Macrophytes in the Upper Paraná River Floodplain: Checklist and Comparison with Other Large South American Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

Macrophytes in the Upper Paraná River Floodplain: Checklist and Comparison with Other Large South American Wetlands Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands Fernando Alves Ferreira1, Roger Paulo Mormul1, Sidinei Magela Thomaz2*, Arnildo Pott3 & Vali Joana Pott3 1. Postgraduate Program in Ecology of Continental Aquatic Environments, Universidade Estadual de Maringá- UEM, Av. Colombo 5790, bloco H-90, CEP 87020-900, Maringá, Paraná, Brazil; [email protected], [email protected] 2. Research Group in Limnology, Ichthyology and Aquaculture-Nupelia, Biological Science Department, Universidade Estadual de Maringá-UEM, Av. Colombo 5790, bloco H-90, CEP 87020-900, Maringá, Paraná, Brazil; [email protected] 3. Biological Science Department, Universidade Federal do Mato Grosso do Sul - UFMS CEP 79.070-900, Caixa - Postal 549, Campo Grande, MS, Brazil; [email protected], [email protected] * Corresponding author Received 04-VI-2010. Corrected 30-XI-2010. Accepted 07-I-2011. Abstract: Neotropical aquatic ecosystems have a rich aquatic flora. In this report, we have listed the aquatic flora of various habitats of the upper Paraná River floodplain by compiling data from literature and records of our own continuous collections conducted during the period 2007-2009. Our main purposes were to assess the macrophyte richness in the Paraná floodplain, to compare it with other South American wetlands and to assess whether the number of species recorded in South American inventories has already reached an asymptote. We recorded a total of 153 species of macrophytes in the Upper Paraná River floodplain, belonging to 100 genera and 47 families. In our comparative analysis, a clear floristic split from other South American wetlands was shown, except for the Pantanal, which is the closest wetland to the Paraná floodplain and, therefore, could be considered a floristic extension of the Pantanal. The species accumulation curve provides evidence that sam- pling efforts should be reinforced in order to compile a macrophyte flora census for South America. The high dissimilarity among South American wetlands, together with the lack of an asymptote in our species accumula- tion curve, indicates that the sampling effort needs to be increased to account for the actual species richness of macrophytes in this region. Rev. Biol. Trop. 59 (2): 541-556. Epub 2011 June 01. Key words: floristic survey, plant diversity, aquatic plants, Brazil. Wetlands are important sites for biological wetlands (Neiff 2001). Inventories of wetlands conservation because they support rich biodi- provide an indication of the sites with the versity and present high productivity (Mitsch & highest biological diversity and productiv- Gosselink 2000). The study of wetland plants ity (Taylor et al. 1995), and the information has been of interest to botanists for many years, collected through inventories is a necessary but the effort to identify and understand these prerequisite for conservation policies (Pressey plants has increased dramatically since the & Adam 1995). 1970s, when ecologists began to emphasize the Approximately 50% of the inventoried vital role that wetlands play in our landscapes wetlands in South America are located in Brazil (Cronk & Fennessy 2001). (Naranjo 1995). However, specific information One of the main ecological characteristics related to aquatic macrophytes is extremely of South America is the existence of large scarce. Diegues (1994) performed the first Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 59 (2): 541-556, June 2011 541 inventory of wetlands in Brazil, and his work other South American wetlands. Finally, using provided valuable data for evaluating eco- species accumulation curves, we examined logical and economic aspects of these regions. whether the number of species described in According to Neiff (1978, 1986), aquatic mac- South America is reaching an asymptote, or rophytes are important in shallow ecosystems, if more sampling efforts are still necessary to such as river-floodplain ecosystems, where accomplish a comprehensive inventory of the they colonize extensive areas and exhibit high rich aquatic flora of this area. rates of primary productivity. In addition, To accomplish these objectives, we adopt- macrophytes are a key component of river- ed the conceptualization of aquatic macro- floodplain ecosystems because they enhance phytes proposed by Cook (1996), in which the nutrient cycling, increase habitat heterogeneity author includes plants which photosyntheti- and provide food for a variety of organisms cally active organs are either permanently, or (Esteves 1998). for several months of the year, total or partially Floodplains are known as ecosystems with submersed in freshwater or floating in aquatic a high diversity of habitats and aquatic and habitats. More recently, Chambers et al. (2008) terrestrial species (Junk et al. 2000). Due to also included Charophytes within the defini- their high complexity and seasonal changes in tion of macrophytes. To avoid any confusion, physico-chemistry, these ecosystems are char- we did not use in any part of our text the term acterized by a variety of assemblages, which “vascular plants” but, instead, consistently used differ in richness and composition accord- the term “aquatic macrophytes”. ing to the water level. In the Upper Paraná River floodplain, for example, the vegeta- MATERIALS AND METHODS tion is highly conditioned by geomorphology (Souza-Filho 1993); trees dominate the more Study area: The floodplain of the Paraná elevated areas (levees), and shrubs colonize River is located downstream from the Porto less elevated areas that remain flood-free most Primavera Reservoir. This stretch has a length of the year, while aquatic macrophytes grow in of 160km and is the last region of the river permanently inundated areas of the wetlands. that remains not dammed in Brazilian territory. Despite the importance of these macro- Thus, it is of key importance to the conserva- phytes in the Upper Paraná River floodplain, a tion of the aquatic biodiversity of the Paraná stretch of this river that is key in maintaining Basin (Agostinho & Zalewiski 1995). the biodiversity of Brazilian inland waters, According to the Köppen system, the information about the aquatic vegetation in climate in this region is classified as tropical this region is scattered among several different and sub-tropical, with warm summers (mean papers and reports (Bini 1996, Kita & Souza annual temperature 22oC) and a mean annual 2003, Thomaz et al. 2004, Thomaz et al. 2009); rainfall of 1 500mm (Maack 2002). most of these studies emphasized that the flood The compiled list of taxa was based on pulse and changes in water physico-chemistry records of samplings conducted in the flood- are important factors controlling macrophyte plain since 1997. In addition, we utilized sev- populations and communities. eral other studies (published and unpublished) In the present study, we first addressed the that had been conducted in the floodplain. number of macrophyte species in the main hab- Macrophytes were collected in a variety of itats of the Upper Paraná River and its flood- habitats, such as the river main channel, lateral plain (herein only Paraná floodplain), using channels (anabranches), temporary and perma- records gathered since 1997 and intensive nent lakes, and in the aquatic-terrestrial transi- collections performed between 2007 and 2009. tion zone (ATTZ, sensu Junk et al. 1989). We Secondly, we used this dataset to compare the also analyzed and revised specimens depos- species richness and similarity of this area with ited in the Laboratory of Macrophytes and in 542 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 59 (2): 541-556, June 2011 Hoehne 1948, Cook 1996, Pott & Pott 2000, South America Amaral et al. 2008, Bove & Paz 2009). The list of taxa contains families and genera according to the “Angiosperm Phylogeny Group-APG II” (2003) for Magnoliophyta (Angiospermae), Colombia Willis (1973) for Pteridophyta, and Crandall- Ecuador Stotler (1980) for Hepatophyta. Plant life forms were chosen according to Brazil Pedralli (1990), and we followed Tur (1972) Peru for epiphytic forms. Plants growing in wet Bolivia soils (marshes locally known as “varjão” or “várzea”) were included in the category of amphibious (Irgang & Gastal 1996). In order to make comparisons among Sampling sites South American wetlands, we used the follow- ing lists of macrophytes obtained in long-term Argentina surveys (Table 1). All of the investigations and the lists of spe- 0 10 20 30 40 100 km cies that we used were carried out by specialists Scale and included several types of habitats (Fig. 1). Although there are several other papers describ- Fig. 1. Regions of South America included in the ing single habitats, we did not use these studies. sampling sites. It is difficult to guarantee that all studies follow the same methodology, but we believe that they are similar enough to at least contribute a first tentative of comparison of Neotropical wetlands to make inferences about the richness of macro- the Herbarium (HUEM) of the University of phytes in this region. Maringá. To complement the list of species To find similarity among these surveys, we recorded in previous investigations, we carried first converted all data into a large matrix con- out additional samplings between 2007 and taining species occurrence presence/absence. A 2009 in six habitats that are being monitored in matrix of similarity was built using the Bray- the Brazilian Long Term Ecological Research
Recommended publications
  • Acta Botanica Brasilica - 35(1): 46-61
    Acta Botanica Brasilica - 35(1): 46-61. January-March 2021. doi: 10.1590/0102-33062020abb0236 Breaking the misconception of a dry and lifeless semiarid region: the diversity and distribution of aquatic flora in wetlands of the Brazilian Northeast Lígia Queiroz Matias1* , Felipe Martins Guedes2 , Hugo Pereira do Nascimento1 and Júlia Caram Sfair1 Received: May 19, 2020 Accepted: November 19, 2020 . ABSTRACT The semiarid region of northeastern Brazil possesses a set of wetlands characterized by hydrographic basins with deficient drainage networks, a few large and permanent lotic systems and several permanent and temporary lagoons. Aquatic plants are widely distributed in these wetlands and the present study aims to determine if those of Ceará state have similar species compositions and differences in species richness. We hypothesized that lentic ecosystems would have more species and different growth forms of aquatic angiosperms than lotic ecosystems. A total of 1619 records of aquatic angiosperms in 43 wetland areas were analysed. The most representative families were Cyperaceae, Poaceae, Fabaceae, Alismataceae, Malvaceae, Nymphaeaceae and Pontederiaceae. Most of the species are helophytes and bottom-rooted emergent hydrophytes. Permanent lentic ecosystems had the highest number of exclusive species (27.85 %), followed by temporary lentic ecosystems (20.54 %). Contrary to our hypothesis, the different aquatic ecosystems were found to possess distinct species compositions and different proportions of growth forms, and all wetland types contributed to the macrophyte richness of the study area, although they differ in species richness. Therefore, conservation plans for the native aquatic macrophyte biota should include all wetland ecosystems in the semiarid state of Ceará. Keywords: biodiversity, floristic richness, hydrophytes, macrophytes, seasonal aquatic ecosystems significantly during the rainy season according to the stage Introduction of flooding (Ferreira et al.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
    Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Phylogeny and Systematics of Lemnaceae, the Duckweed Family
    Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella.
    [Show full text]
  • Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
    Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Tropical Forages
    Tropical Forages Hymenachne amplexicaulis Scientific name Hymenachne amplexicaulis (Rudge) Nees Synonyms Aquatic or sub-aquatic perennial with coarse culms Leaves to >3cm wide with stem- Basionym: Panicum amplexicaule Rudge clasping auricles at base Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Paspaleae subtribe: Otachyriinae. Morphological description A perennial, stoloniferous/rhizomatous grass, with robust, erect or ascending culms 1–2.5 m high and to Aquatic culm with nodal rooting (cv. >12 mm thick, and prostrate stems that run on wet Olive) ground, or float on water, developing adventitious roots. Stems glabrous, pithy. Leaves glossy green in colour, Inflorescence a narrow spike-like largely glabrous; sheaths often spongy; blades mostly panicle linear-lanceolate, 10–45 cm long and to >3 cm wide, cordate, auriculate and clasping at base; ligule an eciliate membrane, 1–2.5 mm long. Panicle narrow, spikelike, cylindrical, 20–50 cm long, 1–2 cm across, sometimes with 2 to a few long, upright branches. Spikelets lanceolate, dorsi-ventrally compressed, upright, 3–4 (–5) mm long and 1 mm diameter; c. 2.3 million seeds/kg. Caryopsis ellipsoid, easily detached, 1–2 mm long and 0.6 mm diameter. Prolific seed production Note: Morphologically similar to, but distinct from Hymenachne acutigluma (Steud.) Gilliland, which is native to Continental Asia, Malesia and Australasia. Leaves and inflorescence Similar species H. amplexicaulis: leaf base cordate-auriculate, stem- clasping (amplexicaul). H. acutigluma (Steud.) Gilliland (syn. Hymenachne pseudointerrupta Müll. Hal.): leaf base rounded to sub- cordate. Native to S and SE Asia, and northern Australia. Checking maturity in seed production Common names area (cv.
    [Show full text]
  • FDA Has No Questions
    Valentina Carpio-Téllez Parabel Ltd. 7898 Headwaters Commerce Street Fellsmere, FL 32948 Re: GRAS Notice No. GRN 000742 Dear Ms. Carpio-Téllez: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000742. We received Parabel’s notice on November 8, 2017 and filed it on December 19, 2017. Parabel submitted amendments to the notice on February 19, 2018; April 16, 2018; June 12, 2018; and August 1, 2018. The amendments included revisions to the dietary exposure assessment. The subjects of the notice are duckweed powder (DWP) and degreened duckweed powder (DDWP) for use as a source of protein in food at levels ranging from 3-20%.1 The notice informs us of Parabel’s view that this use of DWP and DDWP is GRAS through scientific procedures. Our use of the terms “duckweed powder” and “degreened duckweed powder” in this letter is not our recommendation of those terms as appropriate common or usual names for declaring the substances in accordance with FDA’s labeling requirements. Under Title 21 of the United States Code of Federal Regulations (CFR) 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods. Issues associated with labeling and the common or usual name of a food ingredient are under the purview of the Office of Nutrition and Food Labeling (ONFL) in the Center for Food Safety and Applied Nutrition. The Office of Food Additive Safety (OFAS) did not consult with ONFL regarding the appropriate common or usual name for “duckweed powder” and “degreened duckweed powder.” Duckweeds are aquatic plants in the Lemnoideae subfamily of the plant family Araceae.2 The notifier intends to use multiple species from the genera Landoltia, Lemna, Wolffia, and Wolfiella.3 Although the products may derive from different duckweed species, the 1 Excluding products regulated by the United States Department of Agriculture.
    [Show full text]
  • Mariana Conceição Menezes Flórula Das Angiospermas
    UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS, AMBIENTAIS E BIOLÓGICAS MARIANA CONCEIÇÃO MENEZES FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Cruz das Almas 2010 MARIANA CONCEIÇÃO MENEZES FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Trabalho de Conclusão de Curso II, apresentado ao Centro de Ciências Agrárias, Ambientais e Biológicas (CCAAB) da Universidade Federal do Recôncavo da Bahia como requisito à obtenção do título de Bacharel em Ciências Biológicas. Orientadora: Lidyanne Yuriko Saleme Aona. Cruz das Almas, BA. 2010 Ficha Catalográfica M543 Menezes, Mariana Conceição. Flórula das angiospermas aquáticas e palustres do grupo asterales(Euasterideas II) ocorrentes na Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Ba. / Mariana Conceição Menezes._. Cruz das Almas - Ba, 2010. 47f.; il. Orientador: Lidyanne Yuriko Saleme Aona. Monografia (Graduação) – Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. 1.Botânica. 2.Angiosperma – Taxonomia vegetal. I.Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. II.Título. CDD: 581.9813 FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Mariana Conceição Menezes Banca examinadora 16/12/2010 Profa. Dra. Lidyanne Yuriko Saleme Aona (Orientadora) Universidade Federal do Recôncavo da Bahia Prof. MSc. Márcio Larceda Lopes Martins Universidade Federal do Recôncavo da Bahia Prof. MSc. Domingos Benício Oliveira Silva Cardoso Universidade Estadual de Feira de Santana Prof.
    [Show full text]