Gouw-180617-Pile Load Test FAQ-Published

Total Page:16

File Type:pdf, Size:1020Kb

Gouw-180617-Pile Load Test FAQ-Published IC GEOTECHNICS YOGYAKARTA, 24-26 JULY 2018 Proceeding of International Conference on Geotechnics “Sustainable Development Challenges in Geotechnics” Main Organizer: Universitas Universitas Atma Jaya Yogyakarta Gadjah Mada Supporting Co-organizer: Institution: Indonesian Society for Geotechnical Engineering Proceeding International Conference on Geotechnics (IC Geotechnics) “Sustainable Development Challenges in Geotechnics” Royal Ambarrukmo Plasa Yogyakarta, 24 – 25 July 2018 Organized by: Universitas Atma Jaya Yogyakarta Universitas Gadjah Mada National Taiwan University of Science and Technology University of Southern Queensland Publisher: IC Geotechnics Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281 Phone: +62-274-513665 Proceeding International Conference on Geotechnics (IC Geotechnics) “Sustainable Development Challenges in Geotechnics” International Conference on Geotechnics, 24-26 July, 2018 Yogyakarta, Indonesia Table of Contents Title page i Title back page ii Foreword iii Table of Contens iv Pile Load Test Frequently Asked Questions 1 (T.L Gouw, A. Gunawan) Active Faults Identification for Dam Safety Against Earthquakes 13 (D. Djarwadi) 3D Assessment of Rainfall-induced Slope Movements and Risk Mitigation Strategies 20 (Wei He, Barry Kok, Sangmin Lee) Bridge Approach Embankments on Rigid Inclusions 29 (M. Rizal & K. Yee) Design of Rapid Impact Compaction at the New Yogyakarta International Airport 39 (Mathew Sams, Wei He, Jeremy Gamaliel, and Barry Kok) Effects of Model Scale Due to Displacement Factor for Nailed-slab Pavement System 49 (Anas Puri) Initial Recommendation Criteria for Distinguishing Between Landslides 54 and Mudflows Based on Several Case Studies in Java and Bali (B. Widjaja, D. Pascayulinda) Slope Stability of Metamorphic Rock Based on Limit Equilibrium 61 Method of Poboyo Gold Mine, Palu, Central of Sulawesi (Sriyati Rahmadani, Ahmad Rifa’i, Wahyu Wilopo, and Kabul Basah Suryolelono) Deterioration Depth of Cement Treated Clay Under Sulfate Exposure 67 (T. Pradita, L. Handoko, S. Gunawan, and J. T Hatmoko) Analysis of Failure Base Plate Anchor Flare Stack Foundation and Repair Method 78 (Sulardi) The Analysis of Rockbolt Reinforcement on the Tunnel 83 by Mohr Coulomb Approach Model and Hardening Soil Model (Hanindya K. Artati and Dias Dwi Hatmoko) Effect of Matric Suction Change on Pile Foundation Capacity in Unsaturated Soils 94 (H. Pujiastuti, A. Rifa’i, A. D. Adi, and T. F. Fathani) 4 International Conference on Geotechnics, 24-26 July, 2018 Yogyakarta, Indonesia Pile Load Test Frequently Asked Questions T. L. Gouw Associate Professor, Post Graduate Program, Universitas Katolik Parahyangan, Bandung, INDONESIA [email protected] A. Gunawan Department of Civil and Environmental Engineering, Bina Nusantara University, Jakarta, INDONESIA [email protected] ABSTRACT There are a few available methods to obtain load-settlement curve of a pile. Likewise, there are many methods to determine the ultimate pile capacity from a load-settlement curves. Although pile load tests have been widely used over the past decades, there are still many questions regarding its practice and interpretation. Frequently asked questions include: when does a pile test considered to have failed? From an economic point of view, a failure in pile load test can cost quite a lot of money. To what load can the pile be loaded till it is considered to have failed? Can a pile loaded to failure still be used as a working pile? Is pile driving analyzer (PDA) test reliable? Can PDA test replace static load test? Is it necessary to calibrate PDA test results with static load test results? Why is PDA test result interpreted as 1 dimensional wave and not 3 dimensional? What is bidirectional pile load test (also known as O’cell)? When should O’cell be used? Can a pile tested with O’cell be used as a working pile? What are the differences between kentledge load test, static load test with reaction piles and bidirectional pile load test? Do the three different pile tests produce the same results? This paper aims to shed light on these questions. Keywords: Pile static load test, Dynamic load test, Bidirectional test, Ultimate pile capacity, Fail Pile 1 INTRODUCTION • PDA test is interpreted with one dimensional theory, why not three dimensional? Foundation piles have been used for over one hundred • Can a PDA test be manipulated? years. There are many methods to construct the piles. • What is a bidirectional load test or O’ Cell? When Likewise, there are also many methods to test the pile is it necessary to apply this test method? capacity. In Indonesia, foundation piles are very • Can a pile tested by bidirectional load test still be common, and engineers in Indonesia are willing to used as a working pile? adopt state-of-the-art testing methods. From the common kentledge loading test, static load test with • Will a pile tested by kentledge load test, static load reaction piles, dynamic loading test (also known as test by reaction pile, and bidirectional test give the PDA - pile driving analyzer), to the more recent one, same results? bidirectional test, also known as Osterberg Cell or O- The paper first discusses what ultimate pile capacity is, cell for short. Although these testing methods have the principles of each pile tests, followed by answers to been widely adopted in Indonesia, there are still the above questions. questions regarding these testing methods. Often, engineers have different perspective on the practice of these testing methods. This paper aims to shed light to 2 ULTIMATE PILE CAPACITY the following frequently asked questions: Eurocode 7 (BS EN 1997-1, 2004) defines ultimate pile capacity, also known as ultimate limit states, as • A pile load test should not be determined as failure compressive or tensile resistance failure of a single or as the project owner has spent thousands or tens of piles system. However, according to Fellenius (2017), thousands of US dollars for it. So, in what scenario “Ultimate pile capacity” is a very imprecise concept in does a pile load test considered to have failed? most soil conditions. This can be clearly seen from a • Can a pile tested to “failure” still be used as a typical load-settlement curve shown in Figure 1. As working pile? shown in Figure 1, pile “capacity” continues to increase • Is PDA test reliable enough to replace static load the further it is loaded. So, when does a pile really fail? test? Is it necessary to calibrate PDA test results Figure 2 shows the 3 types of load-settlement curve that with static load test results? can be obtained in field. The first type is a general failure, which as stated previously, the pile capacity continues to increase with pile movement. The second 1 International Conference on Geotechnics type is punching failure with a relatively constant (Fellenius, 2017). The relative movement required is capacity, in which pile continues to move under independent of pile size, but dependent on soil type and constant load. The third type is punching failure with a roughness of the pile. reduction in capacity. Geotechnical pile failure only occurs when type 2 or type 3 occurs. For type 2 and 3, The magnitude of shaft resistance mobilized is a true “ultimate” capacity can be defined. It is dependent on the magnitude of relative movement and important to differentiate the peak and ultimate soil type. This behavior is easily observed from direct capacity for type 3. These three types of curve obtained shear test results shown in Figure 3. For loose sand or can be explained with ultimate shaft resistance and toe normally consolidated clay, shaft resistance (shear resistance. resistance) continues to increase with shear displacement. Once the displacement is large enough, the ultimate shaft resistance is reached, in which the resistance stays constant. For dense sand or overly consolidated clay, shaft resistance continues to increase until a peak shaft resistance is reached. From there, the shaft resistance decreases with movement, until ultimate shaft resistance is reached. Figure 1. Typical load-settlement curve from a pile-load test in medium dense sand. Figure 3. Shear stress versus shear displacement on dense and loose sand (Modified after Das, 2014). 2.2 Toe Resistance Unlike shaft resistance which has an ultimate value, toe resistance does not. The load-movement of pile toe is a function of the stiffness and effective stress of the soil. Figure 4 shows an example of load versus pile toe movement. The figure shows the unit toe resistance developed in a 1.5 m and 1.8 m diameter piles against Figure 2. Three types of load settlement curve: 1 – general failure, 2 – punching failure with constant capacity, 3 – their respective movement. It can be seen that even punching failure with reduction in capacity. after a large movement of 150 mm, which is nearly 10% the pile diameter, the load-movement curve has no indication of reaching “failure”. 2.1 Ultimate Shaft Resistance Development of shaft resistance is the consequence of 2.3 Failure in pile relative movement between the pile and soil. If the pile The three types of failure shown in Figure 2 can be settles more than the soil, a positive shaft resistance is explained from the ultimate shaft and toe resistance. generated. Whereas, when the soil settles more than the For general failure, although ultimate shaft resistance soil, a negative shaft resistance is generated. To fully has been mobilized, the toe resistance can continue to mobilize shaft resistance, very small relative develop resistance as it is further loaded. For punching movement is required, often only a few millimeters failure, the pile has majority of its capacity from the 2 International Conference on Geotechnics, 24-26 July, 2018 Yogyakarta, Indonesia shaft resistance. Hence, when the shaft resistance is Figure 1. In this example, the ultimate pile capacity is fully mobilized, the toe does not have sufficient 2300 kN and 1480 kN based on the Eurocode 7, and capacity to sustain the current load and self-weight of Indonesian Standard respectively.
Recommended publications
  • Application of Geodetic Measuring Methods for Reliable Evaluation of Static Load Test Results of Foundation Piles
    remote sensing Article Application of Geodetic Measuring Methods for Reliable Evaluation of Static Load Test Results of Foundation Piles Zbigniew Muszy ´nski 1,* and Jarosław Rybak 2 1 Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland 2 Faculty of Civil Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected] Abstract: Geodetic measuring methods are widely used in the course of various geotechnical works. The main purpose is usually related to the location in space, geometrical dimensions, settlements, deflections, and other forms of displacements and their consequences. This study focuses on the application of selected surveying methods in static load tests (SLTs) of foundation piles. Basic aspects of the SLT are presented in the introductory section, together with the explanation of the authors’ motivation behind the novel (but already sufficiently tested) application of remote methods introduced to confirm, through inverse analysis, the load applied to the pile head under testing at every stage of its loading. Materials and methods are described in the second section in order to provide basic information on the test site and principles of the SLT method applied. The case study shows the methodology of displacement control in the particular test, which is described in light of a Citation: Muszy´nski,Z.; Rybak, J. presented review of geodetic techniques for displacement control, especially terrestrial laser scanning Application of Geodetic Measuring and robotic tacheometry. The geotechnical testing procedure, which is of secondary importance for Methods for Reliable Evaluation of the current study, is also introduced in order to emphasize the versatility of the proposed method.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Section 3B Fondations sur pieux Piled Foundations Sujets de discussion : Détermination de la force portante d’une fondation à partir des indications des pénétromètres. Influence du groupement des pieux sur la force portante et le tassement. Subjects for discussion : Determination of the bearing capacity of a foundation from penetrometer tests. Pile groups; bearing capacity and settlement. Président / Chairman : E. Schultze, Allemagne. Vice-Président / Vice-Chairman : H. C ourbot, France. Rapporteur Général / General Reporter : L. Z eevaert, Mexique. Membres du Groupe de discussion / Members o f the Panel : E. G euze, U.S.A.; J. K erisel, France; T. M ogami, Japon; N- N ajdanovic, Yougoslavie ; R.B. Peck, U.S.A.; M. V argas, Brésil. Discussion orale / Oral Discussion V. Berezantsev, U.R.S.S. R. B. Peck, U.S.A. L. Bjerrum, Norvège H. Petermann, Allemagne A. J. L. Bolognesi, Argentine R. Pietkowski, Pologne A. Casagrande, U.S.A. H. Simons, Allemagne T. K. Chaplin, Grande-Bretagne G. F. Sowers, U.S.A. A. J. Da Costa Nunes, Brésil C. Szechy, Hongrie E. de Beer, Belgique C. Van der Veen, Hollande C. Djanoeff, Grande-Bretagne M. Vargas, Brésil O. Eide, Norvège E.
    [Show full text]
  • Finite Element Study on Static Pile Load Testing Li Yi A
    FINITE ELEMENT STUDY ON STATIC PILE LOAD TESTING LI YI (B.Eng) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2004 Dedicated to my family and friends ACKNOWLEDGEMENTS The author would like to express his sincere gratitude and appreciation to his supervisor, Associate Professor Harry Tan Siew Ann, for his continual encouragement and bountiful support that have made my postgraduate study an educational and fruitful experience. In addition, the author would also like to thank Mr. Thomas Molnit (Project Manager, LOADTEST Asia Pte. Ltd.), Mr. Tian Hai (Former NUS postgraduate, KTP Consultants Pte. Ltd.), for their assistance in providing the necessary technical and academic documents during this project. Finally, the author is grateful to all my friends and colleagues for their help and friendship. Special thanks are extended to Ms. Zhou Yun. Her spiritual support made my thesis’ journey an enjoyable one. i TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................. i TABLE OF CONTENTS................................................................................................ii SUMMARY................................................................................................................... iv LIST OF TABLES......................................................................................................... vi LIST OF FIGURES ......................................................................................................vii
    [Show full text]
  • Rectification of Tilt & Shift of a Well by Kentledge Method
    International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1447 ISSN 2229-5518 Rectification of Tilt & Shift of a Well by Kentledge Method ROHIT KUMAR DUBEY Well foundations are quite appropriate foundation for Abstract: quite useful. In principle the construction of a well alluvial soils in rivers and creeks where max depth of scour can be quite large. In india technology of well foundation for design and foundation for bridges is similar to the conventional construction is quite well developed, still there are situations where serious problems are encountered at site during construction of wells whose main purpose was to obtain ground water well foundations, which results in excessive tilt of well in a centuries ago. In planthe shape of a well foundation is particular direction. In the case of excessive tilt, regular method for tilt rectification like eccentric grabbing, water jetting, strutting the similar to the caisson. When the circular well becomes well etc. might be not so effective as required. Excessive tilt occurred during sinking of well in undergoing construction of a uneconomical to support the pier of substructure, the cable stayed bridge over river ganga have been identified & well foundation can take other shapes also like double- explained by the author in this presentation. Rohit Kumar Dubey is currently persuing master degree D, rectangular, octagonal etc. programme in civil engineering in Dr. A. P. J.Abdul Kalam Technical University, Uttar Pradesh, India. Ph. No. +91- 7549326005, email id:- [email protected] Compared to the group of piles, well foundation are rigid in engineering behavior and are able to resist large Keyword: Well Foundation, Tilt & Shift, Kentledge Method, Sinking forces of floating trees or bolders that may roll on the river bed.
    [Show full text]
  • Enhancement of Shaft Capacity of Cast-In- Place Piles Using a Hook System
    Enhancement of Shaft Capacity of Cast-in- Place Piles using a Hook System by Ghazi Abou El Hosn A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of: Master of Applied Science in Civil Engineering Carleton University, Ottawa, Ontario ©2015 Ghazi Abou El Hosn * Abstract This research investigates an innovative approach to improve the shaft bearing capacity of cast- in-place pile foundations by utilizing passive inclusions (Hooks) that will be mobilized if movement occurs in pile system. An extensive experimental program was developed to study the shaft bearing capacity of cast-in-place piles with and without hook system in soft clay and sand. First phase of the experiment was developed to investigate the effect of passive inclusion on pile- soil interface shear strength behaviour, employing a modified direct shear test apparatus. The interface strength obtained for pile-soil specimens was found to significantly increase when passive inclusions were implemented. Apparent residual friction angle for concrete-sand interface increased from 22 to 29.5 when two hook elements were used at the pile-soil interface. The pile-clay apparent adhesion was also increased from 19 kPa to 34 kPa. A series of pile-load testing at field were performed on cast-in-place in soft clay to investigate the effect of passive inclusions on pile bearing capacity. The pile-load tests were conducted at Gloucester test site. Four model piles were cast with steel cages along with hooks (P1- no hook, P2-7 hooks, P3- 5 hooks and P4- 5 hooks) installed on the exterior side of the steel cages prior to filling the hole with concrete.
    [Show full text]
  • View Souvenir Book
    DFI INDIA 2018 Souvenir With extended abstracts Sponsor / Exhibitor catalogue www.dfi -india.org Deep Foundations Institute USA, DFI of India Indian Institute of Technology Gandhinagar, Gujarat, India Indian Geotechnical Society, Ahmedabad Chapter, Ahmedabad, India 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India IIT Gandhinagar, India, 15-17 November 2018 1 Deep Foundations Institute of India Advanced foundation technologies Good contracting and work practices Skill development Design, construction, and safety manuals Professionalism in Geotechnical Investigation Student outreach Women in deep foundation industry Join the DFI Family DFI India 2018 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India IIT Gandhinagar, India, 15-17 November 2018 Souvenir With extended abstracts Sponsor / Exhibitor catalogue Deep Foundations Institute, DFI of India Indian Institute of Technology Gandhinagar, Gujarat, India Indian Geotechnical Society, Ahmedabad Chapter, Ahmedabad, India www.dfi -india.org 3 Deep Foundation Technologies for Infrastucture Development in India - DFI India 2018 IIT Gandhinagar, Gujarat, India, 15-17 November 2018 DFI India 2018, 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India Advisory Committee Prof. Sudhir K. Jain, Director. IIT Gandhinagar Dr. Dan Brown, Dan Brown and Association and DFI President Mr. John R. Wolosick, Hayward Baker and DFI Past President Prof. G. L. Sivakumar Babu, IGS President Er. Arvind Shrivastava, Nuclear Power Corp of India and EC Member, DFI of India Prof. A. Boominathan, IIT Madras and EC Member, DFI of India Prof. S. R. Gandhi, NIT Surat and EC Member, DFI of India Gianfranco Di Cicco, GD Consulting LLC and DFI Trustee Prof.
    [Show full text]
  • Pile Foundation Design: a Student Guide
    Pile Foundation Design: A Student Guide Ascalew Abebe & Dr Ian GN Smith School of the Built Environment, Napier University, Edinburgh (Note: This Student Guide is intended as just that - a guide for students of civil engineering. Use it as you see fit, but please note that there is no technical support available to answer any questions about the guide!) PURPOSE OF THE GUIDE There are many texts on pile foundations. Generally, experience shows us that undergraduates find most of these texts complicated and difficult to understand. This guide has extracted the main points and puts together the whole process of pile foundation design in a student friendly manner. The guide is presented in two versions: text-version (compendium from) and this web-version that can be accessed via internet or intranet and can be used as a supplementary self-assisting students guide. STRUCTURE OF THE GUIDE Introduction to pile foundations Pile foundation design Load on piles Single pile design Pile group design Installation-test-and factor of safety Pile installation methods Test piles Factors of safety Chapter 1 Introduction to pile foundations 1.1 Pile foundations 1.2 Historical 1.3 Function of piles 1.4 Classification of piles 1.4.1 Classification of pile with respect to load transmission and functional behaviour 1.4.2 End bearing piles 1.4.3 Friction or cohesion piles 1.4.4 Cohesion piles 1.4.5 Friction piles 1.4.6 Combination of friction piles and cohesion piles 1.4.7 .Classification of pile with respect to type of material 1.4.8 Timber piles 1.4.9 Concrete
    [Show full text]
  • Pile Load Test and Glostrext Instrumentation
    Glostrext Technology Group of Companies .since 1992. Glostrext Instrumentation Method : A novel technology empowering You to make decisions based on Facts Welcome to Glostrext Technology Group of Companies We offer trusted measurements, large quantity wireless-sensors-based reliable automated data, specialist testing, monitoring works and creative automation solutions in various engineering industries. Our Services and Solutions: Pile Load Test and Bi-Directional Static Geotechnical Glostrext Load Testing Instrumentation Instrumentation (BDSLT) and Engineering Survey Wireless Sensors Automation and Accredited and Online IoT Solutions Calibration Structural Health Services Monitoring Glostrext Technology HQ @ Subang 2, Damansara West Vision Objective Core Values To obtain the hallmark for trusted To provide innovative technologies and Trustworthiness on data provided specialist builders, technical excellence, trusted data empowering our clients to Respect team work spirit innovative services and creative solutions. make decision based on facts. Fairness via facts based decisions Caring via structured sharing & training Glostrext Technology Sdn. Bhd. (649873-V) Glostrext Technology (S) Pte Ltd (200905332R) Spectest Sdn. Bhd. (236932-K) 30 Kaki Bukit Road 3, #01-02 & #06-09 Empire Techno No. 11A, Jalan Apollo U5/194, Seksyen U5, Bandar Centre, Singapore 417819. Pinggiran Subang, 40150 Shah Alam, Selangor, Malaysia. +65-6846 9808, +65-8299 5577 +603-7832 2012 +603-7832 3646 +65-6846 9800 [email protected], [email protected] [email protected] Page 1-8 Glostrext 2020 Rev. 1.0 Glostrext Technology Group of Companies .since 1992. Glostrext Instrumentation Method : A novel technology empowering You to make decisions based on Facts Pile Load Test and Glostrext Instrumentation We provide a complete range of high-quality pile tests instrumentation services since 1992.
    [Show full text]
  • Development Study of T-Z Curve Generated from Kentledge System and Bidirectional Test by N U Rachmayanti
    Development Study Of T-Z Curve Generated From Kentledge System And Bidirectional Test By N U rachmayanti WORD COUNT 3959 TIME SUBMITTED 12-JAN-2021 02:17PM PAPER ID 67783827 Development Study Of T-Z Curve Generated From Kentledge System And Bidirectional Test ORIGINALITY REPORT 20% SIMILARITY INDEX PRIMARY SOURCES 1 Amy Wadu, A A Tuati, M R Sodanango. "Strategy To 333 words — % Reduce Traffic Jams On Piet A. Tallo Street, Kupang 6 City", UKaRsT, 2020 Crossref 2 ojs.unik-kediri.ac.id Internet 93 words — 2% 3 jp.ic-on-line.cn Internet 58 words — 1% 4 pt.scribd.com Internet 46 words — 1% 5 docplayer.net Internet 40 words — 1% 6 Anita Widianti, Willis Diana, Maratul Hasana. "Direct 40 words — % Shear Strength of Clay Reinforced with Coir Fiber", 1 UKaRsT, 2020 Crossref 7 Sung-Ryul Kim, Sung-Gyo Chung. "Equivalent head- down load vs. Movement relationships evaluated from 38 words — 1% bi-directional pile load tests", KSCE Journal of Civil Engineering, 2012 Crossref 8 docslide.net Internet 38 words — 1% 9 idoc.pub Internet 37 words — 1% 10 Kazem Fakharian, Nasrin Vafaei. "Effect of Density on 34 words — % Skin Friction Response of Piles Embedded in Sand by 1 Simple Shear Interface Tests", Canadian Geotechnical Journal, 2020 Crossref 11 journal.um-surabaya.ac.id Internet 30 words — 1% 12 H. Moayedi, R. Nazir, S. Ghareh, A. 27 words — % Sobhanmanesh, Yean-Chin Tan. "Performance < 1 Analysis of a Piled Raft Foundation System of Varying Pile Lengths in Controlling Angular Distortion", Soil Mechanics and Foundation Engineering, 2018 Crossref 13 Yunlong Liu, Sai K.
    [Show full text]
  • HASAN-DISSERTATION-2019.Pdf
    EVALUATION OF MODEL UNCERTAINTIES IN LRFD CALIBRATION PROCESS OF DRILLED SHAFT AXIAL DESIGN by Mohammad Rakib Hasan Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2019 Copyright © by Mohammad Rakib Hasan 2019 All Rights Reserved i This dissertation is dedicated to my parents for their constant support and motivation throughout my life. ii ACKNOWLEDGEMENTS At first, I would like to express my deepest gratitude and acknowledgement to my advisor Dr. Xinbao Yu for his endless guidance and encouragement during my doctoral research. I am thankful to him for providing me the opportunity of working under his supervision. This research would not come to fruition without his counseling. I also would like to thank my committee members Dr. Shahadat Hossain, Dr. Laureno Hoyos and Dr. Samantha Sabatino for their valuable comments, help and time. I am thankful to Dr. Xinbao Yu, Dr. Laureano Hoyos, Dr. Sahadat Hossain, Dr. Aera LeBoulluec, Dr. Dong-Jun Seo and Dr. Chein-Pai Han for fulfilling my experience at University of Texas at Arlington by sharing their knowledge during my course works required for the doctoral program. Finally, I would like to thank my parents, my siblings and my beloved wife for their endless love and encouragement which kept me motivated. None of these would happen without them. July 29, 2019 iii ABSTRACT OPTIMIZATION OF LRFD CALIBRATION OF DRILLED SHAFTS by Mohammad Rakib Hasan The University of Texas at Arlington, 2019 Supervising Professor: Xinbao Yu The Federal Highway Administration (FHWA) released a policy in 2000 that required all new federally funded bridges to be designed using the AASHTO LRFD specifications by October 2007.
    [Show full text]
  • Construction Licence Application
    T: +44 (0)1224 295579 E: [email protected] Marine Licence Application for Construction Projects Version 1.0 Marine (Scotland) Act 2010 Marine Scotland, 375 Victoria Road, Aberdeen, AB11 9DB http://www.gov.scot/Topics/marine/Licensing/marine Acronyms Please note the following acronyms referred to in this application form: BPEO Best Practicable Environmental Option EIA Environmental Impact Assessment ES Environmental Statement MHWS Mean High Water Springs MMO Marine Mammal Observer MPA Marine Protected Area MS-LOT Marine Scotland – Licensing Operations Team PAM Passive Acoustic Monitoring SAC Special Area of Conservation SNH Scottish Natural Heritage SPA Special Protection Area SSSI Site of Special Scientific Interest WGS84 World Geodetic System 1984 Explanatory Notes The following numbered paragraphs correspond to the questions on the application form and are intended to assist in completing the form. These explanatory notes are specific to this application and so you are advised to read these in conjunction with the Marine Scotland Guidance for Marine Licence Applicants document. 1. Applicant Details The person making the application who will be named as the licensee. 2. Agent Details Any person acting under contract (or other agreement) on behalf of any party listed as the applicant and having responsibility for the control, management or physical deposit or removal of any substance(s) or object(s). 3. Payment Indicate payment method. Cheques must be made payable to: The Scottish Government. Marine licence applications will not be accepted unless accompanied by a cheque for the correct application fee, or if an invoice is requested, until that invoice is settled. Target timelines for determining applications do not begin until the application fee is paid.
    [Show full text]
  • 395 Common-Mistakes in Static Loading-Test Procedures and Result
    1910 Fellenius, B.H. and Nguyen, B.N., 2019. Common mistakes in static loading-test procedures and result analyses. Geotechnical Engineering Journal of the SEAGS & AGSSEA, September 2019, 50(3) 20-31. Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 50 No. 3 September 2019 ISSN 0046-5828 Common Mistakes in Static Loading-test Procedures and Result Analyses Bengt H. Fellenius1 and Ba N. Nguyen2 1Consulting Engineer, Sidney, BC, Canada, V8L 2B9 2TW-Asia Consultants Co., Ltd., Hanoi office, Hanoi, Vietnam 1E-mail: [email protected] 2E-mail: [email protected] ABSTRACT. Static loading tests on piles are arranged in many different ways ranging from quick tests to slow test, from constant-rate-of- penetration to maintained load, from straight loading to cyclic loading, to mention just a few basic differences. Frequently, the testing schedule includes variations of the size of the load increments and duration of load-holding, and occasional unloading-reloading events. Unfortunately, instrumenting test piles and performing the test while still using unequal size of load increments, duration of load-holding, and adding unloading-reloading events will adversely affect the means for determine reliable results from the instrumentation records. A couple of case histories are presented to show issues arising from improper procedures involving unequal load increments, different load-holding durations, and unloading and reloading events—indeed, to demonstrate how not to do. The review has shown that an instrumented static loading test, be it a head-down test or a bidirectional test, performed, as it should, in a series of equal load increments, held constant for equal time, and incorporation no unloading-reloading event, will provide data more suitable for analysis than a test performed with unequal increments, unequal load-holding, and incorporating an unloading-reloading event.
    [Show full text]