Spring 2021 Volume 6, COVID-19 Special Issue 1 Letter from the Editors Perspectives Original Science Reviews

Total Page:16

File Type:pdf, Size:1020Kb

Spring 2021 Volume 6, COVID-19 Special Issue 1 Letter from the Editors Perspectives Original Science Reviews Spring 2021 Volume 6, COVID-19 Special Issue 1 Letter From The Editors 29. American Policy and Political Polarization during the COVID-19 Pandemic I V. Adam Jorgensen, Guest Editor L. West-Livingston Benjamin Corona, Co-Editor in Chief Emilie Lothet, Co-Editor in Chief 34. A Celebration Overwrought with Hesitation and Isolation Perspectives S. Sabanis 1. This Could Be A Chance: Leading through 37. Cultivating Resiliency in Turbulent Times COVID-19 P. Bentley J. Freischlag 4. Doing Our Jobs: COVID-19 from an Emergency Original Science Medicine Resident Perspective 40. Racial and Ethnic Differences in Clinical B. Briggs Characteristics and Outcomes from Covid-19 6. New Opportunities for the Expansion of C. Rodman and others Telemedicine during the COVID-19 Pandemic B. Arkwright Reviews 9. A Rapidly Scalable COVID-19 Surveillance Program 52. Systematic Literature Review of Covid-19: Quality Using Real-Time Syndromic Surveillance, In-home and Source of Primary Clinical Data Serologic Testing, and Electronic Medical Records M. Bleyer and others J. W. Sanders and others 60. Cutaneous Manifestations of COVID-19 14. Uncertainty and Opportunity A. Senthilnathan and others Y. Hu 76. SARS-CoV-2: A Review of the Virus’s Biology 16. Out of My Hands: A Third-Year Medical Student’s C. Ma and others Surgery Clerkship during COVID-19 92. A Review of COVID-19 Epidemiology, Immune S. Thakur Response, and Clinical Presentation 18. Wake Forest School of Medicine Student Volunteer M. Anderson and others Engagement During the COVID-19 Pandemic 101. COVID-19: Local and Global Epidemiology A. Peoples F. Sadeghifar and others 21. Leading in Society: Learning to Lead on the 110. Personal Protective Equipment (PPE) during the Sidelines Amidst COVID-19 SARSCoV-2 Pandemic: A Literature Review I. Madeka and R. Strowd III K. Wadolowska and others 23. Healthcare Workers’ Unique Role in Addressing 118. Curbing COVID: A Review of the Therapeutic Anti-Asian American Sentiment During COVID-19 Treatments for SARS-CoV-2 M. Qiu S. Thakur and others 26. The COVID-19 Outbreak in Forsyth County 135. The Diagnostic Challenges and Developments of Highlights Health Inequities and Calls for Change COVID-19 A. Wehner and T. Shin K. Gupta and others (ISSN XXXX-XXX) Journal of Science & Medicine Acknowledgements The all-volunteer student and faculty staff of the Wake Forest Journal of Science and Medicine would like to extend our deepest appreciation to the following individuals for their guidance and assistance: All the faculty at Wake Forest and beyond who served as peer reviewers. The time and expert knowledge they contributed is central to our mission of bringing quality scholarship to the scientific community. Reviewers: Abigail Peoples Elizabeth Grubb Meron Fessehaye Adam Jorgensen Elizabeth Jensen, PhD Mike Bancks, PhD, MPH Alain Bertoni, MD Erika Redding, MSPH Monalisa Hassan, MD Ale Romero Ethan Will Taylor, PhD Nicole Feeling, PhD Alexandra Giedd, MD Ikram Irfanullah, MD Niobrah Keah Allison Agresti James McElligott, MD Omar Sangueza, MD Andrea Strathman, MD John Sanders, MD, MPH Randy Clinch, DO Ashley Stutsrim, MD Kaitlyn Testa Barnaba, MD Rebekah Israel Capri Foy, PhD Kevin Buckley, MD, MS Shaleen Thakur Christel Wekon-Kemeni, MD Kritheeka Kalathil Steve Lineberger, MBA Cynthia Burns, MD KyTavia Stafford-Carreker Suneetha Kalathoor, MD Daniel Krowchuk, MD Lauren West-Livingston, PhD Timothy Peters, MD Allen Gottfried with Marketing for helping setting up an ePub platform. Tiffany Montgomery and Joey Robbins with the Creative Communications Department for working with us tirelessly through every challenge of the production process. Our faculty advisors, Dr. Cynthia Burns and Dr. Timothy Peters for their support and guidance as we took the Journal in new directions. II Wake Forest School of Medicine | Spring 2021, Vol 6, COVID-19 Special Issue 1 Journal of Science & Medicine Editorial Board Editors-in-Chief Michael Hulme, Ph.D. Faculty CMEC Coordinator, Benjamin Corona Northwest AHEC Emilie Lothet Wake Forest School of Medicine Guest Editor Timothy R. Peters, M.D. Professor of Pediatrics, Infectious Adam Jorgensen Diseases Associate Dean for Educational Faculty Advisors Strategy and Innovation Wake Forest School of Medicine Cynthia A. Burns, M.D. Assistant Dean for Clinical Section Editors Education Director, Undergraduate Medical Perspectives Education in Internal Medicine Lauren Nichole West-Livingston Associate Professor, Internal Original Science Medicine, Endocrinology & Abigail Peoples Metabolism Wake Forest School of Medicine Reviews Shaleen Thakur and Leigh Anne Klein Spring 2021, Vol 6, COVID-19 Special Issue 1 | Wake Forest School of Medicine III Journal of Science & Medicine Dear Readers, The year 2020 is etched in our minds as a year marked in large part by fear, loss, prejudice, and adversity. In the face of the challenges presented by the pandemic, we are proud our institution responded with courage, teamwork, and leadership for our community. Ultimately, our collective experience will direct and make us better equipped for the unseen challenges that certainly stand waiting on the horizon. In response to the unique challenges introduced during the COVID-19 pandemic, the Wake Forest Journal of Science and Medicine sought to offer a platform for members of the Wake Forest and surrounding community to share pandemic-related scientific and medical research and healthcare perspectives through a COVID-19 special issue. Our primary goals were to 1) disseminate peer-reviewed literature, 2) cultivate open dialogue among community members, and 3) facilitate student engagement in research during a year when typical research programs, including the medical student research program, were suspended by social distancing. The manuscripts accepted for publication in this special issue offer insight into the medical and scientific advances made in response to the COVID-19 pandemic, as well as the pandemic’s profound personal impact. The perspective articles herein were contributed by a diverse group of authors, such as our administrative leadership, frontline healthcare workers, and an expecting mother; topics including mental health challenges and the resiliency to overcome COVID-related stress and anxiety, racial disparities in local public health, and policies aimed at reforming these inequalities are explored. Also included in this edition are student-led, faculty-mentored review articles that focus on an array of basic science and clinical topics central to the COVID-19 pandemic, such as immunology and epidemiology; diagnostic, therapeutic, and preventive measures; clinical presentation, specifically cutaneous manifestations; as well as original science investigating the COVID-19 exposure locally. We would like to express our gratitude to the authors for contributing their work and to the multitude of people who selflessly volunteered their time and effort towards making this special issue come to fruition. From the field experts who critically reviewed the manuscripts and the faculty who served as mentors for the student-led reviews, to the medical and graduate student volunteers that facilitated the peer-review and editorial process, the collaborative spirit that embodies the Wake Forest community was inspiring to witness on full display. Additionally, we cannot overstate our appreciation for the unprecedented effort of the staff at Creative Communications and in particular Tiffany Montgomery, who managed the publication of this special issue. Lastly, on behalf of the Editors-in-Chief, we thank Adam Jorgensen for his service and leadership as Guest Editor of this COVID-19 special issue of the Wake Forest Journal of Science and Medicine. While publishing this edition needed a village, Adam’s relentless effort was singularly critical to its success. Sincerely, Adam Jorgensen, Guest Editor Benjamin Corona, Co-Editor in Chief Emilie Lothet, Co-Editor in Chief IV Wake Forest School of Medicine | Spring 2021, Vol 6, COVID-19 Special Issue 1 Journal of Science & Medicine Perspectives This Could Be A Chance: Leading through COVID-19 Julie A. Freischlag, M.D., FACS, FRCSEd(Hon), DFSVS1, 2 I never thought I would lead through a pandemic. 1CEO, Wake Forest Baptist Health, Winston-Salem, NC As a vascular surgeon, I’m used to treating problems quickly and methodically with 2 a clamp or suture. And as one of just a handful of female health system CEOs and Dean, Wake Forest School of Medicine, Winston-Salem, NC Deans across the country, I’ve been in my fair share of uphill battles. Address Correspondence To: But I never imagined I would lead through a pandemic. Julie A. Freischlag, M.D. Wake Forest School of Medicine COVID-19 came on abruptly, upending our normal patterns and practices overnight. Medical Center Blvd. There was fear of the disease, uncertainty about what lay ahead, and doubts of whether Winston-Salem, NC 27157 we were brave and strong enough to move forward. But there, in the middle of it all, [email protected] has been opportunity, and I realized this could be a chance — to unite, grow, and become even more. Flexibility in the Face of Uncertainty I am an optimist by nature, but COVID-19 has been a challenge unlike any other. It has underscored the resilience, courage, and strength that define our Wake Forest Baptist team and solidified how we rally against the unknown. Over the past months, we have come together in innovative ways to keep our patients, community, and health system safe. At the onset, we moved quickly but thoughtfully. We opened an Incident Command Center to monitor staffing, patient flow, and issues occurring locally, regionally and statewide, 24 hours a day, seven days a week. We restricted visitors, stopped non-essential surgeries, and worked with our supply chain to ensure frontline caregivers had continued access to personal protective equipment. We paused research, transitioned students to distance learning, and sent as many corporate teams that we could home to work remotely. When we didn’t have the answers, we shared what we knew. We were transparent, communicating through weekly videos, a daily “Need to Know” newsletter to all employees, and podcasts and videos from our public health and infectious diseases experts.
Recommended publications
  • A Test of the Effects of Overlearning and Skill Retention Interval on Maintenance of Infrequently Used Complex Skills
    Skill retention: A test of the effects of overlearning and skill retention interval on maintenance of infrequently used complex skills A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Experimental and Applied Psychology University of Regina By Gregory Paul Krätzig Regina, Saskatchewan April 2016 Copyright 2016: G.K. Krätzig UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Gregory Paul Kratzig, candidate for the degree of Doctor of Philosophy in Experimental and Applied Psychology, has presented a thesis titled, Skill retention: A test of the effects of overlearning and skill retention interval on maintenance of infrequently used complex skills, in an oral examination held on December 21, 2015. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: *Dr. Bryan Vila, Washington State University Supervisor: Dr. Katherine Arbuthnott, Department of Psychology Committee Member: ***Dr. Richard MacLennan, Department of Psychology Committee Member: Dr. Tom Phenix, Department of Psychology Committee Member: **Dr. Craig Chamberlin, Faculty of Kinesiology and Health Studies Chair of Defense: Dr. Randal Rogers, Faculty of Graduate Studies & Research *Via Skype **Via Teleconference **Not present at defense Abstract While researchers have suggested that overlearning increases the likelihood of skill retention, there is little consensus or evidence as to how much overlearning is required, and how such overlearning interacts with distributed practice schedules. Additionally, most research has measured skill retention based on relatively short re-testing intervals of 56 days or less; however, little is known about whether overlearning can mitigate skill degradation when the retention interval is 6 or 12 months in duration.
    [Show full text]
  • Cognitive Psychology
    COGNITIVE PSYCHOLOGY PSYCH 126 Acknowledgements College of the Canyons would like to extend appreciation to the following people and organizations for allowing this textbook to be created: California Community Colleges Chancellor’s Office Chancellor Diane Van Hook Santa Clarita Community College District College of the Canyons Distance Learning Office In providing content for this textbook, the following professionals were invaluable: Mehgan Andrade, who was the major contributor and compiler of this work and Neil Walker, without whose help the book could not have been completed. Special Thank You to Trudi Radtke for editing, formatting, readability, and aesthetics. The contents of this textbook were developed under the Title V grant from the Department of Education (Award #P031S140092). However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Unless otherwise noted, the content in this textbook is licensed under CC BY 4.0 Table of Contents Psychology .................................................................................................................................................... 1 126 ................................................................................................................................................................ 1 Chapter 1 - History of Cognitive Psychology ............................................................................................. 7 Definition of Cognitive Psychology
    [Show full text]
  • Estimation of Nearshore Wave Transmission for Submerged Breakwaters Using a Data-Driven Predictive Model
    Estimation of nearshore wave transmission for submerged breakwaters using a data-driven predictive model Amir Sharif Ahmadian a*, Richard R. Simons b a Assistant Professor, Department of Civil Engineering, Khajeh Nasir Building, b Hormozgan University, Minab Road, Bandar Abbas, Iran Professor, Department of Civil, Environmental and Geomatic Engineering, Chadwick Building, UCL, Gower Street, London WC1E 6BT, UK Abstract The functional design of submerged breakwaters is still developing, particularly with respect to modelling of the nearshore wave field behind the structure. This paper describes a method for predicting the wave transmission coefficients behind submerged breakwaters using machine learning algorithms. An artificial neural network using the radial-basis function approach has been designed and trained using laboratory experimental data expressed in terms of non-dimensional parameters. A wave transmission coefficient calculator is presented, based on the proposed radial-basis function model. Predictions obtained by the radial-basis function model were verified by experimental measurements for a two dimensional breakwater. Comparisons reveal good agreement with the experimental results and encouraging performance from the proposed model. Applying the proposed neural network model for predictions, guidance is given to appropriately calculate wave transmission coefficient behind two dimensional submerged breakwaters. It is concluded that the proposed predictive model offers potential as a design tool to predict wave transmission coefficients behind submerged breakwaters. A step-by-step procedure for practical applications is outlined in a user-friendly form with the intention of providing a simplified tool for preliminary design purposes. Results demonstrate the model's potential to be extended to three dimensional, rough, permeable structures. Keywords: Submerged breakwater; Nearshore wave transmission; Numerical modeling; Artificial neural network; Radial-basis function; Predictive model.
    [Show full text]
  • Aviation Psychology and Human Factors, Second Edition
    Aviation Psychology and Human Factors Second Edition Aviation Psychology and Human Factors Second Edition Monica Martinussen and David R. Hunter CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-5752-2 (Hardback) 978-1-3151-5297-4 (Master eBook) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Deep Sea Dive Ebook Free Download
    DEEP SEA DIVE PDF, EPUB, EBOOK Frank Lampard | 112 pages | 07 Apr 2016 | Hachette Children's Group | 9780349132136 | English | London, United Kingdom Deep Sea Dive PDF Book Zombie Worm. Marrus orthocanna. Deep diving can mean something else in the commercial diving field. They can be found all over the world. Depth at which breathing compressed air exposes the diver to an oxygen partial pressure of 1. Retrieved 31 May Diving medicine. Arthur J. Retrieved 13 March Although commercial and military divers often operate at those depths, or even deeper, they are surface supplied. Minimal visibility is still possible far deeper. The temperature is rising in the ocean and we still don't know what kind of an impact that will have on the many species that exist in the ocean. Guiel Jr. His dive was aborted due to equipment failure. Smithsonian Institution, Washington, DC. Depth limit for a group of 2 to 3 French Level 3 recreational divers, breathing air. Underwater diving to a depth beyond the norm accepted by the associated community. Limpet mine Speargun Hawaiian sling Polespear. Michele Geraci [42]. Diving safety. Retrieved 19 September All of these considerations result in the amount of breathing gas required for deep diving being much greater than for shallow open water diving. King Crab. Atrial septal defect Effects of drugs on fitness to dive Fitness to dive Psychological fitness to dive. The bottom part which has the pilot sphere inside. List of diving environments by type Altitude diving Benign water diving Confined water diving Deep diving Inland diving Inshore diving Muck diving Night diving Open-water diving Black-water diving Blue-water diving Penetration diving Cave diving Ice diving Wreck diving Recreational dive sites Underwater environment.
    [Show full text]
  • Abbey College Risk Assessment Re-Opening 15.6.21
    ABBEY COLLEGE COVID19 RISK MITIGATION & CONTROL PLAN Quick Risk Assessment ABBEY COLLEGE COVID19 RISK MITIGATION & CONTROL PLAN September 2021 In line with the COVID-19 Operational Guidance, which was published by the Department for Education (DFE) on 19 July 2021 and implemented from 16th August 2021, this risk assessment supersedes the previous version. CONTROL MEASURES Ensure good hygiene for everyone. Maintain appropriate cleaning regimes. Keep occupied spaces well ventilated. Staff are provided with most up to date guidance from PHE and the DfE. Follow public health/Government advice on testing, self-isolation, and management of confirmed COVID-19 cases Abbey College has an ‘Outbreak Contingency Management Plan’ outlining how it will operate in the event of a local outbreak. Context This RA is a ‘living’ document and will be reviewed as/if the local context and/or public health advice changes. ‘…As COVID-19 becomes a virus that we learn to live with, there is now an imperative to reduce the disruption to children and young people’s education - particularly given that the direct clinical risks to children are extremely low, and every adult has been offered a first vaccine and the opportunity for 2 doses by mid-September…The government has made it a national priority that education and childcare settings should continue to operate as normally as possible during the COVID-19 pandemic…’ (Contingency framework: education and childcare settings Revised August 2021) This RA assumes vaccination rates of all staff and 16-19-year olds are in line with vaccination rates nationally, including those groups identified as vulnerable.
    [Show full text]
  • UNDERWATER VOLUME FOURTEEN NUMBER FOUR SPELEOLOGY August 1987
    -----------------------~--------." UNDERWATER VOLUME FOURTEEN NUMBER FOUR SPELEOLOGY August 1987 I C I: I L .~-- ---- -~., N MAG 0' o'J' .. J, • "'. ~ VI£'"0 ~'QITF1fr:Ii"f .. ,l.tII.,. ort" I'"IN/f BI ~ AtL__ ---'-_ _______ ___ __ -------.1 A' LEGEND' NOTES' Mf:'GMT Of i::£u.!NG. 801,11,,1;1('" t. 5==:'~~E~~A5 TlFIED UilllESTONE:, c:o.., .. t:T1E1. Y ., W&rEA DEPT'" ,t,T 1'1..,0011' G • _____ -r"".... LEDGE DROPOf" l. ElillT IIOT YIS,,,.. ! ,.ROIII ctlU,.., I,T ..,5T PE'NtTfu.TIOtI DISTANCE CA'i"E'ftN lOC&TlOIriIS . MORRISON SPRINGS ... F"AOfll ["ITAANC( ,.,......,.....--, ~. aT .. , qlllT~ TO YIEw tJ.:IT Olllilfilll5M£S ....EIIII LOWER CAVERN PIT IN '!.OQR -, '::::"_..1.--->-". II:ISllIIti F'ROIII flOOR TO CE,,,'!ItG. IEAIT 1$ MOt UN:SURII'E'f'fD BOAOfA "1518L[ .u '"IE C£ILIIr4G. ~THOUGH ftEf'LI!:CT!D WAL TON COUNTY. FLORIDA - SLOPE !iPI..,A'(~t1 lllioHT 15 ¥'SI8LE ulCllElt Opt •..., .. lIgMT CO,,- CD 1'jI67 BY J, BURCK: .•, 1ill!:"1(1""O ... F, ... O.ARD ---' DO~ jojlLL 01 TICHf$ It!! 5PRI"ICI POOL ~ uMO(t:lCl,lf •. OURIMC; RAINY Il'ERIODS notE C"O(:1'.t.wttAfCNEE !;iURYE;:Y£O BY t!!ATIQNAI.. SPE:LEOLOC;;IC.at. 5OCIE"fv- CLal' RlvE:R fI.,OOOS THE SPAI,... POOi... WITIt 1AJ000T "lI; 'JI!; ',~ LlIII,"S Of OAYl..lijI-I'I" A"D T .....IM LAOEN .AT£R. 'i'15181l1TY IS A'(Oc,u;:ED AESTRICTING lIGI1T PECTRATIQIII NSS 26&01 v'E;w POINT OF ENTlU"IC[ 5&ND INTO C:Ayt:RN. IN &8S£t!!C£ Of NATUR"'- lIGtcT OR [~IT ~}~J~W~1 IN C:AVEAIII "ULL CAY[ DIYUIG £QUIPyZNT AICI IISS 2"J'9!~ PftOC(OI.IR[S ~E REQUIRED.
    [Show full text]
  • Ludlow Covid Risk Assessment
    Risk Assessment Coronavirus – COVID-19 For use by schools during reopening in the autumn term Location / Site Ludlow Infant Academy Activity / Procedure Opening school in Spring term – Full Return to School March 2021 STATUTORY COMPLIANCE - All checks will be up to date when the school opens. · Legionella checks have been carried out and all unused outlets flushed. · Fire checks have been completed · I Auditor checks are up to date. Assessment date 2nd march 2021 Assessment serial number 06 The school has prepared this risk assessment following guidance from Central Government, the Local Authority (Southampton City Council/Borough of Bournemouth, Christchurch and Poole, Dorset, Portsmouth) and Hamwic Education Trust. We as educators commit to all reasonable actions to uphold the Government’s ‘Stay Alert’ campaign and we take this to mean that we (as a community) do things differently to function in a climate of virus awareness and vigilant practice. We will endeavour to ensure that our school environment is as safe as it can be. Extra measures (outlined below) will be taken to ensure our school observes regular hand-washing, sanitising, cleaning and social-distancing (where possible). Please note that, whilst we will do our utmost to ensure we provide our staff and pupils with a safe place to work, a safe environment and follow government guidance, we can only do so to our best endeavours and our working-knowledge of the Covid-19. However the risk remains medium even with all the control measures in place due to the unseen virus. If any member of staff has any concerns they must discuss it immediately with the School Leader.
    [Show full text]
  • Cooper, Eric J., Ed. Reading, Thinking
    DOCUMENT RESUME ED 263 538 CS 008 217 AUTHOR Harris, Theodore L., Ed.; Cooper, Eric J., Ed. TITLE Reading, Thinking, and Concept Development: Strategies for the Classroom. INSTITUTION College Entrance Examination Board, New York, N.Y. REPORT NO ISBN-0-87447-219-9 PUB DATE 85 NOTE 284p. AVAILABLE FROMColllge Board Publications, Box 886, New York, NY 10101 ($19.95). PUB TYPE Books (010) -- Guides - Classroom Use Guides (For Teachers) (052) -- Viewpoints (120) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS Advance Organizers; Cognitive Processes; *Concept Formation; Content Area Reading; Elementary Secondary Education; Prediction; Readability Formulas; *Reader Text Relationship; *Reading Comprehension; *Reading Instruction; Reading Material Selection; *Reading Processes; Reading Research; *Reading Strategies; Teaching Methods; Textbook Evaluation; Writing Skills IDENTIFIERS Anaphora ABSTRACT Intended to help teachers both improve students' text comprehension and better understand the teaching - learning process involved, this book focuses on comprehension and concept development as the central core of an effective educational program. The book's five sections deal with teaching explicit comprehension skills, precomprehension and postcomprehension strategies, interactive comprehension strategies, integrative comprehension strateyies, and readability and the future of the textbook. The titles of the 15 essays and their authors are as follows: (1) "'Teaching' Comprehension," by P. David Pearson and Margie Leys;(2) "How to Teach Readers to Find the Main Idea," by Joanna P. Williams; (3) "Developing Comprehension of Anaphoric Relationships," by Dale D. Johnson; (4) "Knowledge and Comprehension- Helping Students Use What They Know," by Judith A. Langer and Victoria Purcell-Gates; (5) "The Advance Organizer: Its Nature and Use," by Robert W.
    [Show full text]
  • Cognitive Processing
    Session 3 Building on What We Know: Cognitive Processing Developed by Kim Austin and Linda Darling-Hammond With Contributions From Daniel Schwartz and Roy Pea Stanford University School of Education I. Key Questions and Learning Objectives Key Questions • How do we process information so that we can use it effectively later? • How can teachers organize learning to support student understanding? Learning Objectives • Information processing—Teachers will understand how information is received, organized, and remembered. • Associations and connections—Teachers will become familiar with strategies for helping students to make associations and draw connections among concepts and for enhancing memory and information use. • Novices and experts—Teachers will understand how experts and novices differ in how they solve problems and use knowledge. Teachers will consider how to organize instruction to encourage the development of expert strategies. The Learning Classroom - 49 - Session 3 II. Session Overview How do we perceive and understand the world around us? How do we make sense of events and new informa- tion? What helps us to remember or forget? How do people think when they are solving problems? And why— and how—does an expert solve a problem more efficiently than a novice? In this session, we explore cognitive processing—the work we do to take in, organize, and make sense of new information. Teachers can assist students as they grapple with new ideas, organize, and communicate what they have learned. One metaphor for what goes on in the mind of the learner is the set of processes that a computer performs. Learning can be viewed as a matter of encoding and storing information in memory; processing, categorizing, and clustering material; and retrieving this information later to be applied at the appropriate times and situations.
    [Show full text]
  • IMPROVING YOUR MEMORY Learning Strategies, Student Academic Success Services Stauffer Library, 101 Union Street Queen’S University, Kingston, ON, K7L 5C4
    IMPROVING YOUR MEMORY Learning Strategies, Student Academic Success Services Stauffer Library, 101 Union Street Queen’s University, Kingston, ON, K7L 5C4 Website: sass.queensu.ca/learningstrategies/ Email: [email protected] This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike2.5 Canada License. Learning Strategies, Student Academic Success Services, Queen's University, Kingston, ON http://sass.queensu.ca/learningstrategies Memory at university Self-reflection questions What role does a good memory have in your academic life? Do you know how your memory works? Memorization is one of the most common types of learning used in university. Due to the large volume of information which needs to be learned, having strong memory skills and using effective memory strategies is critical for success at university. Memorizing comes into play at all stages of a degree but is most crucial at the outset of a program as each discipline has its own body of core knowledge. Often students complain that they have ‘so much to memorize’; however, if the core knowledge is not committed to memory early in a program, the student will struggle to acquire more difficult and complex information. Moreover, some courses require you to memorize specific facts or rules, e.g., language courses. Science course (biology, anatomy) also require a large amount of information, alongside understanding concepts. To remember all that‘s required to successfully complete a course, information needs to be reviewed frequently. For students who cram the course material at the end of the term will find that much of the information is lost soon after the final exam, and they will have to relearn it next term.
    [Show full text]
  • A Nonlinear Statistical Model of Turbulent Air–Sea Fluxes
    MARCH 2007 B OURRAS ET AL. 1077 A Nonlinear Statistical Model of Turbulent Air–Sea Fluxes DENIS BOURRAS Centre d’Etude des Environnements Terrestre et Planétaires, Vélizy-Villacoublay, France GILLES REVERDIN Laboratoire d’Océanographie Dynamique et de Climatologie, Paris, France GUY CANIAUX AND SOPHIE BELAMARI Centre National de Recherches Météorologiques, Toulouse, France (Manuscript received 23 November 2005, in final form 4 July 2006) ABSTRACT Most of the bulk algorithms used to calculate turbulent air–sea fluxes of momentum and heat are iterative algorithms whose convergence is slow and not always achieved. To avoid these drawbacks that are critical when large datasets must be processed, a statistical model of bulk air–sea fluxes based on artificial neural networks was developed. It was found that classical bulk algorithms were slower than the statistical model, by a factor of 1.75–7 depending on the bulk algorithm selected for the comparison. A set of 12 global analyses of an operational meteorological model as well as in situ data corresponding to equatorial and midlatitude conditions were used to assess the accuracy of the proposed model. The wind stress, latent, and sensible heat fluxes calculated with neural networks have acceptable biases with respect to bulk fluxes, between 0.4% and 1% depending on the flux magnitudes. Moreover, the rms deviation between bulk fluxes and neural network flux estimates is only 0.003 N mϪ2 for the momentum flux, 0.5 W mϪ2 for the sensible heat flux, and 1.8 W mϪ2 for the latent heat flux, at global scale, which is small compared with the natural variability of these quantities or the expected error.
    [Show full text]