Instrumentation and Control Systems

Total Page:16

File Type:pdf, Size:1020Kb

Instrumentation and Control Systems Whole Number 216 Instrumentation and Control Systems Lifecycle total solution Integrate latest leading hardware and software and application know-how, future-oriented system development with evolution. This is the lifecycle concept of MICREX-NX. MICREX-NX realizes optimal plant operation in all phases of system design, commissioning, operation and maintenance. At renewal phase, MICREX-NX provides maximum effect with minimum capital investment. The MICREX-NX lifecycle total solution offers cost reduction and long-term stable operation with constant evolution and variety of solution know-how. The new process control system Instrumentation and Control Systems CONTENTS Present Status and Fuji Electric’s Involvement with 2 Instrumentation and Control Systems New Process Control System for a Steel Plant 8 New Process Control Systems in the Energy Sector 13 Cover photo: Instrumentation and control sys- Network Wireless Sensor for Remote Monitoring of Gas Wells 17 tems are anticipated to become sys- tems capable of considering carefully the comfort and safety of society and the global environment while contrib- uting to the stable manufacture of high quality products with the desired productivity. Fuji Electric strives to provide a total optimal system with vertically and horizontally integrated solutions Fuji Electric’s Latest High Functionality Temperature Controllers 21 that link seamlessly various compo- PXH, PXG and PXR, and Examples of their Application nents and solutions required on the shop fl oor. The cover photograph represents an image of instrumentation and con- trol system organized by the MICREX- NX new process control system, fi eld devices, receivers, and the like. Head Office : No.11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan http://www.fujielectric.co.jp/eng/company/tech/index.html Present Status and Fuji Electric’s Involvement with Instrumentation and Control Systems Yuji Todaka Toshiyuki Sasaya Ken Kakizakai 1. Introduction again improved and enhanced the element technolo- gies of the instrumentation and control system, i.e., The investment environment surrounding the in- the main constituent elements of control technology, dustrial system sector is continuing to grow due to in- engineering technology and device manufacturing tech- creased public demand for capital investment. Accord- nology, and constituent components such as measuring ing to medium-range forecasts, the market for electric instruments. measurement equipment will continue to experience This paper presents Fuji Electric’s vertical and mild growth overall during the period from 2006 to horizontal integration solution, and described the pres- 2009; government-based demand will continue to be ent status of and Fuji Electric’s involvement with the limited and will level off; exports will be centered on abovementioned constituent elements. China and other Asian countries and will continue to increase slightly, and public demand for investment 2. Market Trends and Challenges for Instrumen- to reduce the high cost of crude oil and to add value to tation and Control Systems products is expected. Instrumentation and control systems are antici- 2.1 Market trends and challenges for distributed control pated to become capable of considering carefully the systems (DCSes) comfort and safety of society and the global environ- In the 1990s, DCSes underwent a dramatic change ment while contributing to the stable manufacture of from specialized systems for DCS manufacturers to high quality products with the desired productivity. open-standard systems used with UNIX*1 and Win- Moreover, at plants where the manufacturing equip- dows*2, which are the de facto standards for operating ment is approaching the time for renewal, it is desired systems. SCADA (supervisory control and data ac- to utilize existing assets while migrating to a system quisition), a monitoring and control package that uses capable of supporting future technological innovations. Windows as its operating system, emerged fi rst, and Meanwhile, owing to the latest advances in IT (in- PC-based DCSes that use SCADA as middleware were formation technology) and personal computers, there introduced into monitoring and control systems. Then are plans to combine instrumentation and control Internet technology and OPC*3, the de facto standard systems with MES (manufacturing execution system), interface of Windows, and fi eld bus technology revolu- ERP (enterprise resource planning), SCM (supply chain tionized the DCS market. management) and other such core systems, or combine In the years since 2000, programmable logic con- them with intelligent fi eld devices, and there is de- troller (PLC) instrumentation systems have been intro- mand for a comprehensive optimized system structure, duced to the market, and the segregation of the instru- from the fi eld level to the level of production manage- mentation control domain among DCS manufacturers, ment and operation, based on a vertically and horizon- PLC manufacturers and SCADA manufacturers has tally integrated solution that seamlessly integrates the become even more complex. various components and applications required at the On the other hand, the focus on DCSes has production site. changed, from mere monitoring and control systems On the other hand, the so-called “year 2007 prob- to systems that are being reconsidered by users as lem” is one that Fuji Electric cannot avoid, and in es- an effective means for reducing the TCO (total cost of tablishing and executing a countermeasure policy, as a part of an effort to strengthen the rationale for an in- *1: UNIX is a registered trademark in the U.S. and other strumentation and control system that provides verti- countries, licensed through X/Open Company, Ltd. cal and horizontal integration solutions, and cognizant *2: Windows is a registered trademark of U.S.-based Micro- of the transmission of technology and of measures to soft Corporation. prevent the hollowing out of this industry, Fuji Electric *3: OPC is a standard interface specifi cation of Microsoft. 2 Vol. 53 No. 1 FUJI ELECTRIC REVIEW ownership) for the total lifecycle duration, from DCS especially China, and the enhancement of facilities in adoption until renewal, and with the introduction of IT, the basic materials industry, which is the main cus- as a way to optimize the operation of manufacturing tomer of measuring instruments. systems. Measuring instruments can be broadly categorized In this context, a DCS does not exist by itself, but as fi eld instruments such as transmitters and fl ow me- must be linked to an ERP, SCM or MES core busi- ters, receivers such as recorders and controllers, and ness system to form a system that operates effectively. analyzers. A noticeable recent trend among measuring Seamless integration and the provision of MES prod- instruments is the provision of functions that support ucts are huge challenges. networking. The fi rst example of a fi eld bus used in With longer service lives of equipment, DCSes are the fi eld was announced in 1998, and the necessity of being required to provide long-term maintenance and a fi eld bus has become a frequent topic in recent busi- protection. The extent to resolve the confl ict between ness discussions. Communication functions such as longer service life and higher versatility of general- Ethernet*4 support are now required in receivers as purpose products based on open standards remains a well. Moreover, the trend toward globalization of mea- huge challenge. suring instruments is remarkable, and for transmit- In the domestic Japanese DCS market, new plant ters, de facto standards are increasingly being used in demand is small, but the majority of demand arises the specifi cations, and the resulting low cost is often from the need to renew equipment in order to maintain the key to receiving orders. On the other hand, how- a plant. The challenge facing DCS manufacturers is ever, there is a growing demand for specialized devices achieve long-term operation while continuing to utilize for particular customers. a user’s assets and providing a revolutionary system. 3. Fuji Electric’s Involvement with Instrumenta- 2.2 Market trends and challenges of measuring instru- tion and Control Systems ments The market for measuring instruments has con- 3.1 Involvement with DCS tinued to diminish due to a reduction in capital invest- Fuji Electric possesses excellent core technology ment over the long-term and lower prices, but in the past few years, the market has recovered as a result of *4: Ethernet is a registered trademark of U.S.-based Xerox increased in capital investment in Asian markets and Corporation. Fig.1 MICREX system confi guration Enterprise resource Small and medium planning/supply chain Medium and large size systems size systems management (ERP/SCM) Existing system 5th generation Office LAN, Internet, intranet MICREX-NX 2nd & 3rd 4th generation Manufacturing - generation MICREX AX OS clients execution system MICREX-IX (MES) MICREX-PIII Terminal bus FOCUS DBS-1500 IDS-2500 AOS-2000 OS server ADS-2000 ADS-2000 Batch servers ES OS single user FL-net Process DPCS-F automation Plant bus (DCS) ACS-2000 AS AS MICREX-SX ICS-2000 ACS-2000 (JUPITER) ACS-2000 PCS-500 HDC-500 IPU DP - EGFMAC-SIRIUS PROFIBUS-DP IPU IPU P/PE link PROFIBUS Field level PROFIBUS-PA OS : Operator station ES : Engineering station MICREX-SX AS : Automation system Present Status and Fuji Electric’s Involvement with Instrumentation and Control Systems 3 in the distinct fi elds of electric (E), instrumentation Fig.2 MICREX-NX
Recommended publications
  • Maintenance in Instrumentation Maintenance with Concept and Technology Focusing on Results
    Maintenance in instrumentation Maintenance with concept and technology focusing on results www.andritz.com Specific knowledge for reliable instruments. Analytical instrumentation Due to its close relation with operation and process control, Instrumentation is a fundamental discipline to In Analytical Instrumentation, Maintenance continued process industries. Maintenance Solutions Division of ANDRITZ offers to Clients maintenance Solutions Division of ANDRITZ offers ser- contracts, as assuming the responsibility of managing and implementing conventional Instrumentation, as vices ranging from factory’s analyzers to managing specialized modules, such as analytics, metrology, automation and valves. a complete maintenance structure. MS Division can also assume full responsibili- Conventional instrumentation ty of the function, from the management of analyzers’ performance to the purchase Differentials and importation of spares. The purpose is to provide even more reliability to analytical ▪ Active in the management of contracts since 1993 process and environmental variables. ▪ Experience in major projects: “greenfield” and “brownfield“ Scope of the function ▪ Large specific instrumentation training bank ▪ Control loops in general ▪ Technologies integration capacity, ranging from pneumatic ▪ Field instrumentation and accessories nstrumentation through Fieldbus ▪ Primary measuring elements: sensors, Differentials ▪ Technological exchange between the diverse hired contracts Scope of the function detectors and meters ▪ Pioneer in Brazil in analytical
    [Show full text]
  • INSTRUMENTATION and CONTROL Module 3 Level Detectors
    Department of Energy Fundamentals Handbook INSTRUMENTATION AND CONTROL Module 3 Level Detectors Level Detectors TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. ii LIST OF TABLES ................................................... iii REFERENCES ..................................................... iv OBJECTIVES ...................................................... v LEVEL DETECTORS ................................................ 1 Gauge Glass .................................................. 1 Ball Float .................................................... 4 Chain Float ................................................... 5 Magnetic Bond Method .......................................... 6 Conductivity Probe Method ....................................... 6 Differential Pressure Level Detectors ................................. 7 Summary ................................................... 10 DENSITY COMPENSATION .......................................... 11 Specific Volume .............................................. 11 Reference Leg Temperature Considerations ............................ 12 Pressurizer Level Instruments ..................................... 13 Steam Generator Level Instrument .................................. 13 Summary ................................................... 14 LEVEL DETECTION CIRCUITRY ...................................... 15 Remote Indication ............................................. 15 Environmental Concerns ........................................
    [Show full text]
  • Programmable Logic Controller
    Revised 10/07/19 SPECIFICATIONS - DETAILED PROVISIONS Section 17010 - Programmable Logic Controller C O N T E N T S PART 1 - GENERAL ....................................................................................................................... 1 1.01 DESCRIPTION .............................................................................................................. 1 1.02 RELATED SECTIONS ...................................................................................................... 1 1.03 REFERENCE STANDARDS AND CODES ............................................................................ 2 1.04 DEFINITIONS ............................................................................................................... 2 1.05 SUBMITTALS ............................................................................................................... 3 1.06 DESIGN REQUIREMENTS .............................................................................................. 8 1.07 INSTALLED-SPARE REQUIREMENTS ............................................................................. 13 1.08 SPARE PARTS............................................................................................................. 13 1.09 MANUFACTURER SERVICES AND COORDINATION ........................................................ 14 1.10 QUALITY ASSURANCE................................................................................................. 15 PART 2 - PRODUCTS AND MATERIALS.........................................................................................
    [Show full text]
  • Instrumentation and Controls Engineer DUTIES
    TITLE: Instrumentation and Controls Engineer DUTIES: Responsible for designing, developing and maintaining instrumentation and controls systems for biorefinery manufacturing plant including selection, construction and installation of I&C equipment. Develop process control and alarm logic diagrams/SAMA diagrams/cause and effect matrices. Responsible for control system architecture, DCS and PLC specification and configuration, SCADA systems, Instrument index, Instrument specifications, data sheets and selection, instruction loop diagrams, and motor elementaries. Troubleshoot motors, instruments and valves. Update control system programming and documentation. Review vendor drawings. Interface with third party I&C companies. Participate in HAZOP. Serve as technical expert support to field engineers, technicians and plant staff. Review PIDs for project engineering. Field interfacing with contractors for instrumentation and controls installation and QC. Checkout, commission, start-up and troubleshoot support. Stay current on control theory research and instrumentation advances and recommend changes as needed. SCHEDULE: 40 hours per week, Monday through Friday, 8:00 AM to 5:00 PM LOCATION: American Process, Inc., 300 McIntosh Parkway, Thomaston, GA 30286. REQUIREMENTS: Master's degree in manufacturing, controls & automation or electronics engineering. 3 years of experience in related instrumentation and controls engineering position. Will also accept a Bachelor's in stated fields and 5 years of stated experience. (foreign equivalent degree acceptable). Also requires at least 3 years of experience in the following (which may have been obtained concurrently): Selecting, constructing and installing I&C equipment. Developing P&IDs and control narratives. Designing control systems including PLC/DCS specification and HMI configuration. Developing and troubleshooting Motor, Instruments and Valves specifications. Planning and developing the layout of control system network and I/O architecture.
    [Show full text]
  • Automated Measurement of Power MOSFET Device Characteristics Using USB Interfaced Power Supplies
    Paper ID #17355 Automated Measurement of Power MOSFET Device Characteristics Using USB Interfaced Power Supplies Prof. Mustafa G. Guvench, University of Southern Maine Dr. Guvench received M.S. and Ph.D. degrees in Electrical Engineering and Applied Physics from Case Western Reserve University. He is currently a full professor of Electrical Engineering at the University of Southern Maine. Prior to joining U.S.M. he served on the faculties of the University of Pittsburgh and M.E.T.U., Ankara, Turkey. His research interests and publications span the field of microelectronics including I.C. design, MEMS and semiconductor technology and its application in sensor development, finite element and analytical modeling of semiconductor devices and sensors, and electronic instrumenta- tion and measurement. Mr. mao ye Mao Ye is an electrical engineering student at the University of Southern Maine, and an equipment engi- neering intern at Texas Instrument, South Portland, Maine. He also worked at Iberdrola Energy Project as a project assessment engineering intern. Prior to attending the University of Southern Maine, he served in the United States Marine Corps as communications chief. His area of interests are microelectronics, Instrumentation, software development, and automation design. c American Society for Engineering Education, 2016 Automated Measurement of Power MOSFET Device Characteristics Using USB Interfaced Power Supplies M.G. Guvench* and Mao Ye** * University of Southern Maine, Gorham, ME 04038 **Texas Instruments, South Portland, ME 04106 Abstract This paper describes use of USB interfaced multi-source DC power supplies to measure the I-V characteristics of high current, high power devices, specifically Power MOSFETs and Power Diodes.
    [Show full text]
  • Instrumentation and Control Devices for Hvac
    Michigan State University INSTRUMENTATION AND CONTROL Construction Standards DEVICES FOR HVAC Page 230913-1 SECTION 230913 - INSTRUMENTATION AND CONTROL DEVICES FOR HVAC PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. 1.2 SUMMARY A. This Section includes the following: 1. Control piping, tubing and wiring. 2. Pneumatic control devices. 3. Electric controls devices. 4. Control air compressors, dryers, and pressure regulation stations. B. Related Sections include the following: 1. Division 23 Section 230519 "Meters and Gages for HVAC Piping", for measuring equipment that relates to this Section. 2. Division 23 Section 230923 “Direct Digital Controls for HVAC”, for building automation controls related to this Section. 1.3 SUBMITTALS A. Shop Drawings: Include performance data, components and accessories, wiring diagrams, dimensions, weights and loadings, field connections, and required clearances. B. LEED™ Documentation: Submit required documentation showing credit compliance with applicable LEED™ NC 2.2 standards using Submittal Template. 1. Product data showing control devices comply with ASHRAE 90.1-2004. C. Field quality-control test reports. D. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station. 2. Interconnection wiring diagrams with identified and numbered system components and devices. 230913Instrumentation&ControlDevicesforHVAC.docx Rev. 9/14/2015 Michigan State University INSTRUMENTATION AND CONTROL Construction Standards DEVICES FOR HVAC Page 230913-2 3.
    [Show full text]
  • Introduction to Sensors, Instrumentation, and Measurement
    Introduction to Sensors, Instrumentation, and Measurement Brian D. Storey Olin College © 2018 Brian D. Storey All rights reserved Contents 1 Preface page 1 2 Resistance 3 2.1 Hydraulic analogy 3 2.2 Circuits - electrical resistance 11 2.3 Kirchhoff's circuit laws 17 2.4 Measurement input impedance 18 2.5 Application: scale using strain gauges 20 3 Capacitance 23 3.1 Hydraulic analogy 23 3.2 Draining the tank 25 3.3 Exponentials 28 3.4 Capacitors in circuits 29 3.5 RC circuits 33 3.6 Square wave driving: filling and draining the tank 36 3.7 Pulse width modulation 40 4 RC circuits: Sinusoidal driving 43 4.1 Individual resistor and capacitor: sine wave 44 4.2 RC driven by a sine wave 45 4.3 Analysis of the low-pass filter 48 4.4 High-pass filter 52 4.5 Experimental Bode plots 55 4.6 Use of filters for noise reduction 56 4.7 Filters in series 58 4.8 Application example: EKG 60 iv Contents 5 Operational amplifiers 63 5.1 Schematic, inputs and outputs 64 5.2 Basic op-amp behavior 66 5.3 Feedback 68 5.4 Why the follower? 70 5.5 Why negative feedback works 72 5.6 Op-amp circuits with negative feedback 74 5.7 Some example application circuits 75 5.8 Accounting for the power supply 76 6 Complex impedance 81 6.1 Imaginary numbers 81 6.2 Complex numbers 82 6.3 Euler identity 84 6.4 Polar form 87 6.5 Sinusoidal signals 88 6.6 Is it really ok to use complex numbers? 90 6.7 Complex impedance 93 6.8 Examples: low-pass, high pass 95 6.9 Summary 97 7 Active filters and op-amp dynamics 99 7.1 Active filters 99 7.2 Op-amp dynamics 103 7.3 Feedback revisited 106 1 Preface These notes are meant to be a supplement the laboratory based course at Olin College; Introduction to Sensors, Instrumentation, and Mea- surement (ISIM).
    [Show full text]
  • A Common Instrumentation Course for Electronics/Electrical and Other Majors
    Session Number 3159 A Common Instrumentation Course for Electronics/Electrical and Other Majors Midturi, Swaminadham Professor, Department of Engineering Technology Donaghey College of Information Science and Systems Engineering The University of Arkansas at Little Rock Little Rock, AR 72204 – 1099 Email: [email protected] Abstract The design and contents of instrumentation courses in four-year colleges often reflect the stature of current instrumentation technology, background of the instructor, and the specific instrumentation need of an engineering industry. The syllabus in the instrumentation course, therefore, is largely shaped by individual taste and need and lacks cohesiveness in instruction to appeal to a large spectrum of engineering disciplines. This paper provides an insight into the design of course contents and instructional approach for an instrumentation course to meet the need of a large spectrum of engineering and technology disciplines. Difficulties encountered in developing a cohesive and integrated course, faculty experiences in classroom and laboratory, student evaluations of the instructors, and course are described. The course that we envisioned captures emerging trends in electronics, mechanics, manufacturing, process, and other industry applications with emphasis on analog and digital electronics, microprocessor interface, specifications of data acquisition board for automated data acquisition and analysis, and graphical display of measured data. Issues related to the design of experiments, statistical representation of data, curve fit, identification of critical design parameters of an instrument, and robust design of an instrument are covered. This course- offer recommends a common lecture but different laboratory and project assignments to benefit electronics and mechanical engineering technology majors. Team teaching experiences, mental and technical preparedness of the course instructor, scope and nature of laboratory assignments, and student learning preferences are described in this paper.
    [Show full text]
  • Measurement and Instrumentation: Theory and Application
    Contents Acknowledgement ........................................................................................... xvii Preface ........................................................................................................... xix Chapter 1 Fundamentals of Measurement Systems ............................................... 1 1.1 Introduction............................................................................................................ 1 1.2 Measurement Units................................................................................................ 2 1.3 Measurement System Design ................................................................................ 3 1.3.1 Elements of a Measurement System..................................................................4 1.3.2 Choosing Appropriate Measuring Instruments ..................................................7 1.4 Measurement System Applications....................................................................... 9 1.5 Summary.............................................................................................................. 10 1.6 Problems .............................................................................................................. 10 Chapter 2 Instrument Types and Performance Characteristics.............................. 11 2.1 Introduction.......................................................................................................... 11 2.2 Review of Instrument Types ..............................................................................
    [Show full text]
  • Instrumentation & Process Control Automation Guidebook – Part 3
    PDHonline Course E444 (7 PDH) _____________________________________________________ Instrumentation & Process Control Automation Guidebook – Part 3 Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course E444 www.PDHonline.org INSTRUMENTATION & PROCESS CONTROL AUTOMATION GUIDEBOOK – PART 3 CONTENTS: 1. INTRODUCTION 2. INSTRUMENTATION & CONTROL SYSTEMS 3. INSTRUMENTATION DESCRIPTION & APPLICATION 4. PROCESS CONTROL INSTRUMENTATION 5. CONDUCTIVITY & ANALYTICAL INSTRUMENTATION 6. CONTROL VALVES & INSTRUMENTATION 7. STANDARD & CONTROL VALVES APPLICATION 8. VALVES ACTUATORS, POSITIONERS & TRANSDUCERS 9. CONTROL SYSTEMS & FIELDBUS TECHNIQUES 10. DIAGNOSTICS & COMMUNICATION INTERFACES 11. HAZARDOUS CLASSIFICATION & PROTECTION TYPES 12. PROCESS & PIPING INSTRUMENTATION DIAGRAMS 13. PROCESS CONTROL & SOFTWARE SIMULATIONS 14. REFERENCES & LINKS ©2014 Jurandir Primo Page 1 of 91 www.PDHcenter.com PDH Course E444 www.PDHonline.org 1. INTRODUCTION: Instrumentation is the science of automated measurement and control, or can be defined as the sci- ence that applies and develops techniques for measuring and controls of equipment and industrial processes. Process control has a broad concept and may be applied to any automated systems such as, a complex robot or to a common process control system as a pneumatic valve controlling the flow of water, oil or steam in a pipe. A basic instrument consists of three elements: Sensor or Input Device Signal Processor Receiver or Output Device To measure a quantity, usually is transmitted a signal representing the required quantity to an indi- cating or computing device where either human or automated action takes place. If the controlling action is automated, the computer sends a signal to a final controlling device which then influences the quantity being measured.
    [Show full text]
  • 15900 Hvac Instrumentation and Controls
    15900 HVAC INSTRUMENTATION AND CONTROLS PART 1 – GENERAL - Andover Controls BAS system is the standard for the University, and may be specified as a proprietary item. 1.0 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. 1.1 SECTION INCLUDES A. Control Panels B. Control Valves C. Input/Output Sensors D. Thermostats E. Transmitters F. Miscellaneous Accessories 1.2 REFERENCES A. AMCA 500- Test Methods for Louvers, Dampers and Shutters. B. ASTM D1693- Environmental Stress- Cracking of Ethylene Plastics. C. NEMA DC 3- Low- Voltage Room Thermostats. D. NEMA Standards Publication 250- “Enclosures for Electrical Equipment (1000 Volts Maximum)” E. NFPA 70- National Electrical Code. F. NFPA 90A- Installation of Air Conditioning and Ventilation Systems. 1.3 SUBMITTALS FOR REVIEW A. Product Data: Provide description and engineering data for each control system component. Include sizing as requested. Provide data for each system component and software module. B. Shop Drawings: Indicate complete operating data, system drawings, wiring diagrams, and written detailed operational description of sequences. Submit schedule of valves Revised November 2011 indicating size, flow, and pressure drops for each system. 1.4 SUBMITTALS AT PROJECT CLOSEOUT A. Provide submittals as required for Contract Closeout. B. Project Record Documents: Record actual locations of control components, including panels, and sensors. C. Revise shop drawings to reflect actual installation and operating sequences. D. Operation and Maintenance Data: Include inspection period, cleaning methods, recommend cleaning materials and calibration tolerances. E. Warranty: Submit manufacturer’s warranty and ensure forms had been filled out in Owners name and registered with manufacturer.
    [Show full text]
  • Industrial Instrumentation Engineering Technology
    NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES ® A division of the National Society of Professional Engineers Industrial Instrumentation Engineering Technology INDUSTRIAL INSTRUMENTATION PROGRAM DETAIL MANUAL Please check NICET’s website (www.nicet.org ) to make sure you have the most recent edition of this document. Effective upon issuing a new edition of any program detail manual, all previous editions of that program detail manual become obsolete. This manual may be freely copied in its entirety. Field Code: 023 Fourth Edition Subfield Code: 01 November 2012 IMPORTANT INFORMATION The Institute occasionally makes changes in its certification programs that will significantly affect the currency of individual program detail manual. These changes could include any or all of the following: • deletion, modification, or addition of work elements • modification to the Examination Requirements Chart • modification to crossover work element credit • changes to the work experience requirement • changes to the verification requirement Such changes could affect the requirements for certification. Therefore, if this manual is more than a year old, NICET highly recommends that you check www.nicet.org (or, KEEP YOUR if you don’t have access to the Internet, call NICET at 888-476-4238) to make sure that MANUALS you have the current edition of the Program Detail Manual before applying for an CURRENT examination. The date of publication of this manual is June 2009. It is the responsibility of all applicants to make sure they are using a current manual. This fourth edition of the Industrial Instrumentation Engineering Technology program detail manual contains the following substantive change from the third edition: CHANGES TO THIS • Work element #11005, “Basic Metric Units and Conversions,” is no longer MANUAL mandatory for certification at Levels II, III, and IV.
    [Show full text]