Energy Usage of Personal Rapid Transit Systems Simulation of the Skycab Concept

Total Page:16

File Type:pdf, Size:1020Kb

Energy Usage of Personal Rapid Transit Systems Simulation of the Skycab Concept AnnualEnergy Report Usage 2011 of Personal Rapid Transit Systems Simulation of the SkyCab Concept School of Engineering Sciences Master of Science Thesis by Platzhalterfläche für Bildmotiv cand. ing. Alexander Vogel Prof. Mats Berg Prof. Eckehard Schnieder Dipl. Ing. Tamás Kurczveil TRITA-AVE 2015:11 ISSN 1651-7660 IVA Nr. 1433 BioingenieurwesenStrukturiertes Doktorat Matr. 4349156 March 2015 BachelorWorkshop-Programm und Master of Science KTH Royal Institute of Technology Technische Universität Braunschweig Department of Aeronautical and Institut für Verkehrssicherheit und Vehicle Engineering: Division of Rail Vehicles AutomatisierungstechnikWintersemester 2014/15 Sammanfattning Den globala situationen för person- och godstransporter visar att energianvändningen inom transportsektorn stadigt ökar och prognoser tyder på att den kommer att fördubblas till 2050. Den största ökningen förväntas ske i Asien där, Kina kommer att stå för över 12 % av den globala energianvändningen år 2050. Inom EU, Europeiska Unionen, stod personbilarna 2012 för över 81 % av passagerartransporterna räknat i antal passager- arkilometrar. Nya energieffektiva och miljövänliga transportlösningar behöver utvecklas. En lösning med spårtaxi kombinerar fördelarna med konventionella vägtransportsys- tem (flexibilitet, tillgänglighet och attraktivitet) och spårtransportsystem (säkerhet, ka- pacitet och miljövänlighet). I detta examensarbete undersöks energianvändningen för spårtaxi. Detta sker i form av en fallstudie. Spårtaxi är en automatiserad transporttjänst för direktresor utan väntetider (likt taxiservice) i ett nätverk med banor som kompletterar masstransportsystem. Fokus i studien ligger på att utvärdera fordonens energianvändning i drift. Målet är att identifiera relevanta parametrar som avgör energianvändningen samt deras bidrag till denna. Frågan om effektiv energianvändning besvaras med hjälp av en simuleringsmodell. Denna baseras på konceptet SkyCab och en bedömning av fordonets parametrar. En beräkning är utförd som utgör en referens för att sedan jämföras med 16 variationer av nyckelparametrar. Relationen till växhusgaser undersöks och utsläppen beräknas för olika elektricitetsblandningar. Ett andragradspolynom är framtaget för att beskriva fordonets gångmotstånd som inkluderar uppskattningar av vagnens rullmotstånd för små, pneumatiska däck på en raksträcka samt i doserade kurvor. Hjälpkraftens energianvändning uppskattas säsom motsvarande en liten elektrisk bil och är starkt beroende av passagerarnas komfortbehov och yttre (väder)förhållanden. Ett resultat är att rullmotståndet står för cirka 44 % av energianvändningen och hjälpkraften för 33 %. Båda är potentiella mål för effektivitetsförbättringar. Ändringar av accelerationsnivåer har liten betydelse för energianvändningen då det är en mindre del av energin som regenereras. En ökning av topphastigheten är ett effektivt sätt att minska restiden med förhållanderis liten ökning av energianvändningen. Förslag lämnas i studien hur man kan minska energianvändningen genom att förbättra fordonets och banans nyckelegenskaper. Keywords: Energianvändning, spårtaxi, fordon, bana, simulering, parametervari- ation, elektrisk framdrivning, förarlös, nätverk I II Abstract The global situation of personal and freight transport shows that the energy demand for transportation steadily increases, and prognoses indicate that the energy usage will double until 2050. The largest growth rates are expected in Asia, and China in particular will account for over 12 % of global transport energy usage in 2050. Over 81 % of passenger transport in passenger kilometre was produced by passenger cars in 2012 in the European Union, and new energy efficient and environmental friendly solutions have to be developed. PRT (Personal Rapid Transit) systems combine the benefits of traditional road systems (flexibility, accessibility, attractiveness) and rail systems (safety, capacity, environmental friendliness). This MSc thesis investigates a concept by SkyCab AB as a case study, which offers an automated, non-stop and on-demand transportation service in a dedicated network and is supposed to fill a gap between personal cars and public transport. The focus is put on the energy usage of the vehicles in the operational phase. The objective is to identify the relevant parameters that determine the energy usage and their contributions. This request is addressed by setting up a simulation model, based on the SkyCab concept and estimations of vehicle parameters. A reference calculation and 16 variations of key parameters are conducted. The relation to greenhouse gas emissions is investigated and emissions are calculated for different electricity mixes. A second-order polynomial of running resistance for the vehicle is determined, includ- ing estimations of rolling resistance of small pneumatic tyres on straight track and in superelevated curves. The auxiliary power is estimated for the SkyCab vehicle on basis of a small electric passenger car. For the reference case the energy for rolling resistance is approx. 44 % of the energy usage, and auxiliary energy contributes by 33 %. Both offer potential for efficiency im- provement. The auxiliary power is strongly dependent on the passengers’ comfort needs and the ambient conditions. Changes of acceleration rates have low impact on the energy usage, since a smaller proportion of energy is regenerated. An increase in top speed is a sufficient measure to reduce trip time with comparably low increase in energy usage. Finally, suggestions are proposed to reduce the energy usage by improving key properties of the vehicle and guideway. Keywords: Energy usage, Personal Rapid Transit, tracked taxi, vehicle, guideway, sim- ulation, parameter variation, electric propulsion, autonomous, network III IV Zusammenfassung Der weltweite Energiebedarf des Personen- und Gütertransports zeigt einen kontinuier- lichen Anstieg, und der Ausblick bis 2050 zeigt eine Verdopplung des gesamten Ener- giebedarfs. Die größten Zuwachsraten werden in Asien erwartet, und insbesondere China allein wird in 2050 über 12 % des weltweiten Energiebedarfs verzeichnen. Über 81 % aller Personenkilometer in der Europäischen Union in 2012 wurden mit dem persönlichen Auto- mobil durchgeführt, und ein Bedarf für energieeffiziente und umweltfreundliche Transport- möglichkeiten wird deutlich. PRT (Personal Rapid Transit) Systeme vereinen die Vorzüge von traditionellen straßenge- bundenen Transportsystemen (Flexibilität, Zugänglichkeit, Attraktivität) und Schien- ensystemen (Sicherheit, Kapazität, Umweltfreundlichkeit). Diese MSc Thesis untersucht das Transportkonzept von SkyCab AB als Fallstudie. Es bietet einen automatisierten, un- unterbrochenen und bedarfsgesteuerten Transportdienst auf einem exklusiven Netzwerk und soll so die Lücke zwischen dem persönlichen Automobil und öffentlichen Transport- mitteln schließen. Der Fokus wird dabei auf den Energieverbrauch des Fahrzeugs in der operativen Phase gelegt. Die Zielsetzung besteht in der Identifizierung und Quantifizierung der relevanten Para- meter, die den Energieverbrauch bestimmen. Zu diesem Zweck wird ein Simulationsmodell konfiguriert welches auf dem Konzept von SkyCab basiert und zusätzlich Abschätzungen von Fahrzeugparametern enthält. Eine Referenzberechnung und 16 Parametervariationen werden durchgeführt. Der Bezug zur Emission von Treibhausgasen wird für verschiedene Energiemixe hergestellt. Das Polynom zweiter Ordnung für den Fahrwiderstand wird aufgestellt, wobei Abschätzun- gen bezüglich des Rollwiderstands kleiner pneumatischer Reifen auf gerader Strecke und in überhöhten Kurven berücksichtigt werden. Die Zusatzleistung für das Konzeptfahrzeug wird auf Basis eines kleinen rein elektrischen Fahrzeugs abgeschätzt. Der Energieverbrauch in der Referenzsimulation für den Rollwiderstand beträgt ca. 44 % des Gesamtenergieverbrauchs, und die Zusatzenergie beläuft sich auf ca. 33 %. Beide Anteile bieten Potential zur Optimierung, und die Zusatzenergie ist stark abhängig von den Komfortbedürfnissen der Passagiere und den Umgebungsbedingungen. Variationen der Beschleunigungs- und Bremsraten haben einen geringen Einfluss auf den Energiever- brauch, da gleichzeitig ein kleinerer Anteil regeneriert wird. Eine Zunahme der Höchst- geschwindigkeit wirkt sich durch mehr regenerierte Energie vergleichsweise gering auf den bezogenen Energieverbrauch aus, reduziert jedoch die Fahrzeit merklich. Abschließend werden Potentiale von Schlüsselparametern zur Reduktion des Energieverbrauchs des Fahrzeugs und der Fahrbahn aufgedeckt. Keywords: Energieverbrauch, Personal Rapid Transit, Fahrzeug, Simulation, Para- meter, Variation, autonom, elektrischer Antrieb, Netzwerk V VI Preface This MSc thesis is the final part of my studies on Mechanical Engineering. It was carried out at the Department of Aeronautical and Vehicle Engineering in the Division of Rail Vehicles at KTH Royal Institute of Technology in Stockholm. The supervision in Germany was provided by the Institute for Traffic Safety and Automation Engineering (IVA) at Technische Universität Braunschweig. I would like to thank my supervisor at KTH, Mats Berg, for giving me the opportunity and for his support and constructive criticism throughout all phases of this thesis. In the same way I would like to thank my supervisors Eckehard Schnieder and Tamás Kurczveil at IVA for their guidance and their trust in me. I am thankful for the proposition of the thesis by Åke Åredal from SkyCab AB and his encouragement and interest in my work. I am very grateful for the help of Sebastian
Recommended publications
  • 1. What Is Uptis and What Advantages Does It Offer?
    Frequently Asked Questions 1. What is Uptis and what advantages does it offer? Uptis (acronym standing for “Unique Puncture-proof Tire System”) is an assembled airless wheel structure. Uptis has been made possible through Michelin’s mastery and expertise with tire mechanics and high-tech materials. It also represents an evolution of Michelin’s expertise in TWEEL technology. Uptis can be thought of as the first in a new generation of airless solutions. This technology for passenger vehicles offers a number of advantages: ▪ Car drivers feel safer and more secure on the road due to the reduced risk of flat tires and other air loss failures that result from punctures or road hazards. ▪ Fleet owners and professional vehicle drivers optimize their business productivity (no downtime from flats, near-zero levels of maintenance). ▪ Raw material use is reduced, which in turn reduces waste. 2. Why do car drivers feel more at ease with Uptis? Uptis is designed to be impervious to traditional tire failures due to air loss. It does not use compressed air. It therefore eliminates the need for regular inflation pressure maintenance. 3. What is the strategy behind Uptis? Uptis represents Michelin’s vision for the future of mobility. Michelin illustrated its vision of sustainable mobility through the Vision concept1, which the Group unveiled at the Movin’On World Summit on Sustainable Mobility in 2017. Uptis shows how Michelin is adhering to its roadmap for research and development, which comprises these four main pillars of innovation: Airless, Connected, 3D-printed and 100% Sustainable (i.e., renewable or bio-sourced materials).
    [Show full text]
  • Prestone Ebook Winter Driving 3
    A Prestone ebook: WINTER DRIVING Of all the seasons, winter creates the most challenging driving conditions, and can be extremely tough on your car. Treacherous weather coupled with dark evenings can make driving hazardous, so it’s vital you ready yourself and your car before the season takes hold. From heavy rain to ice and snow, winter will throw all sorts of extreme weather your way — so it’s best to be prepared. By checking the condition of your car and changing your driving style to adapt to the hazardous conditions, you can keep driving no matter how extreme the weather becomes. To help you stay safe behind the wheel this season, here’s an in-depth guide on the dos and don’ts of winter driving. From checking your vehicle’s coolant/antifreeze to driving in thick fog, heavy rain and high winds — this guide is packed with tips and advice on driving in even the most extreme winter weather. PREPARING YOUR VEHICLE FOR WINTER DRIVING Keeping your car in a good, well maintained condition is important throughout the year, but especially so in winter. At a time when extreme weather can strike at any moment, your car needs to be prepared and ready for the worst. The following checks will help to make sure your car is ready for even the toughest winter conditions. COOLANT / ANTIFREEZE Whatever the weather, your car needs coolant/antifreeze all year round to make sure the engine doesn’t overheat or freeze up. By adding a quality coolant/antifreeze to your engine, it’ll be protected in all extremes — from -37°C to 129°C and you’ll also be protected against corrosion.
    [Show full text]
  • The Parliament of the Commonwealth of Australia Tyre Safety Report Op the House of Representatives Standing Committee on Road Sa
    THE PARLIAMENT OF THE COMMONWEALTH OF AUSTRALIA TYRE SAFETY REPORT OP THE HOUSE OF REPRESENTATIVES STANDING COMMITTEE ON ROAD SAFETY JUNE 1980 AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA 1980 © Commonwealth of Australia 1980 ISBN 0 642 04871 1 Printed by C. I THOMPSON, Commonwealth Govenimeat Printer, Canberra MEMBERSHIP OF THE COMMITTEE IN THE THIRTY-FIRST PARLIAMENT Chairman The Hon. R.C. Katter, M.P, Deputy Chai rman The Hon. C.K. Jones, M.P. Members Mr J.M. Bradfield, M.P. Mr B.J. Goodluck, M.P. Mr B.C. Humphreys, M.P. Mr P.F. Johnson, M.P. Mr P.F. Morris, M.P. Mr J.R. Porter, M.P. Clerk to the Committee Mr W. Mutton* Advisers to the Committee Mr L. Austin Mr M. Rice Dr P. Sweatman Mr Mutton replaced Mr F.R. Hinkley as Clerk to the Committee on 7 January 1980. (iii) CONTENTS Chapter Page Major Conclusions and Recommendations ix Abbreviations xvi i Introduction ixx 1 TYRES 1 The Tyre Market 1 -Manufacturers 1 Passenger Car Tyres 1 Motorcycle Tyres 2 - Truck and Bus Tyres 2 ReconditionedTyi.es 2 Types of Tyres 3 -Tyre Construction 3 -Tread Patterns 5 Reconditioned Tyres 5 The Manufacturing Process 7 2 TYRE STANDARDS 9 Design Rules for New Passenger Car Tyres 9 Existing Design Rules 9 High Speed Performance Test 10 Tests under Conditions of Abuse 11 Side Forces 11 Tyre Sizes and Dimensions 12 -Non-uniformity 14 Date of Manufacture 14 Safety Rims for New Passenger Cars 15 Temporary Spare Tyres 16 Replacement Passenger Car Tyres 17 Draft Regulations 19 Retreaded Passenger Car Tyres 20 Tyre Industry and Vehicle Industry Standards 20
    [Show full text]
  • RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE and OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 1-1-2009 RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected] Follow this and additional works at: http://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Please take our one minute survey! Recommended Citation Powell, Robert, "RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS" (2009). All Theses. Paper 743. This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Robert A. Powell December 2009 Accepted by: Dr. E. Harry Law, Committee Co-Chair Dr. Beshahwired Ayalew, Committee Co-Chair Dr. John Ziegert Abstract This work deals with the question of relating open-loop handling metrics to driver- in-the-loop performance (closed-loop). The goal is to allow manufacturers to reduce cost and time associated with vehicle handling development. A vehicle model was built in the CarSim environment using kinematics and compliance, geometrical, and flat track tire data. This model was then compared and validated to testing done at Michelin’s Laurens Proving Grounds using open-loop handling metrics. The open-loop tests conducted for model vali- dation were an understeer test and swept sine or random steer test.
    [Show full text]
  • MICHELIN® X® TWEEL Warranty Overview
    MICHELIN® TWEEL® Airless radial tire Warranty Guide Contents MICHELIN® Tweel® Tire Warranty Overview ............................................................................. 3–4 Common Warranty Specifi cations ...............................................................................................5 Parts of a Tweel® Airless Radial Tire .............................................................................................5 Examination Tools .......................................................................................................................6 MICHELIN® X® TWEEL® SSL AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® SSL Tires .............................................................6 MICHELIN® X® Tweel® SSL Tire Torque Specs and Retreading .......................................................7 Tweel® SSL Tire Warranty vs. Wear Guide ..............................................................................8–12 MICHELIN® X® TWEEL® TURF AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® Turf Tires ...........................................................13 Tweel® Turf Tire Proper Installation Instructions ..........................................................................13 Tweel® Turf Tire Warranty vs. Wear Guide ........................................................................... 14–17 MICHELIN® X® TWEEL® CASTERS Technical Specifi cations: MICHELIN® X® Tweel® Casters..............................................................17 Tweel® Caster Warranty
    [Show full text]
  • Automotive Engineering II Lateral Vehicle Dynamics
    INSTITUT FÜR KRAFTFAHRWESEN AACHEN Univ.-Prof. Dr.-Ing. Henning Wallentowitz Henning Wallentowitz Automotive Engineering II Lateral Vehicle Dynamics Steering Axle Design Editor Prof. Dr.-Ing. Henning Wallentowitz InstitutFürKraftfahrwesen Aachen (ika) RWTH Aachen Steinbachstraße7,D-52074 Aachen - Germany Telephone (0241) 80-25 600 Fax (0241) 80 22-147 e-mail [email protected] internet htto://www.ika.rwth-aachen.de Editorial Staff Dipl.-Ing. Florian Fuhr Dipl.-Ing. Ingo Albers Telephone (0241) 80-25 646, 80-25 612 4th Edition, Aachen, February 2004 Printed by VervielfältigungsstellederHochschule Reproduction, photocopying and electronic processing or translation is prohibited c ika 5zb0499.cdr-pdf Contents 1 Contents 2 Lateral Dynamics (Driving Stability) .................................................................................4 2.1 Demands on Vehicle Behavior ...................................................................................4 2.2 Tires ...........................................................................................................................7 2.2.1 Demands on Tires ..................................................................................................7 2.2.2 Tire Design .............................................................................................................8 2.2.2.1 Bias Ply Tires.................................................................................................11 2.2.2.2 Radial Tires ...................................................................................................12
    [Show full text]
  • Winter Driving Safety Tailgate Meeting Guides
    Winter Driving Safety Tailgate Meeting Guide Prepare your vehicle for winter 2. Give your vehicle a check-up. You may know how to drive for winter conditions – • Before each trip, do a ‘circle check’ (walk around your braking in snow, handling a skid, and more. But what if vehicle to inspect its overall condition). your vehicle does not respond? A winter-ready vehicle is • Review your vehicle’s maintenance record. Take it in just as important as good driving skills. for repair if needed and report any concerns to the Motor vehicle crashes are a leading cause of workplace company. deaths in British Columbia. On average, the number of • Make sure the battery, brakes, lights, fuses, cooling/ crashes where someone is injured or killed on BC roads heating systems, exhaust/electrical systems, belts due to driving too fast for the conditions almost doubles and hoses are in good shape. from nearly 121 in October to over 234 in December.* • Keep the gas tank full to avoid condensation in the A winter-ready vehicle allows you to better handle winter tank which can cause fuel lines to freeze. conditions. Here’s what to do: 3. Equip your vehicle with a winter 1. Install four matched winter tires with the survival kit. winter tire logo. Recommended items are an approved high-visibility • Winter tires provide better traction in cold weather vest, non-perishable food, blankets, first aid supplies, (7 degrees Celsius or less). When the temperature windshield scraper, snow brush, spare tire, wheel wrench dips below 7 degrees, the rubber in all-season tires & jack, shovel & traction mat, sand or kitty litter, fuel begins to harden.
    [Show full text]
  • FOCUS on TYRES PASSENGER CAR TYRES Table of Contents
    FOCUS ON TYRES PASSENGER CAR TYRES Table of contents Signs of wear Information about tyres and damage 1 and wheels 2 Wear on both shoulders 4 Tyre structure 20 Wear in the centre of the tread 5 Markings on the sidewall of the tyre 21 Foreign object puncture in tread 6 Tread depth 22 Sidewall wear or damage 7 Tyre life, rolling resistance and fuel consumption 23 Totally broken tyre 8 Maximum speed (speed limit symbol) 24 Bulge or deformation in sidewall 9 Maximum load capacity (load index 25 Saw-tooth wear (cupping) 10 or load capacity code) Uneven wear 11 Tyres and legal requirements (general) 26 Toe wear 12 Tyres and legal requirements (tyre label) 27 Camber wear 13 Run-flat tyres 28 Brake mark 14 TPMS (Tyre Pressure Monitoring System) 29 Age-related cracks 15 Summer, All-season and Winter tyres 30 Steering complaint: The car or steering wheel shakes 16 Steering complaint: car pulls to one side 17 DISCLAIMER: Although this brochure was produced with due care, those involved in its production accept no liability whatsoever for any incomplete- ness or inaccuracy in this publication. 2 Signs of wear and damage 1 Wear on both tread shoulders situation possible cause advice The wear on the shoulders is greater than in the 1. Driving with underinflated tyres due to: 1. Find the cause and: centre of the tread (round wear). Low-section tyres a. negligence a. inform the driver are more prone to this wear pattern. b. punctured tyre b. depending on the leak: repair or c. leaking valve replace the tyre d.
    [Show full text]
  • English Layout
    what size tire to choose tires The following information is required when choosing the correct tire: • Size • Load Index • Speed Rating everything youneedtoknowabout tires You can find this information for the vehicle's original tires in your Owner's Manual. When looking at an actual tire, you can find similar information moulded into the sidewall. Choosing tires that provide the best safety and value for your driving conditions is a big decision. In choosing wisely, you what do these numbers should take into account your average annual kilometres driven, and letters represent? Typical sidewall marking: and how often you drive in rough conditions: rain, snow, dirt 185/60R15 82H or gravel roads, busy highways, and crowded city streets. The following should help you better understand some of the 185 width of tire: Expressed in millimetres. key points to consider when choosing tires. Speak to your Service Note: Some size designations may be preceded by a “P” for P-Metric Passenger Tire or by “LT” for Light Truck Advisor regarding the tires that are best for you. 60 aspect ratio: everything you need to know about tires The ratio of the tire’s height to its width expressed as a percentage. R Stands for “Radial” construction. 15 diameter of the wheel: The diameter on which the tire will fit expressed in inches. when to what tire buy tires to choose Regularly inspecting your tires will help determine all season tires when they should be replaced. Here is a list • All-around good performance in a wide variety of conditions of warning signs that your tires may need • Softer construction, longer tread life and quieter ride than replacement.
    [Show full text]
  • Final Report
    Final Report Reinventing the Wheel Formula SAE Student Chapter California Polytechnic State University, San Luis Obispo 2018 Patrick Kragen [email protected] Ahmed Shorab [email protected] Adam Menashe [email protected] Esther Unti [email protected] CONTENTS Introduction ................................................................................................................................ 1 Background – Tire Choice .......................................................................................................... 1 Tire Grip ................................................................................................................................. 1 Mass and Inertia ..................................................................................................................... 3 Transient Response ............................................................................................................... 4 Requirements – Tire Choice ....................................................................................................... 4 Performance ........................................................................................................................... 5 Cost ........................................................................................................................................ 5 Operating Temperature .......................................................................................................... 6 Tire Evaluation ..........................................................................................................................
    [Show full text]
  • European Tyre and Rim Technical Organisation RETREADED TYRES
    European Tyre and Rim Technical Organisation RETREADED TYRES IMPACT OF CASING AND RETREADING PROCESS ON RETREADED TYRES LABELLED PERFORMANCES European Tyre and Rim Technical Organisation Content 1. Executive summary ........................................................................................................................... 4 2. Retreaded tyres: reminder of concept, definition and vocabulary ....................................................... 5 3. Impact of casing on retreaded tyre rolling resistance ......................................................................... 6 3.1. Results summary........................................................................................................................ 6 3.2. Design of Experiment description ............................................................................................... 6 3.3. Detailed results .......................................................................................................................... 6 3.3.1. Global casing impact ........................................................................................................... 6 3.3.2. Impact of casing brand ........................................................................................................ 9 3.3.3. Impact of casing unit ........................................................................................................... 9 3.3.4. Impact of casing age ........................................................................................................
    [Show full text]
  • Study on the Stability Control of Vehicle Tire Blowout Based on Run-Flat Tire
    Article Study on the Stability Control of Vehicle Tire Blowout Based on Run-Flat Tire Xingyu Wang 1 , Liguo Zang 1,*, Zhi Wang 1, Fen Lin 2 and Zhendong Zhao 1 1 Nanjing Institute of Technology, School of Automobile and Rail Transportation, Nanjing 211167, China; [email protected] (X.W.); [email protected] (Z.W.); [email protected] (Z.Z.) 2 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; fl[email protected] * Correspondence: [email protected] Abstract: In order to study the stability of a vehicle with inserts supporting run-flat tires after blowout, a run-flat tire model suitable for the conditions of a blowout tire was established. The unsteady nonlinear tire foundation model was constructed using Simulink, and the model was modified according to the discrete curve of tire mechanical properties under steady conditions. The improved tire blowout model was imported into the Carsim vehicle model to complete the construction of the co-simulation platform. CarSim was used to simulate the tire blowout of front and rear wheels under straight driving condition, and the control strategy of differential braking was adopted. The results show that the improved run-flat tire model can be applied to tire blowout simulation, and the performance of inserts supporting run-flat tires is superior to that of normal tires after tire blowout. This study has reference significance for run-flat tire performance optimization. Keywords: run-flat tire; tire blowout; nonlinear; modified model Citation: Wang, X.; Zang, L.; Wang, Z.; Lin, F.; Zhao, Z.
    [Show full text]