D-Branes in Topological String Theory

Total Page:16

File Type:pdf, Size:1020Kb

D-Branes in Topological String Theory DISSERTATION D–Branes in Topological String Theory ausgef¨uhrt zum Zwecke der Erlangung des akademischen Grades eines Doktor der Naturwissenschaften unter der Leitung von Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Maximilian Kreuzer E136 Institut f¨ur Theoretische Physik und Prof. Wolfgang Lerche CERN eingereicht an der Technischen Universit¨at Wien Fakult¨at f¨ur Physik von Dipl.-Ing. Johanna Knapp Matrikelnummer: 9925349 Pfarrhofweg 3 A–3485 Haitzendorf [email protected] Wien, am 14. August 2007 to my family and my partner Kurzfassung Das Hauptthema dieser Doktorarbeit sind D–branes in topologischer Stringtheorie. Topol- ogische Stringtheorie beschreibt einen Untersektor der vollen Stringtheorie, der sich auf die Nullmoden der physikalischen Felder beschr¨ankt. Man erh¨alt eine solche Theorie durch den so genannten topologischen Twist, welcher, aus dem Blickwinkel der Weltfl¨achenwirkung, einer mit der Theorie vertr¨aglichen Redefinition der Spins der Felder entspricht. Der topologische Twist kann auf zwei Arten durchgef¨uhrt werden, woraus zwei unterschiedliche und a priori unabh¨angige Theorien resultieren, die als A– und B–Modell bezeichnet werden. F¨ur offene Strings kann man Randbedingungen definieren, welche mit dem topologischen Twist konsistent sind. Diese werden als A– bzw. B–branes bezeichnet. Vor Kurzem wurde eine neue Beschreibung von topologischen D–branes im B–Modell, welches durch ein Landau–Ginzburg Modell realisiert werden kann, gefunden. Solche Landau–Ginzburg Theorien sind durch ein Superpotential charakterisiert und B–branes werden durch Matrix- faktorisierungen dieses Superpotentials beschrieben. Diese Doktorarbeit besch¨aftigt sich mit den Eigenschaften und Anwendungen dieses Formalismus. Eine der Problemstellungen be- fasst sich mit der Berechnung des effektiven Superpotentials . Dieses Objekt ist von Weff ph¨anomenologischem Interesse, da man es als vierdimensionales Superpotential einer N = 1 supersymmetrischen Calabi–Yau Kompaktifizierung interpretieren kann. Es wird gezeigt, wie man diese Gr¨oße f¨ur minimale Modelle berechnen kann. Diese Modelle sind n¨utzliche Spielzeugmodelle f¨ur Stringkompaktifizierungen. Als eines der Hauptresultate dieser Dok- torarbeit zeigen wir, dass es m¨oglich ist zu berechnen, indem man die allgemeinsten Weff nicht–lineare Deformationen von Matrixfaktorisierungen berechnet. Ein bemerkenswertes Re- sultat in der Stringtheorie besagt, dass A-Modell und B–Modell durch eine Dualit¨at miteinan- der verbunden sind, die sogenannte Mirrorsymmetrie. Diese besagt, dass das A–Modell auf einer bestimmten Calabi–Yau Mannigfalitgkeit ¨aquivalent ist zum B–Modell auf der Mirror– Calabi–Yau. Mirrorsymmetrie kann erweitert werden um auch offene Strings zu beschreiben. Diese Du- alit¨at ist bis jetzt noch nicht ausreichend verstanden, insbesondere f¨ur kompakte Calabi–Yau Mannigfalitgkeiten. In dieser Doktorarbeit werden wir uns ausserdem mit Mirrorsymmetrie f¨ur offene Strings f¨ur die einfachste kompakte Calabi–Yau befassen, f¨ur den Torus. Unter der Verwendung von Matrixfaktorisierungen werden Dreipunktfunktionen im B–Modell berechnet und es wird gezeigt, dass diese mit den entsprechenden Gr¨oßen im A–Modell ¨ubereinstimmen. i Abstract The main focus of this thesis are D–branes in topological string theory. Topological string theory describes a subsector of the full string theory, that only captures the zero–modes of the physical fields. It can be obtained by an operation called topological twist, which is, at the level of the worldsheet action, a consistent redefinition of the spins of the fields. The topological twist can be done in two ways. This leads to two different, a priori independent, models, called the A–model and the B–model. If we consider open string theory, there are boundary conditions which are consistent with the topological twist. These boundary conditions are called A–type and B–type D–branes, respectively. Recently, a new description of D–branes in the topological B–model has been found. The B–model can be realized in terms of a Landau–Ginzburg theory, which is characterized by a superpotential. B–type D–branes are described by matrix factorizations of this superpotential. This thesis is devoted to exploring the properties and applications of this formalism. One of the central challenges of this thesis is the calculation of the effective superpotential . This quantity is of phenomenological interest since it has an interpretation as a four– Weff dimensional space–time superpotential in N = 1 supersymmetric string compactifications. We show how to calculate it for the minimal models, a subclass of Landau–Ginzburg theories, which serve as useful toy models for string compactifications. One of the main results of this thesis is that can be obtained by calculating the most general, non–linear deformation Weff of a matrix factorization. A remarkable result in string theory states that the A–model and the B–model are related by a duality known as mirror symmetry. The statement is that the A–model on a Calabi–Yau manifold is equivalent to the B–model on the mirror Calabi–Yau. Mirror symmetry can be extended to open strings. Open string mirror symmetry is by now poorly understood, in particular for compact Calabi–Yau spaces. In this thesis we will verify open string mirror symmetry for the simplest compact Calabi–Yau, the torus. Using matrix factorization techniques we calculate three–point correlators in the B–model and show that they match with the correlators we compute in the A–model. ii Acknowledgements I want to thank my supervisor at CERN, Wolfgang Lerche, for accepting me as his student and for suggesting research problems which are well suited for making one’s first steps in scientific work. I appreciate that I was left the time and the freedom to come to terms with the subject in my own way. Furthermore I want to thank Wolfgang for giving me insight into the beautiful field of topological string theory and for various short discussions which immediately cured my confusion when I was stuck in some calculation. It is a pleasure to thank my supervisor in Vienna, Maximilian Kreuzer, for constant support all through my theoretical physics career, and in particular for suggesting to me to do my PhD at CERN which I never would have dared without his encouragement. I also want to thank him for pleasant and instructive discussions during my stay in Vienna in February 2007. I want to express my gratitude to Hans Jockers for expertly answering many of my questions and for discussions which helped me see the things I was working on in a wider context. Fur- thermore I want to thank Emanuel Scheidegger for helpful discussions on topological string theory and modular forms. Thanks also to Marcos Mari˜no for organizing such a great student seminar. As promised, Marlene Weiss gets her own paragraph in this acknowledgements section. It is hard to find such a great office mate. I really enjoyed the many discussions we had on a broad variety of topics, sometimes even physics. I want to thank her for invaluable company and support during the last two years. Furthermore I want to thank James Bedford, Cedric Delaunay, I˜naki Garcia–Etxebarria, Ste- fan Hohenegger, Tristan Maillard, Are Rachlow, Fouad Saad, John Ward and all the other students at CERN for many pleasant encounters. I am deeply grateful to my boyfriend for more support than I could possibly ask for. I want to thank my friends and family for their continuing support, in particular Gige for taking care of all the administrative stuff in Austria. Thanks also to Mrs. M¨ossmer for help with the paper- work related to registering my thesis. Finally, I want to thank all the people who ever cooked for me, and Guide Michelin and Gault Millau for leading the way to most enjoyable decadence. I also want to acknowledge the recently deceased Professor Wolfgang Kummer, who taught me a great share of my theoretical physics general eductation and who has positively influenced my decision to focus on theory. iii Contents 1 Introduction 1 1.1 Motivation ..................................... 1 1.2 SummaryandOutline ............................... 5 2 Topological Strings and D–branes 6 2.1 Aspects of N =2Theories............................. 7 2.2 D–branes ...................................... 18 3 Boundary Landau–Ginzburg Models and Matrix Factorizations 26 3.1 Introduction.................................... 26 3.2 TheBoundaryLandauGinzburgModel . 27 3.3 Matrix Factorizations from a Physics Point of View . .......... 30 3.4 Matrix Factorizations from a Mathematics Point of View . .......... 36 3.5 Construction of Matrix Factorizations . ........ 39 3.6 Further Applications of Matrix Factorizations . ........... 42 4 The Effective Superpotential 43 4.1 Interpretation of the Effective Superpotential . ........... 43 4.2 Construction of the Effective Superpotential via Deformation Theory . 48 4.3 The Effective Superpotential from Consistency Constraints .......... 60 5 D–Branes in Topological Minimal Models 66 5.1 MinimalModels .................................. 67 5.2 The A3 MinimalModel–AToyExample . 68 5.3 The E6 MinimalModel .............................. 74 5.4 Relation to Kazama–Suzuki Coset Models . ...... 82 5.5 MoreResults .................................... 84 6 The Torus and Homological Mirror Symmetry 88 6.1 Introduction.................................... 88 6.2 Matrix Factorizations . 90 6.3 Cohomology..................................... 91 6.4 CorrelatorsintheB–model . 94 6.5 The“exceptional”D2Brane. 99 6.6 The A–Model and Homological Mirror
Recommended publications
  • On Supergravity Domain Walls Derivable from Fake and True Superpotentials
    On supergravity domain walls derivable from fake and true superpotentials Rommel Guerrero •, R. Omar Rodriguez •• Unidad de lnvestigaci6n en Ciencias Matemtiticas, Universidad Centroccidental Lisandro Alvarado, 400 Barquisimeto, Venezuela ABSTRACT: We show the constraints that must satisfy the N = 1 V = 4 SUGRA and the Einstein-scalar field system in order to obtain a correspondence between the equations of motion of both theories. As a consequence, we present two asymmetric BPS domain walls in SUGRA theory a.ssociated to holomorphic fake superpotentials with features that have not been reported. PACS numbers: 04.20.-q, 11.27.+d, 04.50.+h RESUMEN: Mostramos las restricciones que debe satisfacer SUGRA N = 1 V = 4 y el sistema acoplado Einstein-campo esca.lar para obtener una correspondencia entre las ecuaciones de movimiento de ambas teorias. Como consecuencia, presentamos dos paredes dominic BPS asimetricas asociadas a falsos superpotenciales holomorfos con intersantes cualidades. I. INTRODUCTION It is well known in the brane world [1) context that the domain wa.lls play an important role bece.UIIe they allow the confinement of the zero mode of the spectra of gravitons and other matter fields (2], which is phenomenologically very attractive. The domain walls are solutions to the coupled Einstein-BCa.lar field equations (3-7), where the scalar field smoothly interpolatesbetween the minima of the potential with spontaneously broken of discrete symmetry. Recently, it has been reported several domain wall solutions, employing a first order formulation of the equations of motion of coupled Einstein-scalar field system in terms of an auxiliaryfunction or fake superpotential (8-10], which resembles to the true superpotentials that appear in the supersymmetry global theories (SUSY).
    [Show full text]
  • ABSTRACT Investigation Into Compactified Dimensions: Casimir
    ABSTRACT Investigation into Compactified Dimensions: Casimir Energies and Phenomenological Aspects Richard K. Obousy, Ph.D. Chairperson: Gerald B. Cleaver, Ph.D. The primary focus of this dissertation is the study of the Casimir effect and the possibility that this phenomenon may serve as a mechanism to mediate higher dimensional stability, and also as a possible mechanism for creating a small but non- zero vacuum energy density. In chapter one we review the nature of the quantum vacuum and discuss the different contributions to the vacuum energy density arising from different sectors of the standard model. Next, in chapter two, we discuss cosmology and the introduction of the cosmological constant into Einstein's field equations. In chapter three we explore the Casimir effect and study a number of mathematical techniques used to obtain a finite physical result for the Casimir energy. We also review the experiments that have verified the Casimir force. In chapter four we discuss the introduction of extra dimensions into physics. We begin by reviewing Kaluza Klein theory, and then discuss three popular higher dimensional models: bosonic string theory, large extra dimensions and warped extra dimensions. Chapter five is devoted to an original derivation of the Casimir energy we derived for the scenario of a higher dimensional vector field coupled to a scalar field in the fifth dimension. In chapter six we explore a range of vacuum scenarios and discuss research we have performed regarding moduli stability. Chapter seven explores a novel approach to spacecraft propulsion we have proposed based on the idea of manipulating the extra dimensions of string/M theory.
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • One-Loop and D-Instanton Corrections to the Effective Action of Open String
    One-loop and D-instanton corrections to the effective action of open string models Maximilian Schmidt-Sommerfeld M¨unchen 2009 One-loop and D-instanton corrections to the effective action of open string models Maximilian Schmidt-Sommerfeld Dissertation der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Maximilian Schmidt-Sommerfeld aus M¨unchen M¨unchen, den 18. M¨arz 2009 Erstgutachter: Priv.-Doz. Dr. Ralph Blumenhagen Zweitgutachter: Prof. Dr. Dieter L¨ust M¨undliche Pr¨ufung: 2. Juli 2009 Zusammenfassung Methoden zur Berechnung bestimmter Korrekturen zu effektiven Wirkungen, die die Niederenergie-Physik von Stringkompaktifizierungen mit offenen Strings er- fassen, werden erklaert. Zunaechst wird die Form solcher Wirkungen beschrieben und es werden einige Beispiele fuer Kompaktifizierungen vorgestellt, insbeson- dere ein Typ I-Stringmodell zu dem ein duales Modell auf Basis des heterotischen Strings bekannt ist. Dann werden Korrekturen zur Eichkopplungskonstante und zur eichkinetischen Funktion diskutiert. Allgemeingueltige Verfahren zu ihrer Berechnung werden skizziert und auf einige Modelle angewandt. Die explizit bestimmten Korrek- turen haengen nicht-holomorph von den Moduli der Kompaktifizierungsmannig- faltigkeit ab. Es wird erklaert, dass dies nicht im Widerspruch zur Holomorphie der eichkinetischen Funktion steht und wie man letztere aus den errechneten Re- sultaten extrahieren kann. Als naechstes werden D-Instantonen und ihr Einfluss auf die Niederenergie- Wirkung detailliert analysiert, wobei die Nullmoden der Instantonen und globale abelsche Symmetrien eine zentrale Rolle spielen. Eine Formel zur Berechnung von Streumatrixelementen in Instanton-Sektoren wird angegeben. Es ist zu erwarten, dass die betrachteten Instantonen zum Superpotential der Niederenergie-Wirkung beitragen. Jedoch wird aus der Formel nicht sofort klar, inwiefern dies moeglich ist.
    [Show full text]
  • Dr. Joseph Conlon Supersymmetry: Example
    DR. JOSEPH CONLON Hilary Term 2013 SUPERSYMMETRY: EXAMPLE SHEET 3 1. Consider the Wess-Zumino model consisting of one chiral superfield Φ with standard K¨ahler potential K = Φ†Φ and tree-level superpotential. 1 1 W = mΦ2 + gΦ3. (1) tree 2 3 Consider the couplings g and m as spurion fields, and define two U(1) symmetries of the tree-level superpotential, where both U(1) factors act on Φ, m and g, and one of them also acts on θ (making it an R-symmetry). Using these symmetries, infer the most general form that any loop corrected su- perpotential can take in terms of an arbitrary function F (Φ, m, g). Consider the weak coupling limit g → 0 and m → 0 to fix the form of this function and thereby show that the superpotential is not renormalised. 2. Consider a renormalisable N = 1 susy Lagrangian for chiral superfields with F-term supersymmetry breaking. By analysing the scalar and fermion mass matrix, show that 2 X 2j+1 2 STr(M ) ≡ (−1) (2j + 1)mj = 0, (2) j where j is particle spin. Verfiy that this relation holds for the O’Raifertaigh model, and explain why this forbids single-sector susy breaking models where the MSSM superfields are the dominant source of susy breaking. 3. This problem studies D-term susy breaking. Consider a chiral superfield Φ of charge q coupled to an Abelian vector superfield V . Show that a nonvanishing vev for D, the auxiliary field of V , cam break supersymmetry, and determine the goldstino in this case.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • TASI 2008 Lectures: Introduction to Supersymmetry And
    TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg
    [Show full text]
  • D-Branes in Topological Membranes
    OUTP/03–21P HWM–03–14 EMPG–03–13 hep-th/0308101 August 2003 D-BRANES IN TOPOLOGICAL MEMBRANES P. Castelo Ferreira Dep. de Matem´atica – Instituto Superior T´ecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and PACT – University of Sussex, Falmer, Brighton BN1 9QJ, U.K. [email protected] I.I. Kogan Dept. of Physics, Theoretical Physics – University of Oxford, Oxford OX1 3NP, U.K. R.J. Szabo Dept. of Mathematics – Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K. [email protected] Abstract arXiv:hep-th/0308101v1 15 Aug 2003 It is shown how two-dimensional states corresponding to D-branes arise in orbifolds of topologically massive gauge and gravity theories. Brane vertex operators naturally appear in induced worldsheet actions when the three-dimensional gauge theory is minimally coupled to external charged matter and the orbifold relations are carefully taken into account. Boundary states corresponding to D-branes are given by vacuum wavefunctionals of the gauge theory in the presence of the matter, and their various constraints, such as the Cardy condition, are shown to arise through compatibility relations between the orbifold charges and bulk gauge invariance. We show that with a further conformally-invariant coupling to a dynamical massless scalar field theory in three dimensions, the brane tension is naturally set by the bulk mass scales and arises through dynamical mechanisms. As an auxilliary result, we show how to describe string descendent states in the three-dimensional theory through the construction of gauge-invariant excited wavefunctionals. Contents 1 INTRODUCTION AND SUMMARY 1 1.1 D-Branes ....................................
    [Show full text]
  • Universit`A Degli Studi Di Padova
    UNIVERSITA` DEGLI STUDI DI PADOVA Dipartimento di Fisica e Astronomia “Galileo Galilei” Corso di Laurea Magistrale in Fisica Tesi di Laurea Finite symmetry groups and orbifolds of two-dimensional toroidal conformal field theories Relatore Laureando Prof. Roberto Volpato Tommaso Macrelli Anno Accademico 2017/2018 Contents Introduction 5 1 Introduction to two dimensional Conformal Field Theory 7 1.1 The conformal group . .7 1.1.1 Conformal group in two dimensions . .9 1.2 Conformal invariance in two dimensions . 12 1.2.1 Fields and correlation functions . 12 1.2.2 Stress-energy tensor and conformal transformations . 13 1.2.3 Operator formalism: radial quantization . 14 1.3 General structure of a Conformal Field Theory in two dimensions . 16 1.3.1 Meromorphic Conformal Field Theory . 18 1.4 Examples . 22 1.4.1 Free boson . 22 1.4.2 Free Majorana fermion . 26 1.4.3 Ghost system . 27 2 Elements of String and Superstring Theory 28 2.1 Bosonic String Theory . 29 2.1.1 Classical Bosonic String . 29 2.1.2 Quantization . 31 2.1.3 BRST symmetry and Hilbert Space . 33 2.1.4 Spectrum of the Bosonic String . 34 2.1.5 What’s wrong with Bosonic String? . 36 2.2 Superstring Theory . 37 2.2.1 Introduction to Superstrings . 37 2.2.2 Heterotic String . 39 3 Compactifications of String Theory 41 3.1 An introduction: Kaluza-Klein compactification . 42 3.2 Free boson compactified on a circle . 43 3.2.1 Closed strings and T-Duality . 45 3.2.2 Enhanced symmetries at self-dual radius .
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]