Muscle Physiology Page 1 of 17

Total Page:16

File Type:pdf, Size:1020Kb

Muscle Physiology Page 1 of 17 Emojevwe’s Lecture note on physiology- Muscle Physiology Page 1 of 17 MUSCLE PHYSIOLOGY (PHS 213) By Emojevwe V. Course Objectives: To familiarize students with the principles and basic facts of Human Physiology and with some of the laboratory techniques and equipment used in the acquisition of physiological data. The emphasis will be on muscles physiology. Since the course will focus on muscle physiology, some cellular and molecular mechanisms will be discussed in order to present a current view of physiological principles of muscle. Where appropriate, basic chemical and physical laws will be reviewed in order to enhance and to promote student understanding. The laboratory component of the course is designed to reinforce the topics discussed in lecture, as well as to familiarize students with some of the laboratory techniques and equipment used in muscle research Student Learning Outcomes: Upon successful completion of lecture portion of this course, the students will be able to describe, identify, and/or explain: • Structure and function of skeletal muscle, including excitation-contraction coupling, sliding filament mechanism, force generation, and isometric versus isotonic contractions. • Structure and functions of the cardiovascular system, including the mechanical and electrical properties of cardiac muscle function. • Structure and functions of smooth muscles including contraction of smooth muscle Upon successful completion of the laboratory portion of this course, the students will be able to describe, identify, explain, perform, and/or measure: • Computer simulations of the membrane potential, action potential, and synaptic neurotransmission. • Skeletal muscle mechanics, and the electromyogram (EMG). Required Course Materials: • Any textbook of physiology (human or medical) published within the last four years will be appropriate. • Emojevwe’s Lecture Notes on Physiology. To obtain these notes as well as other supplementary materials, please visit the unimed portal Emojevwe’s Lecture note on physiology- Muscle Physiology Page 2 of 17 MUSCLE PHYSIOLOGY Muscle is an excitable tissue. The human body has over 600 muscles which perform many useful functions and help us in doing everything in day-to-day life. Classification of muscles: Muscles are classified by three different methods, based on different factors: I. Depending upon the presence or absence of striations; the muscles are divided into two groups: 1. Striated Muscle: Striated muscle is the muscle which has a large number of crossstriations (transverse lines). Skeletal muscle and cardiac muscle belong to this category. 2. Non-striated Muscle: Muscle which does not have cross-striations is called nonstriated muscle. It is also called plain muscle or smooth muscle. It is found in the wall of the visceral organs. II. Depending upon the control 1. Voluntary Muscle: Voluntary muscle is the muscle that is controlled by the will. Skeletal muscles are the voluntary muscles. These muscles are innervated by somatic nerves. 2. Involuntary Muscle: Muscle that cannot be controlled by the will is called involuntary muscle. Cardiac muscle and smooth muscle are involuntary muscles. These muscles are innervated by autonomic nerves. III. Depending upon the situation. 1. Skeletal Muscle: Skeletal muscle is situated in association with bones forming the skeletal system. The skeletal muscles form 40% to 50% of body mass and are voluntary and striated. These muscles are supplied by somatic nerves. Fibers of the skeletal muscles are arranged in parallel. In most of the skeletal muscles, muscle fibers are attached to tendons on either end. Skeletal muscles are anchored to the bones by the tendons. 2. Cardiac Muscle: Cardiac muscle forms the musculature of the heart. These muscles are striated and involuntary. Cardiac muscles are supplied by autonomic nerve fibers. 3. Smooth Muscle: Smooth muscle is situated in association with viscera. It is also called visceral muscle. It is different from skeletal and cardiac muscles because of the absence of cross striations, hence the name smooth muscle. Smooth muscle is supplied by autonomic nerve fibers. Smooth muscles form the main contractile units of wall of the various visceral organs. In the preceding sections, I will be introducing you to the physiology of the skeletal, cardiac and smooth muscles. Emojevwe’s Lecture note on physiology- Muscle Physiology Page 3 of 17 SKELETAL MUSCLE A skeletal muscle is a collection of muscle bundles or fascicles. Each fascicles is made up of a number cells or (myofibrils). Each muscle is cell compose of hundreds to thousands of myofibrils. Myofibrils are strings of the structural unit referred to as the sarcomere. The sarcomere is the functional unit of skeletal and cardiac muscle. The sarcomere contains the myofibrils; which are the proteins that are responsible for the contractile behavior of the muscle cell. In addition, the sarcomere contains structural proteins (which maintain the structural integrity of the sarcomere), as well as regulatory protein (which play an important role in the regulation of muscle contractile activity). A mature skeletal muscle cell is a long cell, which comes about through the fusion of many embryonic muscle cells. Therefore, skeletal muscle cells are among the largest cells in the body, whose length can be as long as tens of centimeters. The diameter of a typical skeletal muscle cell is about 100 µm. Skeletal muscle cells are multinucleated, and they contain numerous mitochondria. The plasma membrane of skeletal muscle cells (the sarcolemma) is specialized in that it has invaginations that run deep into the muscle cell. These invaginations are referred to as transverse tubules (or tubules). It is important to say that the membrane of the t-tubule is continuous with the sarcolemma. Thus, t-tubules serve to allow muscle action potentials to reach deep into the muscle cell. It is also important to recognize that the lumen of the t-tubule is the extracellular fluid. Within the cytoplasm of the skeletal muscle fiber (myoplasm or sarcoplasm), there are numerous specialized structures, which we need to understand. A highly specialized endoplasmic reticulum referred to as the sarcoplasmic reticulum is tightly wrapped around individual myofibrils and functions to store a high concentration of Ca2+. The release of Ca2+ from the sarcoplasmic reticulum is responsible for triggering muscular contraction. Another very important structure is the sarcomere. As mentioned above, the sarcomere is the functional unit of striated muscle, and it is discussed below. Fine Details of the Sarcomere The sarcomere is the functional unit of the muscle fiber. It is composed of overlapping units of two different filamentous proteins; the thick and the thin filaments. Movement of the thin filaments over the thick filaments brings about muscle shortening and force generation. Thus, the sarcomere is responsible for the contractile ability of muscle cells. In order to understand the function of the sarcomere, it is important that we first understand the protein composition of the sarcomere. The proteins found in the sarcomere can be placed into three proteins. As you read the following descriptions, be sure to examine the attached figures in order to achieve a better understanding. a. Contractile Proteins i. Myosin (gives rise to the thick filaments) ii. Actin (gives rise to the thin filaments) Emojevwe’s Lecture note on physiology- Muscle Physiology Page 4 of 17 b. Regulatory Proteins i. Tropomyosin (in the absence of Ca2+ , it covers the myosin –binding site of actin) ii. Troponin (Ca2+ sensor) c. Structural Proteins i. Titin (provide elasticity) ii. Nebulin (run closely with actin) iii. Dydrophine iv. Desmin (it binds z line with sarcomere) Now let us discuss these proteins Contractile Proteins As their name suggest, contractile proteins are in fact responsible for muscles shortening (contraction). Myosin is the protein that makes up the thick filaments of the sarcomere. Myosin has two structural domains; a head region and a tail region. The head and the tail regions are connected through a flexible neck region. The tail region of myosin is used to join many myosin molecules together in order to give rise to the thick filament. In skeletal muscle, approximately 250 mysin molecules are intertwined to form a thick filament. The myosin head has an actin-binding site to which ATP binds (see cross – Bridge Cycle below). In a thick filament, the myosin molecules are arrange so that the myosin heads are clustered at the ends (facing the Z disks), and the central region of the thick filament is a bundle of myosin tails. Actin is the protein that makes up the thin filaments of the sarcomere. An actin molecule is a globular protein (globular actin or G-actin). Many G-actin molecules polymerize to form filamentous actin (F-actin). In skeletal muscle, two F-actin polymers intertwine to form a thin filament. Each G-actin molecule has a myosin binding site. Thus, the interaction of actin and myosin take place via the interaction of myosin binding site of Gactin with the actin binding site of the myosin of the myosin head group. In order for the muscle to contract, the actin and the myosin molecules of the thin and thick filaments have to interact with one another. When the actin and myosin interact, they are said to be connected by cross-bridges. The cross-brides refer to the myosin head group that interact with a myosin-binding site on G-actin. Microscopic Details Under the light or electron microscope, the arrangement of the thick and thin filaments in a myofibril gives rise to a repeating pattern of alternating light and dark regions. One repeat in the pattern roughly corresponds to what is known as the functional unit of striated Emojevwe’s Lecture note on physiology- Muscle Physiology Page 5 of 17 muscle: the sarcomere. The special overlap of the thin and thick filaments within the sarcomere gives rise to the contractile and shortening capability of the muscle cell. The sarcomere has the following microscopic features: Z Disks: Two adjacent Z disk along the myofibril mark the boundaries of a single sarcomere.
Recommended publications
  • Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension
    life Review Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension Qunhui Yang * and Masatoshi Hori Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-7940; Fax: +81-3-5841-8183 Abstract: Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contrac- tion contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signal- ing pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension. Keywords: vascular smooth muscle contraction; hypertension; CPI-17 Citation: Yang, Q.; Hori, M. 1. Introduction Characterization of Contractile Three types of muscle tissues are found in vertebrates: skeletal muscle, cardiac muscle, Machinery of Vascular Smooth and smooth muscle [1]. Muscle contraction depends on the ATP-driven sliding of highly Muscles in Hypertension. Life 2021, organized arrays of actin filaments against arrays of myosin II filaments [2]. In smooth 11, 702. https://doi.org/10.3390/ muscle, phosphorylation at Thr18/Ser19 of the myosin regulatory light chain results in life11070702 myosin ATPase enzymatic activity that induces actin and myosin attachment to regulate smooth muscle contraction [3,4].
    [Show full text]
  • Muscle Tissue
    Muscle Tissue Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Functions of muscle tissue . Movement . Maintenance of posture . Joint stabilization . Heat generation Tendon Dr. Heba Kalbouneh Dr. Belly Tendon Types of Muscle Tissue . Skeletal muscle . Cardiac muscle Dr. Heba Kalbouneh Dr. Smooth muscle Skeletal Attach to and move skeleton 40% of body weight Fibers = multinucleate cells (embryonic cells fuse) Cells with obvious striations Contractions are voluntary Cardiac: only in the wall of the heart Cells are striated Contractions are involuntary Dr. Heba Kalbouneh Dr. Smooth: walls of hollow organs Lack striations Contractions are involuntary . Their cells are called fibers because they are elongated Similarities… . Contraction depends on myofilaments . Actin . Myosin . Plasma membrane is called sarcolemma . Sarkos = flesh . Lemma = sheath Skeletal muscle Cardiac muscle Smooth muscle Dr. Heba Kalbouneh Dr. Skeletal muscle Epimysium surrounds whole muscle Endomysium is around each Dr. Heba Kalbouneh Dr. muscle fiber Perimysium is around fascicle Epimysium Fascicle Fascicle Fascicle Fascicle Fascicle Dr. Heba Kalbouneh Dr. Fascicle Perimysium Cell Cell Cell Dr. Heba Kalbouneh Dr. Cell Cell Endomysium Dr. Heba Kalbouneh Dr. Muscle fiber== musclemuscle cell=cell= myofibermyofiber Skeletal muscle This big cylinder is a fiber: a cell Fibers (each is one cell) have striations Myofibril is an organelle Myofibrils are organelles of the cell, are made up of myofilaments Myofibrils are long rows of repeating Dr. Heba Kalbouneh
    [Show full text]
  • Calcium Ion-Regulated Thin Filaments from Vascular Smooth Muscle
    Biochem. J. (1980) 185, 355-365 355 Printed in Great Britain Calcium Ion-Regulated Thin Filaments from Vascular Smooth Muscle Steven B. MARSTON, Rachel M. TREVETT and Michael WALTERS Imperial Chemical Industries Limited, Pharmaceuticals Division, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K. (Received 20 June 1979) Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 + 2.6 nmol/mg per min (mean + S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500nmol/mg of myosin per min (mean + S.D.)] in the presence of 1O-4M free Ca2+. At 10-8M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10-6-10-5M- Ca2+ and was half maximal at 2.7 x 10-6M (pCa2+ 5.6). The skeletal myosin-aorta-thin- filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10-8M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin fila- ments bound up to 9.5,umol of Ca2+/g in the presence of MgATP2-. In the range 0.06- 27,uM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 + 0.07) x 106 M-1 (mean + S.D.) and maximum binding of 8.0 + 0.8,umol/g (mean + S.D.).
    [Show full text]
  • Skeletal Muscle Function During Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
    Int. J. Mol. Sci. 2013, 14, 7109-7139; doi:10.3390/ijms14047109 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide Frank Suhr, Sebastian Gehlert, Marijke Grau and Wilhelm Bloch * Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; E-Mails: [email protected] (F.S.); [email protected] (S.G.); [email protected] (M.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-221-4982-5380; Fax: +49-221-4982-8370. Received: 31 January 2013; in revised form: 17 March 2013 / Accepted: 19 March 2013 / Published: 28 March 2013 Abstract: Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload.
    [Show full text]
  • Association of Smooth Muscle Myosin and Its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle Jason Edward Black
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2007 Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle Jason Edward Black Follow this and additional works at: http://mds.marshall.edu/etd Part of the Musculoskeletal, Neural, and Ocular Physiology Commons Recommended Citation Black, Jason Edward, "Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle" (2007). Theses, Dissertations and Capstones. Paper 489. This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle By Jason Edward Black Dissertation submitted to the Graduate College of Marshall University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Approved by Elizabeth C. Bryda Todd L. Green William McCumbee Michael Moore Gary L. Wright, Committee Chairperson Department of Pharmacology, Physiology, and Toxicology ABSTRACT Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle By Jason Edward Black The contraction mechanism of smooth muscle is not fully understood. The primary interaction that leads to the formation of tension, the myosin-actin crossbridge, has been studied extensively. However, even this aspect of the contraction has proven not to be as simple as it might seem. There are several isoforms of smooth muscle myosin and actin, and the differences in the activities of these isoforms and their interactions during the contractile process are largely unknown.
    [Show full text]
  • Structure and Function of Smooth Muscle with Special Reference to Mast Cells
    Chapter 15 Structure and Function of Smooth Muscle with Special Reference to Mast Cells Angel Vodenicharov Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48566 1. Introduction The structure of the smooth muscle tissue is quite different from that of other muscle tissue subtypes. The primary smooth muscle structural and functional unit – the smooth muscle myocyte (Myocytus nonstriatus) has unique structure, arrangement and innervation. The spindle shape of the mononucleated smooth muscle cell permits a close contact among cells in the splanchnic and vascular walls. Regardless of its location in the body, the communication between tightly packed adjacent spindle-shaped mononucleated smooth muscle cells occurs via a specific junction, referred to as Macula communicans (nexus, gap junction). The space between the different macular connexons is about 2 nm, which allows low-molecular compounds to pass from one cell to another. This type of junction is analogous to the plasmodesma (pl. plasmodesmata), encountered in cells of plants. The basement membrane covering each smooth muscle cell, is absent at gap junction sites. The contractility, proper of smooth muscle cells, is influenced by the autonomic nervous system, hormones and local metabolites, which alter the contractility in a way that adapts to the new functional requirements. Smooth muscle cell contraction could be modulated via surface receptors, activating internal second messenger systems. The expression of a variety of receptors accounts for the response of smooth muscle cells in different areas to a number of hormones [1]. It is known that for the major part of smooth musculature (except for the iris, vas deferens and large blood vessels) one autonomic nerve fibre innervates a group of 15-20 smooth muscle cells, as the stimulus to one cell is transmitted via nexus contacts to the other [2] assuming a simultaneous contraction of the pack of cells.
    [Show full text]
  • Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders
    1521-0081/68/2/476–532$25.00 http://dx.doi.org/10.1124/pr.115.010652 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:476–532, April 2016 Copyright © 2016 The Author(s) This is an open access article distributed under the CC-BY Attribution 4.0 International license. ASSOCIATE EDITOR: STEPHANIE W. WATTS Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders F.V. Brozovich, C.J. Nicholson, C.V. Degen, Yuan Z. Gao, M. Aggarwal, and K.G. Morgan Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.) Abstract ...................................................................................478 I. Introduction . ..............................................................................478 A. Scope and Limitations..................................................................478 B. Overview of Regulation of Blood Pressure/Vascular Tone. ...............................478 1. Guyton View of Regulation Blood Pressure, Kidney Role, Volume Regulation. .......478 2. Recent Direct Confirmation of Changes in Vascular Tone/Resistance Related to Changes in Systemic Vascular Resistance and Blood Pressure and Downloaded from the Importance of Vascular Smooth Muscle Contraction in both Normal Physiology and Pathophysiology—Hypertension......................................479 3. Racial Differences/Personalized
    [Show full text]
  • An Immunohistochemical Study of Gastric Mucosa and Critical Review Indicate That the Subepithelial Telocytes Are Prelymphatic Endothelial Cells
    medicina Article An Immunohistochemical Study of Gastric Mucosa and Critical Review Indicate That the Subepithelial Telocytes Are Prelymphatic Endothelial Cells Oana D. Toader 1, Mugurel C. Rusu 2,* , Lauren¸tiuMogoantă 3, Sorin Hostiuc 4 , Adelina Maria Jianu 5 and Adrian Cosmin Ilie 5 1 Department XIII of Obstetrics, Gynecology and Neonatology, “Polizu” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania 2 Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania 3 Department of Histology, University of Medicine and Pharmacy Craiova, 2 Petru Rares Street, 200349 Craiova, Dolj, Romania 4 Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania 5 Division of Anatomy, “Victor Babe¸s”University of Medicine and Pharmacy, 300041 Timi¸soara,Romania * Correspondence: [email protected]; Tel.: +4-072-236-3705 Received: 28 March 2019; Accepted: 20 June 2019; Published: 27 June 2019 Abstract: Background and Objectives: There are only a few studies regarding gut subepithelial telocytes (TCs). The telopodes, namely peculiar TCs’ prolongations described on two-dimensional cuts, are not enough to differentiate this specific cell type. Subepithelial TCs were associated with the intestinal stem niche but a proper differential diagnosis with lymphatic endothelial cells (LECs) was not performed. In this study, we will also critically review studies suggesting that distinctive TCs could be positioned within the lamina propria. Materials and Methods: We performed an immunohistochemical study of human gastric mucosa to test the expression of D2-40, the lymphatic marker, as well as that of CD31, CD34, CD44, CD117/c-kit, α-smooth muscle actin (α-SMA) and vimentin in the gastric subepithelial niche.
    [Show full text]
  • R J M E RIGINAL APER Romanian Journal of O P Morphology & Embryology
    Rom J Morphol Embryol 2016, 57(2 Suppl):767–774 R J M E RIGINAL APER Romanian Journal of O P Morphology & Embryology http://www.rjme.ro/ Subsets of telocytes: the progenitor cells in the human endocardial niche FLORENTINA GRIGORIU1), SORIN HOSTIUC2), ALEXANDRA DIANA VRAPCIU1), MUGUREL CONSTANTIN RUSU1,3) 1)Division of Anatomy, Department 1, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania 2)Division of Legal Medicine and Bioethics, Department 2 – Morphological Sciences, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania 3)MEDCENTER, Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania Abstract Telocytes (TCs) are cells defined by their long and moniliform processes termed telopodes. They were previously identified in the endocardium and express neural markers, such as nestin and neuron-specific enolase (NSE). Previous studies found a positive expression of neuro- filaments in endocardial endothelial cells, and a positive expression of nestin in cardiac side population (CSP) progenitor cells, which allowed us to hypothesize that TCs in the endocardial stem niche could be in fact progenitors that express nestin. Materials and Methods: We used cardiac samples from 10 human adult donor cadavers. Endocardial endothelial cells expressed CD146, alpha-smooth muscle actin (α-SMA), smooth muscle myosin (SMM), nestin and, scarcely, neurofilaments. Within atrial and ventricular samples, we found an endocardial discontinuous smooth muscle
    [Show full text]
  • Vascular Smooth Muscle Structure and Function David P Wilson
    2 Mechanisms of Vascular Disease Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists Robert Fitridge The University of Adelaide, The Queen Elizabeth Hospital, Woodville, Australia Matthew Thompson St George’s Hospital Medical School, London, UK Published in Adelaide by The University of Adelaide, Barr Smith Press Barr Smith Library The University of Adelaide South Australia 5005 [email protected] www.adelaide.edu.au/press The University of Adelaide Press publishes peer-reviewed scholarly works by staff via Open Access online editions and print editions. The Barr Smith Press is an imprint of the University of Adelaide Press, reserved for scholarly works which are not available in Open Access, as well as titles of interest to the University and its associates. The Barr Smith Press logo features a woodcut of the original Barr Smith Library entrance. © The Contributors 2011 This book is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission. Address all inquiries to the Director at the above address. This CIP cataloguing for this work is as follows; Mechanisms of vascular disease : a reference book for vascular surgeons / Robert Fitridge, Matthew Thompson, [editors]. 1. Blood vessels, Diseases. 2. Blood vessels‚ Surgery. I. Fitridge, Robert II. Thompson, M. M. For the full Cataloguing-in-Publication data please contact National Library of Australia: [email protected] ISBN (paperback) 978-0-9871718-2-5 Book design: Midland Typesetters Cover design: Emma Spoehr, based on a diagram by Dave Heinrich of the Medical Illustration and Media Unit, Flinders Medical Centre Paperback edition printed by Griffin Press, South Australia Table of Contents Contributors vii target 201 Detailed Contents xi Sandeep Prabhu, Rahul Sharma, Karlheinz Peter (Melbourne, Australia) 1.
    [Show full text]
  • Cellular Physiology of Skeletal, Cardiac, and Smooth Muscle
    Cellular Physiology of Skeletal, Cardiac, and Smooth Muscle \.fLLS of each of the types df muscle to facilitate communication between takes the form of the postsynap- junction. Neuromuscularjunctions (i.e.. in cardiac and smooth muscle. In transmissiondoes not initiate contraction;it . neuromuscular cardiac important ~ Cellular Physiology of Skeletal, Cardiac, and Smooth Muscle / 9 231 Branchedstructure of cardiacmuscle ses to modulate,rather than to initiate, cardiac muscle function. In contrast to skeletal muscle, cardiac muscle contraction is triggered by electrical signals from neigh- boring cardiac musclecells. Theseelectrical impulses orig- inate in the pacemaker region of the hean, the sinoatrial node (p. 489), which spontaneouslyand periodically gen- eratesaction potentials. To facilitate direct electricalcom- munication betweencardiac muscle cells, the sarcolemma of cardiac muscle is specializedto contain gap junctions (p. 164), electrical synapsesthat couple neighboringcells (Fig. 9-1). When an action potential is initiated in one Actin ntercalated cell, current flows through the gap junctions and depolar- izes neighboring cells. If depolarizationcauses the mem- brane potential (Vm) to be more positive than threshold, self-propagatingaction potentials occur in the neighboring cells as well. Thus, the generationof an action potential is just as critical for initiating contraction in cardiacmuscle as it is in skeletalmuscle. Smooth Muscles May Contract in Responseto Either Neuromuscular Synaptic Transmission or Electrical Coupling Like skeletal muscle, smooth muscle receivessynaptic in- put from the nervous system. However, the synaptic in- Z-line put to smooth muscle differs from that to skeletalmuscle FIGURE 9- 1. Electricalcoupling of cardiac myocytes. in two ways. First, the neurons are pan of the autonomic nervous system rather than the somatic nervous system (see Chapter 15).
    [Show full text]
  • Section Three Muscle
    SECTION THREE MUSCLE James M. Watras page 231 page 232 page 232 page 233 12 Skeletal Muscle Physiology Muscle cells are highly specialized cells for the conversion of chemical energy to mechanical energy. Specifically, muscle cells use the energy in ATP to generate force or do work. Because work can take many forms (such as locomotion, pumping blood, or peristalsis), several types of muscle have evolved. The three basic types of muscle are skeletal muscle, cardiac muscle, and smooth muscle. Skeletal muscle acts on the skeleton. In limbs, for example, skeletal muscle spans a joint, thereby allowing a lever action. Skeletal muscle is under voluntary control (i.e., controlled by the central nervous system) and plays a key role in numerous activities such as maintenance of posture, locomotion, speech, and respiration. When viewed under the microscope, skeletal muscle exhibits transverse striations (at intervals of 2 to 3 µm) that result from the highly organized arrangement of actin and myosin molecules within the skeletal muscle cells. Thus, skeletal muscle is classified as a striated muscle. The heart is composed of cardiac muscle, and although it is also a striated muscle, it is an involuntary muscle (i.e., controlled by an intrinsic pacemaker and modulated by the autonomic nervous system). Smooth muscle (which lacks the striations evident in skeletal and cardiac muscle) is an involuntary muscle typically found lining hollow organs such as the intestine and blood vessels. In all three muscle types, force is generated by the interaction of actin and myosin molecules, a process that requires transient elevation of intracellular [Ca++ ].
    [Show full text]