 Nor, indeed, has anyone ever questioned how a fellow student from Scotland, only a few years older than Linnaeus, could undertake to fi nance the publication of the Swedish naturalist’s fi rst publication. Lawson family No record of Isaac Lawson’s birth or baptism can be traced in Scottish pa- rochial archives so his year of birth can only be approximated. When his name was inscribed in the “Album Studiosorum” -
Phylogeny and Systematics of the Rauvolfioideae
PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s. -
Biodiversity of Medicinal Plants at Sambas Botanical Garden, West Kalimantan, Indonesia
doi: 10.11594/jtls.08.02.04 THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 8, NO. 2, pp. 116 – 122, February 2018 Submitted May 2017; Revised December 2017; Accepted December 2017 Biodiversity of Medicinal Plants at Sambas Botanical Garden, West Kalimantan, Indonesia Sudarmono * Center for Plant Conservation- Bogor Botanical Garden, Indonesia Research Institute (LIPI), Bogor, Indonesia ABSTRACT Botanical garden is one of ex-situ conservation which has function as germ plasm conservation, education/research, and recreation. To conserve plants biodiversity, many local governments in Indonesia propose to cooperate with LIPI to build botanical gardens. Sambas botanical garden with an area ± 300 ha in West Kalimantan is one of a botanical garden which is under construction. As new exploration site, many biodiversity in this area has not been entirely explored yet including its medicinal plants. Methods used in this study including field survey and interview techniques. The objective of this study is to explore a biodiversity of medicinal plants in that area. This study identified 30 medicinal plants, representing 20 families and 25 genera. It indicated that Sambas botanical garden has many highly potential values of medicinal plants. Therefore, a proper management including medicinal plant for this area is strongly required. Keywords: Sambas, botanical gardens, medicinal plants INTRODUCTION Although Sambas Botanical Garden is predicted has Indonesian flora plays an important role in the great diversity on medicinal plants but information world biodiversity as contributes to 15.5% of total world about medicinal plants and uses in this area is very lack flora. However, it is under threatened due to high rate [4]. -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
Curriculum Vitae
Curriculum Vitae Name: Saw Leng Guan, FASc Born: 14 December 1955, Taiping, Perak, MALAYSIA Sex: Male Nationality: Malaysian Home Address: 19 Jalan Tekoma KS6 Bandar Botanic 41200 Klang Selangor Malaysia Tel.: +603-331 82467 Mobile: +6019-274 5512 e-mail: [email protected] or [email protected] Office Address: Penang Botanic Gardens Pavilion Administration Complex Jalan Kebun Bunga 10350 Penang Malaysia Tel: +6019-2745512 Email: [email protected] Academic Qualifications a. Bachelor of Science (Forestry), Agriculture University of Malaysia (UPM), 1981 b. Master of Science (Pure and Applied Plant and Fungal Taxonomy), University of Reading, 1990 c. Doctor of Philosophy, University of Reading, 1994 Thesis 1. Saw L.G. (1981). Progress of crop: Composition, density and growth patterns of Rhizophora dominated stands before first thinning in Matang Mangroves Forest Reserve, Perak. Final year thesis. U.P.M. 2. Saw L.G. (1990). A revision of the genus Licuala (Palmae) subgenus Libericula. M.Sc. thesis. University of Reading. 3. Saw L.G. (1994). The taxonomy and ecology of the genus Licuala (Palmae) in Malaya. Ph.D. thesis, University of Reading. Awards and Conferment National and International Awards, and Conferment 1. Royal Botanic Gardens Edinburgh (RBGE) Medal – 2016. 2. Conferred as Fellow of the Academy of Sciences Malaysia, 2013. 3. National Book Award 2012 – Technical Book – Wild Orchids of Peninsular Malaysia. 4. British High Commission’s Chevening Scholarships Scheme: Royal Society – Malaysian Fellowship, 1999/2000 (15 January 2000 – 15 June 2000) Schools attended a. Anglo Chinese (Primary) School, Malacca 1962–1967 Page 1 of 19 b. Anglo Chinese (Secondary) School, Malacca 1968 c.