Hepatotoxicity Associated with Illicit Use of Anabolic Androgenic Steroids in Doping

Total Page:16

File Type:pdf, Size:1020Kb

Hepatotoxicity Associated with Illicit Use of Anabolic Androgenic Steroids in Doping Eur opean Rev iew for Med ical and Pharmacol ogical Sci ences 2017; 21 (1 Suppl): 7-16 Hepatotoxicity associated with illicit use of anabolic androgenic steroids in doping R. SOLIMINI, M.C. ROTOLO, L. MASTROBATTISTA, C. MORTALI, A. MINUTILLO, S. PICHINI, R. PACIFICI, I. PALMI Department of Therapeutic Research and Medicines Evaluation, Drug Abuse and Doping Unit, Istituto Superiore di Sanità, Rome, Italy Abstract. – Anabolic Androgenic Steroids Since then , several synthetic analogs of testos - (AAS) abuse and misuse is nowadays a harmful terone, known as Anabolic Androgenic Steroids habit involving both professional or recreational (AAS) or designer steroids (e.g . methyltestos - athletes, as well as general population. AAS are also frequently present in over-the-counter di - terone in 1935 , nandrolone in 1950 and 1953, etary supplements without being declared in the testosterone esters from mid-1950s, stanozolol list of ingredients, leaving consumers unaware and oxymetholone in 1959 , oxandrolone in 1962) of the risks of adverse effects. Indeed, health have been produced in the attempt to minimize risks of AAS consumption in pharmaceutical the androgenic effects and improve the anabolic preparations or dietary complements seem still ones 1,2,7-9 . However , a successful complete sepa - underestimated and under-reported. The variety of complications due to AAS misuse involves ration of the anabolic and the androgenic proper - cardiovascular, central nervous, musculoskeletal ties has never been realized in the synthetic de - and genitourinary systems of both males and fe - rivatives of testosterone 1,2,10,11 . Among those, nan - males; psychiatric and behavioral effects, dam - drolone was the first compound which showed a ages to metabolic system, skin and mainly liver. partial dissociation between anabolic and andro - For instance, relevant concern has been raised genic properties and therefore , it started to be by the AAS hepatotoxicity including adenoma, 2,12 hepatocellular carcinoma, cholestasis, and pelio - used in the medical practice . sis hepatis. After the Second World War, the use of AAS The present review reports the information for performance improvement started to be available on the hepatotoxic effects of AAS use widely spread in the sports circles and progres - in professional and amateur athletes . sively turned into a business since almost all Key Words: sports showed an economic importance strictly Anabolic androgenic steroids, Doping, Hepatotoxi - linked to the image of the power of the coun - city, Illicit use. tries 9. The introduction of AAS in medical practice induced elite athletes to use them “off-label” Introduction with the aim of increasing muscle mass and en - hancing sports performance 6, but with a dosage Testosterone is the male sex hormone and the usually much higher than the therapeutic one, typical endogenous anabolic steroid with specific with consequent serious health risks 2,9,13,14 . properties of stimulating muscle mass growth In the 1950s , the use of AAS by Soviet and (anabolic aspect ) and enhancing male sexual USA weightlifters was reported 2,4 . During the characteristics (androgenic aspect) 1-5 . 1960s , the Council of Europe introduced the con - Testosterone was first isolated from bull testes cept of doping in sports after the deaths of a cou - in 1935 by David and co-workers 1,2,6 and in the ple of competitive athletes and the spread of same year , it was chemically synthesized by Bu - harmful drugs use 2,15 . tenandt in Göttingen (Germany) and Ruzicka in The International Olympic Committee (IOC) Basel (Switzerland) 7. In 1940s testosterone was started doping control tests in the Olympics of supposedly used by Germans in war contexts 4,6 , 1968 and subsequently AAS were introduced in and it was prescribed in psychiatry for depression the list of prohibited substances in 1976 4,6,10 . and andropause until the introduction of new In the 1970s competitive athletes and body treatments in 1950s 6. builders were largely using AAS 4,6 and in 1988 Corresponding Author: Renata Solimini; e-mail: [email protected] 7 R. Solimini, M. C. Rotolo, L. Mastrobattista, C. Mortali, A. Minutillo, S. Pichini, R. Pacifici, I. Palmi the sprinter Ben Johnson was prosecuted for be - AAS Mechanism of Action ing found positive for anabolic steroid stanozolol Synthetic AAS are compounds derived from at Seoul Olympics and his gold medal was with - the natural testosterone from which they differen - drawn by IOC 4. In the 1980s the exclusive use tiate because of several modifications of the basic confined to elite sport up to then dangerously testosterone structure 2. Endogenous androgens as shifted to amateur athletes and even to non-ath - testosterone have both skeletal muscle-building letes (mostly adolescents and young men) and (anabolic) and masculinizing (androgenic) ef - recreational drug users 1,4,6,8,9 . fects, while, as above reported, most of the syn - Since 1991 , in the USA, AAS have been DEA thetic AAS have been developed with the aim to (Drug Enforcement Administration) Schedule III separate the anabolic from the androgenic prop - substances under Controlled Substances erties, preferring synthetic androgens that have Act 2,4,6,13,16 . preferential anabolic activity and no androgenic The focus on AAS misuse in sports increasing - one. Testosterone acts as an androgen either di - ly raised to the point that today the antidoping rectly by binding to the androgen receptor or in - authorities monitor and control the phenomenon directly by conversion to 5alpha-dihydrotestos - both on elite and recreational athletes 16,17 . terone (DHT). The structural modification of AAS use prevalence in the general population AAS alters the relative anabolic or androgenic worldwide is 6.4% for males and 1.6% for fe - activity, the binding affinity for the androgen re - males 18,19 . Abuse and misuse of AAS to boost ceptor and metabolic clearance 4. muscles and sculpt the body also involves adoles - Testosterone and AAS pass into the blood sys - cents and young adults affected by body image tem, through the target cell membrane, linking disturbance or eating disorders, who use them for with intra-cytoplasmic receptors. This complex cosmetic purposes and showing increased mas - hormone-receptor is later transported into the nu - culinity 2,6,18,20 . cleus of the cell, where it links up with DNA. It AAS are illegally (meaning without a med - results in the production of RNA, DNA and the ical prescription) sold through the black mar - subsequent enhancement of protein synthesis (in - ket, websites, gyms, body building competi - cluding increased amounts of actin and myosin tions, teammates, coaches, trainers and by inap - in skeletal muscles) 2,9 . propriate prescription or theft 1,13,16 . Street The main chemical substitutions occurring to names for illegally sold anabolic steroids in - testosterone are the 17 -beta-esterification and the clude Gear, Winny, Deca, EQ, Tren-A, Fina, 17alpha- alkylation. Whereas testosterone is me - Arnolds, Juice, Pumpers, Roids, Stackers, tabolized rapidly in the body, the esterification of Weight Gainers 13,14,21 . the 17 -beta-hydroxyl group makes the molecule Overall AAS include testosterone, its synthetic more hydrophobic. When these esters of testos - derivatives , and precursors also known as pro- terone (i.e . testosterone enanthate, cypionate , and hormones (weaker formulations of AAS) like de - decanoate) are administered in an oily suspen - hydroepiandrosterone (DHEA), dihydrotestos - sion, they are released very slowly into the aque - terone (DHT), 1-testosterone, 19-norandrostene - ous plasma because of their hydrophobicity. This dione, prostazonol and androstenedione, which extends their duration of action 4. are usually present in dietary supplements 2,3,21 . Indeed, an important metabolic pathway of Their administration can be oral, injectable (oil- testosterone and its synthetic derivative is oxida - based and water-based) and transdermal (testos - tion of the 17-beta-hydroxy group with the forma - terone cream )2-4 , buccal and sublingual (i.e. tion of the 17-keto metabolites. These polar tetrahydrogestrinone) 2. metabolites are biologically inactive. The 17 -al - Several side effects related to AAS abuse in - pha- alkylation induces the inhibition of metabolic volve mostly cardiovascular, reproductive, cen - deactivation by oxidation of the 17 -beta hydroxy tral nervous, and musculoskeletal systems, skin group in the liver, thus 17alpha-alkylated andro - and liver 2. The most relevant one is undoubtedly gens can be effectively administered orally. Often hepatotoxicity since it has been showed that pri - the alkylation of the C-17 position of testosterone marily the oral forms of AAS may damage liver alters the relative anabolic potency about the mas - function . culinizing effects (androgenic steroids) . This article reviews the mechanism of action The mostly used oral anabolic steroids are eth - and potential hepatotoxicity of AAS abuse and ylestrenol, fluoxymesterone, mesterolone, methan - misuse as a doping offense . dienone, methenolone, methandrostenolone, 8 Hepatotoxicity associated with illicit use of anabolic androgenic steroids in doping methyltestosterone, methenolone acetate, mi - Hepatotoxicity of AAS may be correlated to bolerone, norethandrolone, oxandrolone, individual susceptibility and genetic factors, and oxymetholone, stanozolol 3,4,22 . The oral forms are it is associated with an increase in infiltration of resistant to immediate degradation
Recommended publications
  • A Simple Toxicological Analysis of Anabolic Steroid Preparations from the Black Market
    Ann Toxicol Anal. 2012; 24(2): 67-72 Available online at: c Société Française de Toxicologie Analytique 2012 www.ata-journal.org DOI: 10.1051/ata/2012011 Original article / Article original A simple toxicological analysis of anabolic steroid preparations from the black market Analyse toxicologique simple de stéroïdiens anabolisants provenant de marchés parallèles Manuela Pellegrini, Maria Concetta Rotolo, Rita Di Giovannadrea, Roberta Pacifici, Simona Pichini Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Via le Regina Elena 299, 00161 Rome, Italy Abstract – Objectives: A simple and rapid gas chromatography (GC) method with mass spectrometry (MS) detection was developed for the identification and quantification of anabolic steroids in pharmaceutical preparations from the black market. Material and Methods: After a liquid-liquid extraction of pharmaceutical products at acidic, neutral and basic pH with chloroform-isopropanol (9:1, v/v), the different steroids were separated by fused silica capillary column and detected by electron impact (EI)-MS in positive ionization mode. Results and Conclusion: The assay was validated in the range from 10 mg to 250 mg/g powder preparations and 0.02 mg to 200 mg/mL liquid preparations with good determination coefficients (r2 0.99) for the calibration curves. At three concentrations spanning the linear dynamic ranges of the calibration curves, mean recoveries were always higher than 90% and intra-assay and inter-assay precision and accuracy were always better than 15%. This method was successfully applied to the analysis of 15 pharmaceutical preparations sold by illegal sources. In only two cases the content was the one reported on the labels.
    [Show full text]
  • The Mechanism and Management of Carbamazepine-Induced Hepatotoxicity
    Insights The Mechanism and Management of Carbamazepine-Induced Hepatotoxicity Lucy Rose Driver 2nd year Pharmacology BSc Carbamazepine (CBZ) is a frequently prescribed antiepileptic drug (AED), used in the treatment of epilepsy, neuropathic pain and psychiatric disorders. CBZ was the 176th most commonly prescribed medication in 2017 across the United States, with a total of 3,516,204 prescriptions written that year. CBZ is predominantly metabolised hepatically, subsequently increasing the risk of a CBZ-induced liver injury or CBZ-induced hepatotoxicity; with hepatotoxicity being defined as drug induced liver damage. Deviation beyond the therapeutic range of CBZ is consistent with toxicity, which combined with abnormal liver function tests, would be indicative of CBZ-induced hepatotoxicity. The liver is the leading organ for the maintenance of the body’s internal environment, therefore obstruction of the liver’s ability to conduct its regular function can carry a number of consequences. With a large number of patients receiving CBZ therapy worldwide, it is of absolute importance to understand the best clinical approach to the treatment of CBZ-induced hepatotoxicity. There have been a number of studies reviewing the type of liver damage that occurs in cases of hepatotoxicity, classified as either a hypersensitivity reaction or acute hepatitis, and how different methods of treatment specific to CBZ-induced hepatoxicity directly correlate with a successful outcome. Treatment of CBZ-induced hepatotoxicity can consist of recording serum levels of the drug whilst administering intravenous fluids and continuing CBZ therapy. A different approach would be that of primary gut decontamination with activated charcoal which has proven to be very effective, whilst various means of dialysis have been considered to have a limited ability to remove CBZ from the blood serum alone.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Fluoxymesterone-Dea Schedule Iii Androfluorene
    Cat. No. F7751 FLUOXYMESTERONE--DEA SCHEDULE III ANDROFLUORENE Androgen. OH Mol. Formula: C20H29FO3 HO H3C CH3 Mol. Wt.: 336.45 (anhyd.) F H3C m.p.: 288-290°C CAS Registry No.: 76-43-7 O Chemical Name: 4-Androsten-9a-fluoro-17a-methyl-11b,17b-diol-3-one 22 Physical Properties: White photosensitive solid. [a] D = +102.34° (c = 0.47, EtOH). Caution: Due care should be exercised to prevent skin contact, ingestion or inhalation of this compound. Storage: Store tightly sealed at room temperature, protected from exposure to light. Solubility: Soluble in ethanol (7.3 mg/ml) or water (< 0.5 mg/ml). Solubility in 45% aqueous (w/v) 2-hydroxypropyl-b- cyclodextrin (Cat. No. H-107): 6.4 mg/ml. Disposal: Dissolve or mix the compound with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. This product is controlled by the Drug Enforcement Administration. Appropriate security must be maintained until the substance is destroyed. Records must be kept which detail the ultimate disposition of the material. References: 1. Merck Index 11th Ed., No. 4113. 2. Saborido, A., Vila, J., Molano, F., Megias, A. “Effect of steroids on mitochondria and sarcotubular system of skeletal muscle.” J. Appl. Physiol. 70(3), 1038 (1991). 3. Fernandez, L., Chirino, R., Boada, L.D., Navarro, D., Cabrera, N., del Rio, I., Diaz-Chico, B.N. “Stanozolol and danazol, unlike natural androgens, interact with the low affinity glucocorticoid-binding sites from male rat liver microsomes.” Endocrinology 134(3), 1401 (1994). CONTROLLED SUBSTANCE - DEA LICENSE REQUIRED (III) Rev.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Ranvet's Filybol
    Ranvet's Filybol Ranvet Chemwatch Hazard Alert Code: 2 Chemwatch: 4787-83 Issue Date: 08/02/2016 Version No: 5.1.1.1 Print Date: 10/28/2016 Safety Data Sheet according to WHS and ADG requirements S.GHS.AUS.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING Product Identifier Product name Ranvet's Filybol Chemical Name peanut oil Synonyms Not Available Other means of Not Available identification Relevant identified uses of the substance or mixture and uses advised against Relevant identified Non-virilising anabolic combination for fillies, mares, colts and stallions. uses Details of the supplier of the safety data sheet Registered company Ranvet name Address 10-12 Green Street Banksmeadow NSW 2019 Australia Telephone +61 2 9666 1744 Fax +61 2 9666 1755 Website https://www.ranvet.com.au/other_msds.htm Email [email protected] Emergency telephone number Association / Not Available Organisation Emergency telephone +61 425 061 584 numbers Other emergency Not Available telephone numbers SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture Poisons Schedule S4 Carcinogenicity Category 2, Reproductive Toxicity Category 2, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Classification [1] Category 2 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex Legend: VI Label elements GHS label elements SIGNAL WORD WARNING Continued... Chemwatch: 4787-83 Page 2 of 10 Issue Date: 08/02/2016 Version No: 5.1.1.1 Ranvet's Filybol Print Date: 10/28/2016 Hazard statement(s) H351 Suspected of causing cancer. H361 Suspected of damaging fertility or the unborn child.
    [Show full text]
  • MICROCOMP Output File
    108TH CONGRESS 2D SESSION S. 2195 AN ACT To amend the Controlled Substances Act to clarify the defini- tion of anabolic steroids and to provide for research and education activities relating to steroids and steroid precursors. 1 Be it enacted by the Senate and House of Representa- 2 tives of the United States of America in Congress assembled, 3 SECTION 1. SHORT TITLE. 4 This Act may be cited as the ‘‘Anabolic Steroid Con- 5 trol Act of 2004’’. 2 1 SEC. 2. AMENDMENTS TO THE CONTROLLED SUBSTANCES 2 ACT. 3 (a) DEFINITIONS.—Section 102 of the Controlled 4 Substances Act (21 U.S.C. 802) is amended— 5 (1) in paragraph (41)— 6 (A) by realigning the margin so as to align 7 with paragraph (40); and 8 (B) by striking subparagraph (A) and in- 9 serting the following: 10 ‘‘(A) The term ‘anabolic steroid’ means any drug or 11 hormonal substance, chemically and pharmacologically re- 12 lated to testosterone (other than estrogens, progestins, 13 corticosteroids, and dehydroepiandrosterone), and 14 includes— 15 ‘‘(i) androstanediol— 16 ‘‘(I) 3β,17β-dihydroxy-5α-androstane; and 17 ‘‘(II) 3α,17β-dihydroxy-5α-androstane; 18 ‘‘(ii) androstanedione (5α-androstan-3,17- 19 dione); 20 ‘‘(iii) androstenediol— 21 ‘‘(I) 1-androstenediol (3β,17β-dihydroxy- 22 5α-androst-1-ene); 23 ‘‘(II) 1-androstenediol (3α,17β-dihydroxy- 24 5α-androst-1-ene); 25 ‘‘(III) 4-androstenediol (3β,17β-dihydroxy- 26 androst-4-ene); and †S 2195 ES 3 1 ‘‘(IV) 5-androstenediol (3β,17β-dihydroxy- 2 androst-5-ene); 3 ‘‘(iv) androstenedione— 4 ‘‘(I) 1-androstenedione ([5α]-androst-1-en- 5 3,17-dione);
    [Show full text]
  • Effects of Androgenic-Anabolic Steroids on Apolipoproteins and Lipoprotein (A) F Hartgens, G Rietjens, H a Keizer, H Kuipers, B H R Wolffenbuttel
    253 Br J Sports Med: first published as 10.1136/bjsm.2003.000199 on 21 May 2004. Downloaded from ORIGINAL ARTICLE Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a) F Hartgens, G Rietjens, H A Keizer, H Kuipers, B H R Wolffenbuttel ............................................................................................................................... Br J Sports Med 2004;38:253–259. doi: 10.1136/bjsm.2003.000199 Objectives: To investigate the effects of two different regimens of androgenic-anabolic steroid (AAS) administration on serum lipid and lipoproteins, and recovery of these variables after drug cessation, as indicators of the risk for cardiovascular disease in healthy male strength athletes. Methods: In a non-blinded study (study 1) serum lipoproteins and lipids were assessed in 19 subjects who self administered AASs for eight or 14 weeks, and in 16 non-using volunteers. In a randomised double blind, placebo controlled design, the effects of intramuscular administration of nandrolone decanoate (200 mg/week) for eight weeks on the same variables in 16 bodybuilders were studied (study 2). Fasting serum concentrations of total cholesterol, triglycerides, HDL-cholesterol (HDL-C), HDL2-cholesterol (HDL2- C), HDL3-cholesterol (HDL3-C), apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), and lipoprotein (a) (Lp(a)) were determined. Results: In study 1 AAS administration led to decreases in serum concentrations of HDL-C (from 1.08 (0.30) to 0.43 (0.22) mmol/l), HDL2-C (from 0.21 (0.18) to 0.05 (0.03) mmol/l), HDL3-C (from 0.87 (0.24) to 0.40 (0.20) mmol/l, and Apo-A1 (from 1.41 (0.27) to 0.71 (0.34) g/l), whereas Apo-B increased from 0.96 (0.13) to 1.32 (0.28) g/l.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Anabolic Steroids/Androgens Pa Summary
    ANABOLIC STEROIDS/ANDROGENS PA SUMMARY PREFERRED Anadrol-50, Danazol, Fluoxymesterone, Methitest, Oxandrolone, Testosterone Cypionate Injection, Testosterone Enanthate Injection NON-PREFERRED Android, Testred LENGTH OF AUTHORIZATION: Varies NOTE: All preferred and non-preferred agents require prior authorization. See PA criteria labeled “Topical Testosterone” for Androderm, Androgel, Striant, and Testim. The criteria details below are for the outpatient pharmacy program. If an injectable medication is being administered in a physician’s office then the criteria information below does not apply. Instead, the physician’s office must bill this drug through the DCH physician’s injectable program and not the outpatient pharmacy program. Information regarding the physician’s injectable program can be located at www.mmis.georgia.gov. PA CRITERIA: For Anadrol-50 Approvable for the following diagnoses: anemia caused by deficient red blood cell production, acquired or congenital aplastic anemia, myelofibrosis, hypoplastic anemia due to administration of myelotoxic drugs Also approvable for HIV or AIDS wasting when significant weight loss is documented in members currently receiving nutritional support For Danazol Approvable for the following diagnoses: endometriosis, fibrocystic breast disease, hereditary angioedema For Fluoxymesterone, Methyltestosterone (Android, Methitest, Testred), Testosterone Cypionate or Enanthate Injection Approvable in male members 12 years of age or older for the following diagnoses: primary hypogonadism, secondary
    [Show full text]