Loss of AF6/Afadin, a Marker of Poor Outcome in Breast Cancer, Induces Cell Migration, Invasiveness and Tumor Growth

Total Page:16

File Type:pdf, Size:1020Kb

Loss of AF6/Afadin, a Marker of Poor Outcome in Breast Cancer, Induces Cell Migration, Invasiveness and Tumor Growth Oncogene (2011) 30, 3862–3874 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Loss of AF6/afadin, a marker of poor outcome in breast cancer, induces cell migration, invasiveness and tumor growth G Fournier1,4,5, O Cabaud1,4,5, E Josselin1,4,5, A Chaix2,4,5, J Ade´laı¨de4,5, D Isnardon4,5, A Restouin3,4,5, R Castellano3,4,5, P Dubreuil2,4,5, M Chaffanet1,4,5, D Birnbaum1 and M Lopez1,4,5 1Inserm, UMR 891, Laboratoire d’oncologie mole´culaire, CRCM, Marseille, France; 2Inserm, UMR 891, Laboratoire d’he´matopoı¨e`se fonctionnelle et mole´culaire, CRCM, Marseille, France; 3Inserm, UMR 891, Plateforme TrGET essais pre´-cliniques, CRCM, Marseille, France; 4Institut Paoli-Calmettes, Marseille, France and 5Univ. Me´diterrane´e, Marseille, France Afadin/AF6, an F-actin-binding protein, is ubiquitously leading to improvement of classification and prognosis expressed in epithelia and has a key role during develop- (Sorlie et al., 2001). Despite this, adverse evolution can ment, through its regulatory role in cell–cell junction still be observed for patients with apparent good organization. Afadin loss of expression in 15% of breast prognosis at diagnosis and vice versa. New molecular carcinoma is associated with adverse prognosis and markers that help define prognosis are needed. We increased risk of metastatic relapse. To determine the previously showed that afadin expression is lost in 15% role of afadin in breast cancer, we studied the functional of breast cancer irrespective of the molecular subtype consequences of afadin protein extinction using in vitro (Letessier et al., 2007). We further found that afadin is and in vivo models. Three different breast cancer cell lines an independent adverse prognosis factor for patients representative of the major molecular subtypes were without axillary lymph node invasion. Absence of afadin stably repressed for afadin expression (knockdown of expression in tumors correlates with reduced 5-year afadin (afadin KD)) using RNA interference. Collective metastasis-free survival (MFS). and individual migrations as well as Matrigel invasion The MLLT4 gene encoding afadin is located on were markedly increased in afadin KD cells. Heregulin-b1 chromosome 6 band q27 (Saha et al., 1995). No paralog (HRG-b1)-induced migration and invasion were increased gene exists in mammals. Loss of afadin expression in by twofold in afadin KD cells. Conversely, ectopic breast tumors correlates with break at the FRA6E expression of afadin in the afadin-negative T47D cell line common fragile site located at 6q26 (Letessier et al., inhibited spontaneous and HRG-b1-induced migrations. 2007). Afadin is a multidomain F-actin-binding protein RAS/MAPK and SRC kinase pathways were activated in expressed in almost all epithelial tissues, and in a variety afadin KD cells. Activation levels positively correlated of other cell types including neurons, fibroblasts, with migration and invasion strength. Use of MEK1/2 endothelial and epithelial cells (Mandai et al., 1997; (U0126) and SRC kinases (SU6656) inhibitors reduced Takai et al., 2008). From the N- to C-terminus, the long afadin-dependent migration and invasion. Afadin extinc- isoform of afadin comprises two RAS/RAP1 binding, a tion in the SK-BR-3 cell line markedly accelerated tumor Forkhead, a Dilute, a PDZ and an actin-binding growth development in mouse mammary gland and lung domains (Hofmann and Bucher, 1995; Ponting, 1995; metastasis formation. These results may explain why the Mandai et al., 1997; Linnemann et al., 1999; Yamamoto loss of afadin expression in tumors correlates with high et al., 1999). The short isoform lacks the actin-binding tumor size and poor metastasis-free survival in patients. domain (Saito et al., 1998). Afadin role is complex, and Oncogene (2011) 30, 3862–3874; doi:10.1038/onc.2011.106; still not precisely known. Afadin interacts with various published online 11 April 2011 proteins (receptor tyrosine kinases, cell adhesion mole- cules, cytoskeletal components, regulatory and signaling Keywords: afadin; breast cancer; migration; invasion; molecules). Studies of afadin have been carried out in tumorigenicity; SRC and MAPK different species, at different developmental stages and in different cellular models in vitro. In mouse, afadin knockout results in embryonic lethality with defects starting at gastrulation. This includes disorganization of Introduction the ectoderm, impaired migration of the mesoderm and loss of somites (Ikeda et al., 1999; Zhadanov et al., Breast cancer is a heterogeneous disease. Different 1999). In Drosophila, afadin homolog Canoe (Cno) molecular subtypes of breast tumors have been defined, (Miyamoto et al., 1995) is essential during morphogen- esis to maintain adherens junctions by connecting adherens junctions to actin (Sawyer et al., 2009). Correspondence: Dr M Lopez, Laboratoire d’oncologie mole´culaire, However, in contrast to mammals, Cno is dispen- UMR891 Inserm, 27 Bd Leı¨Roure, 13009 Marseille, France. E-mail: [email protected] sable for cadherin–catenin-based adherens junctions Received 3 September 2010; revised and accepted 15 February 2011; assembly and establishment of cell polarity in the fly published online 11 April 2011 (Sawyer et al., 2009). Cno contributes to regulate signal Afadin loss in breast cancer and tumorigenicity G Fournier et al 3863 transduction during morphogenesis and genetically interacts with RAS, JNK, NOTCH and WNT pathways (Miyamoto et al., 1995; Takahashi et al., 1998; Matsuo et al., 1999; Boettner et al., 2003; Carmena et al., 2006). Cno regulates cell shape changes during dorsal closure, asymmetric divisions and cell fate choice (Takahashi et al., 1998; Carmena et al., 2006; Speicher et al., 2008). The precise mechanisms that support afadin and Cno function are still obscure, but the data have assigned a role for afadin in cell–cell adhesion and/or in the regulation of signal transduction. Afadin has also been described as a regulator of integrin-mediated cell adhe- sion (Su et al., 2003). More recently, afadin has been described as a regulator of cell migration. However, afadin contribution as positive or negative regulator of migration is still largely controversial (Lorger and Figure 1 (a) Afadin knockdown in breast tumor cell lines was Moelling, 2006; Miyata et al., 2009; Severson et al., obtained by stable RNAi strategy. SK-BR-3, MCF7 and MDA- 2009). The role of afadin in oncogenesis has been docu- MB-231 cell lines were tested by western blot using two different monoclonal antibodies. Top: the anti-AF6 (BD) directed against mented in some acute lymphoid and myeloid leukemias. the PDZ domain of afadin. Bottom: the anti-AF6 (HBT) directed The MLLT4 gene is a fusion partner of the mixed against the last C-terminus amino-acid residues present in the long lineage leukemia gene MLL (Prasad et al., 1993). Self- isoform. Both antibodies were used at a concentration of 1 mg/ml, association of afadin activates the oncogenic potential gave similar pattern and revealed the 220-kDa long isoform of afadin. (À): miRNA LacZ control vector; ( þ ): miRNA afadin of MLL–afadin fusion protein (Liedtke et al., 2010). vector. The P85 regulatory subunit of phosphoinositide-3 kinase To determine the functional consequences of afadin was used as loading charge control. (b) Afadin knockdown using loss of expression in breast cancer physiopathology, we three different miRNA afadin vectors (1, 2 and 3) gave variable studied in vitro and in vivo models. We inhibited afadin levels of inhibition compared with the miRNA LacZ control vector expression in breast tumor cells expressing afadin using (4). Afadin extinction level in cell population was controlled to be homogenous based on GFP signal, and immunofluorescence RNA interference (RNAi). We demonstrated that stable studies using anti-afadin antibody (data not shown). knockdown of afadin (afadin KD) expression led to a marked increase in collective and individual cell migra- tions, as well as invasion. In afadin KD cells, increased the F-actin-binding domain and a 190-kDa isoform migration and invasion were concomitant and depen- missing the F-actin-binding domain (Mandai et al., dent of the activation of the RAS/MAPK and SRC 1997). The latter is usually less frequently expressed than kinase pathways. In vivo, afadin extinction led to the former. Because functional differences have been accelerated tumor growth development in mouse mam- reported between these two isoforms (Buchert et al., mary gland and lung metastasis formation. Our results 2007) we first characterized the isoforms of our cellular assigned afadin as a new breast cancer biomarker models. We used two different antibodies. One was involved in tumor progression. directed against the C-terminus F-actin-binding domain and thus specific for the 220-kDa isoform. The other, directed against the PDZ domain, recognized both Results isoforms. Both antibodies revealed a major band at 220 kDa, suggesting that the 220-kDa isoform is Afadin knockdown using miRNA sequences prominently expressed in the three cell lines To analyze the functional consequences of afadin loss of (Figure 1a). The knockdown expression of afadin in expression, we used an RNAi strategy. This was done the three cell lines was equally detected by both using an expression vector that enables the expression of antibodies. This ascertained the specificity of the engineered microRNA (miRNA) sequences and Emer- engineered miRNA vectors and the two antibodies ald GFP (EmGFP) as reporter (Letessier et al., 2007). (Figure 1a). Afadin knockdown efficiency was quanti- Three different afadin miRNA sequences were designed fied for the three different miRNAs in the three cell and cloned in this vector. These miRNA sequences were lines. Residual expression of afadin after knockdown located at positions 2515 (AF6-1), 3481 (AF6-2) and ranged from 12 to 38% for MCF7, from 0.5 to 37% for 4088 (AF6-3) in the afadin cDNA sequences. Valida- SK-BR-3 and from 33 to 67% for MDA-MB-231 tions of the respective vectors were done in Cos cells (Figure 1b).
Recommended publications
  • Gene Section Short Communication
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST -CNRS Gene Section Short Communication SSX2IP (synovial sarcoma, X breakpoint 2 interacting protein) Ghazala Khan, Barbara Guinn University of Bedfordshire, Division of Science, Park Square, Luton, Bedfordshire, UK (GK), University of Bedfordshire, Division of Science, Park Square, Luton, Bedfordshire, UK; Cancer Sciences Unit, University of Southampton, Southampton, UK; Department of Haematological Medicine, Kings College, London, UK (BG) Published in Atlas Database: March 2012 Online updated version : http://AtlasGeneticsOncology.org/Genes/SSX2IPID42407ch1p22.html DOI: 10.4267/2042/47489 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology exons however the first one is not translated (de Bruijn Identity et al., 2002). Other names: ADIP Transcription HGNC (Hugo): SSX2IP The gene contains 33 introns. 18 different mRNAs are Location: 1p22.3 produced; 17 spliced and 1 un-spliced form (Thierry- Note Mieg and Thierry-Mieg, 2006). SSX2IP gene encodes the protein SSX2IP which Pseudogene interacts with the cancer-testis antigen SSX2. It is A pseudogene of this gene is found on chromosome 3 thought that SSX2IP regulates the function of SSX2 in (provided by RefSeq, Oct 2009 from Entrez Gene). the testes and malignant cells. The rodent equivalent is known as afadin DIL domain-interacting protein (ADIP) and the chicken orthologue is called clock- Protein controlled gene (LCG) (Breslin et al., 2007). Note SSX2IP was discovered due to its interaction with DNA/RNA SSX2 in a yeast two-hybrid system and believed to regulate the function of SSX2 in the testes and Note malignant cells (de Bruijn et al., 2002).
    [Show full text]
  • Epha2 Proteomics in Human Keratinocytes Reveals a Novel Association with Afadin and Epidermal Tight Junctions Bethany E
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 111-118 doi:10.1242/jcs.188169 SPECIAL ISSUE: 3D CELL BIOLOGY SHORT REPORT EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions Bethany E. Perez White1, Rosa Ventrella1, Nihal Kaplan1, Calvin J. Cable1, Paul M. Thomas2,3 and Spiro Getsios1,4,*,‡ ABSTRACT EphA2 increased susceptibility to chemically-induced skin EphA2 is a receptor tyrosine kinase that helps to maintain epidermal carcinogenesis (Guo et al., 2006), whereas ephrin-targeting of tissue homeostasis. A proximity-dependent biotin identification (BioID) EphA2 enhanced keratinocyte adhesion and differentiation (Lin approach was used to identify proteins in close proximity to EphA2 et al., 2010; Walsh and Blumenberg, 2011). EphA2 can positively within primary human keratinocytes and three-dimensional (3D) or negatively regulate intercellular junctions, including tight reconstituted human epidermis (RHE) cultures to map a putative junctions (Zhou et al., 2011; Tanaka et al., 2005; Larson et al., protein interaction network for this membrane receptor that exhibits a 2008; Miao et al., 2014; Miura et al., 2009) that contribute to skin polarized distribution in stratified epithelia. Although a subset of known barrier function (Niessen, 2007). Importantly, EphA2 is expressed EphA2 interactors were identified in the BioID screen, >97% were in a differentiation-dependent, polarized manner within human uniquely detected in keratinocytes with over 50% of these vicinal epidermis (Fig. 1A). proteins only present in 3D human epidermal culture. Afadin (AFDN), a We adapted the method of unbiased, proximity-dependent biotin cytoskeletal and junction-associated protein, was present in 2D and 3D identification (BioID) (Roux et al., 2012) to identify near neighbors keratinocyte cultures, and validated as a so-far-unknown EphA2- of EphA2 in normal human epidermal keratinocytes (NHEKs) 2+ interacting protein.
    [Show full text]
  • Afadin, a Ras/Rap Effector That Controls Cadherin Function, Promotes Spine and Excitatory Synapse Density in the Hippocampus
    The Journal of Neuroscience, January 4, 2012 • 32(1):99–110 • 99 Development/Plasticity/Repair Afadin, A Ras/Rap Effector That Controls Cadherin Function, Promotes Spine and Excitatory Synapse Density in the Hippocampus Gerard M. J. Beaudoin III,1 Claude M. Schofield,2* Tulip Nuwal,3* Keling Zang,1 Erik M. Ullian,1,2† Bo Huang,3† and Louis F. Reichardt1,4 Departments of 1Physiology, 2Opthamology, 3Pharmaceutical Chemistry, and 4Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158 Many molecules regulate synaptogenesis, but intracellular signaling pathways required for their functions are poorly understood. Afadin is a Rap-regulated, actin-binding protein that promotes cadherin complex assembly as well as binding many other cell adhesion mole- cules and receptors. To examine its role in mediating synaptogenesis, we deleted afadin (mllt1), using a conditional allele, in postmitotic hippocampal neurons. Consistent with its role in promoting cadherin recruitment, afadin deletion resulted in 70% fewer and less intense N-cadherin puncta with similar reductions of ␤-catenin and ␣N-catenin puncta densities and 35% reduction in EphB2 puncta density. Its absence also resulted in 40% decreases in spine and excitatory synapse densities in the stratum radiatum of CA1, as determined by morphology, apposition of presynaptic and postsynaptic markers, and synaptic transmission. The remaining synapses appeared to function normally. Thus, afadin is a key intracellular signaling molecule for cadherin recruitment and is necessary for spine and synapse formation in vivo. Introduction 2007). In Drosophila, absence of N-cadherin prevents normal Synapses are formed at contacts between neurons as a result of synapse formation between photoreceptor axons and their tar- intercellular interactions that result in stepwise assembly of syn- gets (Clandinin and Feldheim, 2009).
    [Show full text]
  • Rap1 Acts Via Multiple Mechanisms to Position Canoe/Afadin and Adherens Junctions and Mediate Apical-Basal Polarity Establishment
    bioRxiv preprint doi: https://doi.org/10.1101/170977; this version posted July 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Rap1 acts via multiple mechanisms to position Canoe/Afadin and adherens junctions and mediate apical-basal polarity establishment Teresa T. Bonello1, Kia Z. Perez-Vale2, Kaelyn D. Sumigray3, and Mark Peifer1,2,3* 1 Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA 2 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Running Title Active Rap1 positions Canoe and AJs 6950 words * To whom correspondence should be addressed Email: [email protected] Phone: (919) 962-2272 Abbreviations used: α-cat, alpha-catenin; β-cat, beta-catenin; AJ, adherens junction; Arm, Armadillo; Baz, BazooKa; CA, constitutively active; Cno, Canoe; DE-cad, Drosophila E-cadherin; Dzy, Dizzy; GAP, GTPase activating protein; GDP, guanosine diphosphate; GEF, guanine nucleotide exchange factor; GFP, green fluorescent protein; GTP, guanosine triphosphate; IF, immunofluorescence; MIP, maximum intensity projection; RA, Ras-associated; RFP, red fluorescent protein; SAJ, spot adherens junction; shRNA, short hairpin RNA; TCJ, tricellular junction; WT, wildtype 1 bioRxiv preprint doi: https://doi.org/10.1101/170977; this version posted July 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Vinexin Family (SORBS) Proteins Play Different Roles in Stiffness- Sensing and Contractile Force Generation Takafumi Ichikawa1,2, Masahiro Kita1, Tsubasa S
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 3517-3531 doi:10.1242/jcs.200691 RESEARCH ARTICLE Vinexin family (SORBS) proteins play different roles in stiffness- sensing and contractile force generation Takafumi Ichikawa1,2, Masahiro Kita1, Tsubasa S. Matsui3,4, Ayaka Ichikawa Nagasato1, Tomohiko Araki3, Shian-Huey Chiang5, Takuhito Sezaki1, Yasuhisa Kimura1, Kazumitsu Ueda1,2, Shinji Deguchi3,4, Alan R. Saltiel5,* and Noriyuki Kioka1,2,‡ ABSTRACT generating actin stress fibers (SFs) (Geiger et al., 2001). This Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 ‘ ’ (ArgBP2) constitute an adaptor protein family called the vinexin mechanical linkage acts as a molecular clutch to transmit the force (SORBS) family that is targeted to focal adhesions (FAs). Although derived from non-muscle myosin-II-dependent contraction to the numerous studies have focused on each of the SORBS proteins and ECM. Cells on more rigid substrates exert greater contractile forces partially elucidated their involvement in mechanotransduction, a than those on soft substrates (Hoffman et al., 2011; Roca-Cusachs comparative analysis of their function has not been well addressed. et al., 2012; LaCroix et al., 2015). These alterations can lead to Here, we established mouse embryonic fibroblasts that individually stiffness-dependent biochemical signals. Among the numerous FA scaffolding proteins, vinculin is one of expressed SORBS proteins and analysed their functions in an ‘ ’ identical cell context. Both vinexin-α and CAP co-localized with the main clutch molecules that can regulate force transmission. vinculin at FAs and promoted the appearance of vinculin-rich FAs, Vinculin consists of an N-terminal head region and a C-terminal tail α region separated by a flexible proline-rich linker region (Bakolitsa whereas ArgBP2 co-localized with -actinin at the proximal end of – FAs and punctate structures on actin stress fibers (SFs), and induced et al., 2004; Borgon et al., 2004).
    [Show full text]
  • Kobe University Repository : Thesis
    Kobe University Repository : Thesis Afadin Regulates Puncta Adherentia Junction Formation and 学位論文題目 Presynaptic Differentiation in Hippocampal Neurons(アファディンは海 Title 馬ニューロンにおいてアドへレンスジャンクションの形成と前シナプ スの分化を調節している) 氏名 Toyoshima, Daisaku Author 専攻分野 博士(医学) Degree 学位授与の日付 2014-03-25 Date of Degree 公開日 2015-03-01 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第6188号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1006188 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2021-09-26 Afadin Regulates Puncta Adherentia Junction Formation and Presynaptic Differentiation in Hippocampal Neurons アファディンは海馬ニューロンにおいてアドへレンスジャンクション の形成と前シナプスの分化を調節している 豊嶋大作, 萬代研二, 丸尾知彦、Irwan Supriyanto、 富樫英、井上貴仁、森正弘、高井義美 神戸大学大学院医学研究科医科学専攻 小児科学 (指導教員:飯島一誠 教授) 豊嶋大作 Key words: Afadin, puncta adherentia junction, presynapse, hippocampal neuron Manuscript Click here to download Manuscript: Toyoshima_text_revised_2nd_final.pdf 1 Afadin Regulates Puncta Adherentia Junction Formation and 2 Presynaptic Differentiation in Hippocampal Neurons 3 4 Daisaku Toyoshima1,3,4, Kenji Mandai1,3, Tomohiko Maruo1,3, Irwan Supriyanto2,3, 5 Hideru Togashi1,3, Takahito Inoue1,3, Masahiro Mori2,3 & Yoshimi Takai1,3 6 7 1. Department of Biochemistry and Molecular Biology, Kobe University Graduate 8 School of Medicine, Kobe, Hyogo 650-0047, Japan. 9 2. Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, 10 Kobe, Hyogo 654-0142, Japan. 11 3. CREST, Japan Science and Technology Agency, Kobe, Hyogo 650-0047, Japan. 12 4. Present address: Department of Pediatrics, Kobe University Graduate School of 13 Medicine, Kobe, Hyogo 650-0017, Japan. 14 15 Correspondence should be addressed to Y.T. ([email protected]), K.M. 16 ([email protected]).
    [Show full text]
  • The Adherens Junction Protein Afadin Is an AKT Substrate That Regulates Breast Cancer Cell Migration
    Published OnlineFirst November 22, 2013; DOI: 10.1158/1541-7786.MCR-13-0398 Molecular Cancer Signal Transduction Research The Adherens Junction Protein Afadin Is an AKT Substrate that Regulates Breast Cancer Cell Migration Sivan Elloul, Dmitriy Kedrin, Nicholas W. Knoblauch, Andrew H. Beck, and Alex Toker Abstract The PI3K–AKT signaling pathway regulates all phenotypes that contribute to progression of human cancers, including breast cancer. AKT mediates signal relay by phosphorylating numerous substrates, which are causally implicated in biologic responses such as cell growth, survival, metabolic reprogramming, migration, and invasion. Here a new AKT substrate is identified, the adherens junction protein Afadin, which is phosphorylated by AKT at Ser1718. Importantly, under conditions of physiologic IGF-1 signaling and oncogenic PI3K and AKT, Afadin is phosphorylated by all AKT isoforms, and this phosphorylation elicits a relocalization of Afadin from adherens junctions to the nucleus. Also, phosphorylation of Afadin increased breast cancer cell migration that was dependent on Ser1718 phosphorylation. Finally, nuclear localization of Afadin was observed in clinical breast cancer specimens, indicating that regulation of Afadin by the PI3K–AKT pathway has pathophysiologic significance. Implications: Phosphorylation of the adhesion protein Afadin by AKT downstream of the PI3K pathway, leads to redistribution of Afadin and controls cancer cell migration. Mol Cancer Res; 12(3); 464–76. Ó2013 AACR. Introduction of the proteins that function to transduce PI3K and Akt The phosphoinositide 3-kinase (PI3K) and Akt signaling signaling are enzymes with catalytic pockets, this pathway is pathway orchestrates virtually all aspects of epithelial and highly druggable and numerous phase I and II clinical trials tumor cell behavior, from initial transformation to dysplasia are underway with small-molecule inhibitors targeting PI3K and ultimately the dissemination of cancer cells to distant or Akt isoforms for single agent or combination therapy, metastatic sites (1).
    [Show full text]
  • Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood
    Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood-Retinal Barrier By Carla Jhoana Ramos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2017 Doctoral Committee: Professor David A. Antonetti, Chair Professor Christin Carter-Su Associate Professor Philip J. Gage Professor Ben Margolis Assistant Professor Ann L. Miller Image of exchange factor directly activated by cAMP (EPAC), Ras-related protein (Rap1) and Zonula occludens-1 (ZO-1) immunofluorescent staining in bovine retinal endothelial cells, obtained by confocal microscopy. Carla Jhoana Ramos [email protected] ORCID iD: 0000-0001-5041-6758 © Carla Jhoana Ramos 2017 DEDICATION This dissertation is dedicated to my mother Victoria de Jesus Larios de Ramos, my father Jose Carlos Ramos, and my younger brother Hilmar Ramos. My parents migrated from El Salvador to the USA in search of better opportunities and dedicated their lives to providing us with a good education. They have instilled in me determination, perseverance and strength. Finally, my experience observing my mother cope with more than 26 years of diabetes and 10 years of mild diabetic retinopathy led me into diabetes research at the University of Michigan. ii ACKNOWLEDGEMENTS The completion of this dissertation has been made possible by the support from my community of mentors, friends and family. I would like to first thank my mentor David Antonetti, who gave me the opportunity to train in his laboratory under his guidance during these last 6 years. Additionally, I would like to thank my thesis committee: Ben Margolis, Christin Carter-Su, Philip Gage, and Ann Miller whose suggestions, questions, and scientific discussions helped improve the quality of this thesis and for their constant support and encouragement.
    [Show full text]
  • Afadin: a Novel Actin Filament–Binding Protein with One PDZ
    Afadin: A Novel Actin Filament–binding Protein with One PDZ Domain Localized at Cadherin-based Cell-to-Cell Adherens Junction Kenji Mandai,* Hiroyuki Nakanishi,* Ayako Satoh,* Hiroshi Obaishi,* Manabu Wada,* Hideo Nishioka,* Masahiko Itoh,§ Akira Mizoguchi,i Takeo Aoki,¶ Toyoshi Fujimoto,¶ Yoichi Matsuda,** Shoichiro Tsukita,§ and Yoshimi Takai*‡ *Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co., Ltd., Kobe 651-22, Japan; ‡Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565, Japan; §Department of Cell Biology, iDepartment of Anatomy and Neurobiology, Faculty of Medicine, Kyoto University, Kyoto 606-01, Japan; ¶Department of Anatomy and Cell Biology, Gunma University School of Medicine, Maebashi 371, Japan; and **Laboratory of Animal Genetics, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan Abstract. A novel actin filament (F-actin)–binding pro- p190 showed 90% identity over the entire sequence tein with a molecular mass of z205 kD (p205), which with the product of the AF-6 gene, which was found to was concentrated at cadherin-based cell-to-cell adherens be fused to the ALL-1 gene, known to be involved in junction (AJ), was isolated and characterized. p205 was acute leukemia. p190 is likely to be a rat counterpart of purified from rat brain and its cDNA was cloned from a human AF-6 protein. p205 bound along the sides of rat brain cDNA library. p205 was a protein of 1,829 F-actin but hardly showed the F-actin–cross-linking ac- amino acids (aa) with a calculated molecular mass of tivity. Northern and Western blot analyses showed that 207,667 kD.
    [Show full text]
  • AFDN (Afadin, Adherens Junction Formation Factor)
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review AFDN (afadin, adherens junction formation factor) Jean Loup Huret, Philippe Dessen [email protected] (JLH); UMR 1170 INSERM, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif 94805, France (PHD) Published in Atlas Database: December 2018 Online updated version : http://AtlasGeneticsOncology.org/Genes/AF6ID6.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/70479/12-2018-AF6ID6.pdf DOI: 10.4267/2042/70479 This article is an update of : Huret JL. MLLT4 (myeloid/lymphoid or mixed-lineage leukemia (trithorax). Atlas Genet Cytogenet Oncol Haematol 1997;1(2) This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Afadin, the protein coded by AFDN (6q27), also known as AF6 or MLLT4, is a cytoskeletal and junction-associated protein that links nectins, transmembrane proteins, to the F-actin (actin cytoskeleton) in a type of cell-cell junctions: the adherens junctions (AJs). Afadin plays an important role in AJs integrity and apical-basal polarity. There is growing evidence of it's role in carcinogenesis. Keywords Afadin; AFDN; AF6; MLLT4; Cytoskeleton; Cell- cell junctions; Adherens junctions; Apical-basal polarity; Epithelial-mesenchymal transition; Tight junctions; Mitotic spindle orientation; Migration; Nectin; Actin; Acute myeloid leukemia; Breast Figure 1 Localization of AFDN (also called AF6 or MLLT4) cancer; Colon cancer; Pancreatic cancer; - Courtesy Mariano Rocchi. Endometrial cancer; Gastric cancer; Osteosarcoma; Neurone synapse. DNA/RNA Identity Description HGNC (Hugo): AFDN The AFDN gene, located on 6q27, has a genomic size of 145,030 bases and encodes for several Location: 6q27 transcripts on the position chr6:167826991- Other names: MLLT4, AF6 167972020 in the + strand.
    [Show full text]
  • A Novel Interface Consisting of Homologous Immunoglobulin Superfamily Members with Multiple Functions
    Cellular & Molecular Immunology (2010) 7, 11–19 ß 2010 CSI and USTC. All rights reserved 1672-7681/10 $32.00 www.nature.com/cmi REVIEW A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions Zhuwei Xu and Boquan Jin Immunoglobulin superfamily (IgSF) members account for a large proportion of cell adhesion molecules that perform important immunological functions, including recognizing a variety of counterpart molecules on the cell surface or extracellular matrix. The findings that CD155/poliovirus receptor (PVR) and CD112/nectin-2 are the ligands for CD226/platelet and T-cell activation antigen 1 (PTA1)/DNAX accessory molecular-1 (DNAM-1), CD96/tactile and Washington University cell adhesion molecule (WUCAM) and that CD226 is physically and functionally associated with lymphocyte function-associated antigen-1 (LFA-1) on natural killer (NK) and activated T cells have largely expanded our knowledge about the functions of CD226, CD96, WUCAM and LFA-1 and their respective ligands, CD155, CD112, intercellular adhesion molecule (ICAM)-1 and junctional adhesion molecule (JAM)-1. The interactions of these receptors and their ligands are involved in many key functions of immune cells including naive T cells, cytotoxic T cells, NK cells, NK T cells, monocytes, dendritic cells, mast cells and platelets/megakaryocytes. Cellular & Molecular Immunology (2010) 7, 11–19; doi:10.1038/cmi.2009.108 Keywords: CD112; CD155; CD226; IgSF; LFA-1 INTRODUCTION LIGANDS FOR CD226 AND CD96 The concept of the immunoglobulin superfamily (IgSF) was proposed Nectin-2/CD112 has been identified as a ligand for CD226, whereas in the 1980s.1 IgSF molecules are generally transmembrane glycopro- PVR/CD155 serves as a ligand for both CD226 and CD96 receptors.
    [Show full text]
  • Afadin Orients Cell Division to Position the Tubule Lumen in Developing Renal Tubules Lei Gao1, Zhufeng Yang1, Chitkale Hiremath1, Susan E
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 3511-3520 doi:10.1242/dev.148908 RESEARCH ARTICLE Afadin orients cell division to position the tubule lumen in developing renal tubules Lei Gao1, Zhufeng Yang1, Chitkale Hiremath1, Susan E. Zimmerman1, Blake Long1, Paul R. Brakeman2, Keith E. Mostov3, David M. Bryant4, Katherine Luby-Phelps5 and Denise K. Marciano1,* ABSTRACT can polarize along its apical-basal axis, which orients the cell In many types of tubules, continuity of the lumen is paramount to relative to the underlying extracellular matrix. The apical surface tubular function, yet how tubules generate lumen continuity in vivo is faces the luminal space, the lateral surface contacts adjacent cells, not known. We recently found that the F-actin-binding protein afadin is and the basal surface contacts the basal lamina. Additionally, the required for lumen continuity in developing renal tubules, though its individually polarized cells must coordinate their polarity with mechanism of action remains unknown. Here, we demonstrate that surrounding cells along the long axis of the tubule, in a process afadin is required for lumen continuity by orienting the mitotic spindle referred to as planar cell polarity. during cell division. Using an in vitro 3D cyst model, we find that afadin In the developing kidney, epithelial tubules are derived from localizes to the cell cortex adjacent to the spindle poles and orients progenitor cells from two embryonic sources: the cap mesenchyme the mitotic spindle. In tubules, cell division may be oriented relative to and the ureteric epithelium (Saxen, 1987). The cap mesenchyme two axes: longitudinal and apical-basal.
    [Show full text]