Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders 1521-0081/68/2/476–532$25.00 http://dx.doi.org/10.1124/pr.115.010652 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:476–532, April 2016 Copyright © 2016 The Author(s) This is an open access article distributed under the CC-BY Attribution 4.0 International license. ASSOCIATE EDITOR: STEPHANIE W. WATTS Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders F.V. Brozovich, C.J. Nicholson, C.V. Degen, Yuan Z. Gao, M. Aggarwal, and K.G. Morgan Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.) Abstract ...................................................................................478 I. Introduction . ..............................................................................478 A. Scope and Limitations..................................................................478 B. Overview of Regulation of Blood Pressure/Vascular Tone. ...............................478 1. Guyton View of Regulation Blood Pressure, Kidney Role, Volume Regulation. .......478 2. Recent Direct Confirmation of Changes in Vascular Tone/Resistance Related to Changes in Systemic Vascular Resistance and Blood Pressure and Downloaded from the Importance of Vascular Smooth Muscle Contraction in both Normal Physiology and Pathophysiology—Hypertension......................................479 3. Racial Differences/Personalized Medicine. ..........................................479 II. Regulation of Ca2+ .........................................................................480 A. Ca2+ Determines Vascular Smooth Muscle Cell Contractility and Phenotype.............480 B. Compartmentalization of Ca2+ Signaling................................................480 by guest on October 1, 2021 1. Ca2+ Sparklets. ..................................................................480 2. Ca2+ Sparks.........................................................................482 a. Ca2+-dependent K+ channel-coupled sparks. .....................................482 b. Ca2+ gated Cl2 channel-coupled sparks. ..........................................483 3. Ca2+ Waves. ........................................................................483 4. Store-Operated Calcium Entry.......................................................483 C. Excitation-Transcription Coupling ......................................................484 D. Conclusion .............................................................................485 III. Vascular Smooth Muscle Signal Transduction ..............................................485 A. Signaling Pathways—Overview. ......................................................485 1. Major Pathways Leading to Changes in the Activity of Smooth Muscle Myosin. ......485 2. Pathways Leading to Changes in Actin Availability for Interaction with Myosin. .....487 3. Tyrosine Phosphorylation of Smooth Muscle Proteins. ...............................488 4. Calcium Sensitization of the Contractile Apparatus. ...............................488 B. Subcellular Spatial Organization of Signaling Pathways . ...............................488 1. Extracellular Regulated Kinase Scaffolds (Calponin, SmAV, Paxillin, Caveolin, FAK, IQGAP). ......................................................................489 2. Myosin Phosphatase Scaffolds. ......................................................490 C. Link to Hypertension ..................................................................490 D. Potential Novel Therapeutic Targets/Approaches/Critical Analysis of Pathway-Specific Inhibitors ............................................................490 1. Rho Kinase Inhibitors. ............................................................490 2. Endothelin Inhibitors. ............................................................490 3. Beta Adrenergic Receptor Mediated Inhibition. .....................................490 IV. Regulation of Smooth Muscle Myosin. ......................................................491 Address correspondence to: Kathleen G. Morgan, Department of Health Sciences, Boston University, Boston MA 02215. E-mail: [email protected] dx.doi.org/10.1124/pr.115.010652. 476 Mechanisms of Vascular Smooth Muscle Contraction 477 A. Overview of Regulation of the Smooth Muscle Actomyosin ATPase and 20kda light chain Phosphorylation/Smooth Muscle Activation . ..........................................491 B. Guanine Nucleotide Exchange Factor Signaling, Rac/Rho, and Analysis of Inhibitors . 492 C. Phenotypic Switching of Contractile Proteins during Development and Disease: Role of MYPT1 in Ca2+ Sensitization/Desensitization ...................................494 1. Smooth Muscle Myosin Heavy Chain. ...............................................494 2. ELC17..............................................................................494 3. MYPT1.............................................................................495 D. Implications for Disease and Treatment ................................................496 1. Pressurized Resistance Vessels, Implications of the Myogenic Response for Hypertension, and Critical Analysis of Inhibitors. ...............................496 2. Smooth Muscle Myosin versus Nonmuscle Myosin, Implications for Force Maintanance and Vascular Tone.....................................................497 3. Force Maintenance/Latch and the Regulation of Vascular Tone: The Tonic versus Phasic Contractile Phenotype and Contributions to Pathogenesis of Hypertension. 499 4. Autoregulation of Vascular Resistance/Flow-Mediated Vasodilatation and Nitric Oxide Signaling with Analysis of Current Inhibitors. .........................500 5. Mouse Models (Contractile Protein Knockout) and Implications for Hypertension. 500 E. Summary of Contractile Phenotype and Contributions to Pathogenesis of Hypertension with Analysis of Current Therapies for Hypertension . ...................502 F. Potential Novel Targets for Treatment of Essential Hypertension .......................502 V. Cytoskeletal Regulation . ..................................................................503 A. Intermediate Filaments, Dystrophin, Utrophin, and Microtubules .......................503 1. Dystrophin/Utrophin. ............................................................504 B. Actin ..................................................................................504 C. Focal Adhesion Remodeling ............................................................505 D. Link to Hypertension ..................................................................505 VI. Identifying Therapeutic Targets in Vascular Smooth Muscle through Biomechanical Studies 506 A. Arterial Stiffness as a Predictor of Negative Cardiovascular Events with Aging. .......506 1. Pulse Wave Velocity: The Clinical Standard .........................................506 2. The Importance of Ex Vivo Material Stiffness. .....................................506 B. Regulation of Arterial Stiffness by Vascular Smooth Muscle.............................507 1. Homeostatic Interactions between Cellular and Extracellular Components of the Arterial Wall. ..................................................................507 2. The Focal Adhesion and Actin Cytoskeleton as Regulatory Sites of Arterial Material Stiffness...........................................................507 VII. Regulation of Vascular Smooth Muscle Cell Function by Epigenetic Mechanisms ............508 A. DNA Methylation ......................................................................509 B. Histone Modifications ..................................................................509 1. Histone Acetylases and Histone Deacetylases. .....................................510 a. Histone deacetylases and link to hypertension. ...................................510 2. Sirtuins. ............................................................................510 ABBREVIATIONS: ACE, angiotensin converting enzyme; AM, rigor state; Ang II, angiotensin II; ARB, angiotensin receptor blocker; AT1, 2+ + 2+ 2 angiotensin type 1; BK, Ca -dependent K channels; BP, blood pressure; CaCC, Ca gated Cl channel; CaD, caldesmon; Cae, extracellular Ca2+; CaP, calponin; CCB, calcium channel blocker; CCt, C-terminal end of the LTCC; CI, central insert; CICR, Ca2+-induced Ca2+ release; CO, cardiac output; CRAC, calcium release activated calcium channel; CREB, cAMP response element-binding protein; CVD, cardiovascular disease; EC, endothelial cells; ECM, extracellular matrix; ELC17, 17-kDa essential myosin light chain; eNOS, endothelial nitric oxide synthase; ERK, extracellular regulated kinase; FA, focal adhesion; FAK, focal adhesion kinase; GAP, GTPase activating protein; GEF, guanine nucleotide exchange factor; GWAS, genome wide-association studies; HAT, histone acetylase; HDAC, histone deacetylase; HF, heart failure; IL, interleukin; KLF, Kruppel-like factor; KO, knockout; LTCC, L-type Ca2+ channels; LncRNA, long noncoding RNA; LZ, leucine zipper; MHC; muscle myosin heavy chain; miR, microRNAs; MLCK, myosin light chain kinase; MP, myosin phosphatase; NAD, nicotinamide adenine dinucleotide; NM, nonmuscle; NO, nitric oxide; PAH, pulmonary arterial hypertension; PASMC, pulmonary artery smooth muscle cells; PKGI, protein kinase G; pre-miRNA, preliminary miRNA; PWV, pulse wave velocity; RISC, RNA-induced silencing complex; RLC, regulatory myosin light
Recommended publications
  • Engineering of the Myosin-I Nucleotide-Binding
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 274, No. 44, Issue of October 29, pp. 31373–31381, 1999 © 1999 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Engineering of the Myosin-Ib Nucleotide-binding Pocket to Create Selective Sensitivity to N6-modified ADP Analogs* (Received for publication, April 30, 1999, and in revised form, July 21, 1999) Peter G. Gillespie‡§¶, Susan K. H. Gillespie‡i, John A. Mercer**, Kavita Shah‡‡, and Kevan M. Shokat‡‡ §§ From the Departments of ‡Physiology and §Neuroscience, The Johns Hopkins University, Baltimore, Maryland 21205, **McLaughlin Research Institute, Great Falls, Montana 59405, and the ‡‡Departments of Chemistry and Molecular Biology, Princeton University, Princeton, New Jersey 08544 Distinguishing the cellular functions carried out by and amplifies small movements within the head, and diverse enzymes of highly similar structure would be simplified tail domains that couple myosin molecules to other cellular by the availability of isozyme-selective inhibitors. To structures (2). determine roles played by individual members of the Although roles have been identified for conventional myosin large myosin superfamily, we designed a mutation in isozymes (the myosin-II class), elucidating cellular functions myosin’s nucleotide-binding pocket that permits bind- for unconventional myosin isozymes has been notably difficult. 6 ing of adenine nucleotides modified with bulky N sub- Cells may express a dozen or more myosin isozymes simulta- stituents. Introduction of this mutation, Y61G in rat my- neously (5, 6), and many of these isozymes have similar biochem- osin-Ib, did not alter the enzyme’s affinity for ATP or ical properties.
    [Show full text]
  • Severe Metabolic Acidosis in a Patient with an Extreme Hyperglycaemic Hyperosmolar State: How to Manage? Marloes B
    Clinical Case Reports and Reviews Case Study ISSN: 2059-0393 Severe metabolic acidosis in a patient with an extreme hyperglycaemic hyperosmolar state: how to manage? Marloes B. Haak, Susanne van Santen and Johannes G. van der Hoeven* Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands Abstract Hyperglycaemic hyperosmolar state (HHS) and diabetic ketoacidosis (DKA) are often accompanied by severe metabolic and electrolyte disorders. Analysis and treatment of these disorders can be challenging for clinicians. In this paper, we aimed to discuss the most important steps and pitfalls in analyzing and treating a case with extreme metabolic disarrangements as a consequence of an HHS. Electrolyte disturbances due to fluid shifts and water deficits may result in potentially dangerous hypernatriema and hyperosmolality. In addition, acid-base disorders often co-occur and several approaches have been advocated to assess the acid-base disorder by integration of the principles of mass balance and electroneutrality. Based on the case vignette, four explanatory methods are discussed: the traditional bicarbonate-centered method of Henderson-Hasselbalch, the strong ion model of Stewart, and its modifications ‘Stewart at the bedside’ by Magder and the simplified Fencl-Stewart approach. The four methods were compared and tested for their bedside usefulness. All approaches gave good insight in the metabolic disarrangements of the presented case. However, we found the traditional method of Henderson-Hasselbalch and ‘Stewart at the bedside’ by Magder most explanatory and practical to guide treatment of the electrolyte disturbances and in exploring the acid-base disorder of the presented case. Introduction This is accompanied by changes in pCO2 and bicarbonate (HCO₃ ) levels, depending on the cause of the acid-base disorder.
    [Show full text]
  • Muscle Physiology Page 1 of 17
    Emojevwe’s Lecture note on physiology- Muscle Physiology Page 1 of 17 MUSCLE PHYSIOLOGY (PHS 213) By Emojevwe V. Course Objectives: To familiarize students with the principles and basic facts of Human Physiology and with some of the laboratory techniques and equipment used in the acquisition of physiological data. The emphasis will be on muscles physiology. Since the course will focus on muscle physiology, some cellular and molecular mechanisms will be discussed in order to present a current view of physiological principles of muscle. Where appropriate, basic chemical and physical laws will be reviewed in order to enhance and to promote student understanding. The laboratory component of the course is designed to reinforce the topics discussed in lecture, as well as to familiarize students with some of the laboratory techniques and equipment used in muscle research Student Learning Outcomes: Upon successful completion of lecture portion of this course, the students will be able to describe, identify, and/or explain: • Structure and function of skeletal muscle, including excitation-contraction coupling, sliding filament mechanism, force generation, and isometric versus isotonic contractions. • Structure and functions of the cardiovascular system, including the mechanical and electrical properties of cardiac muscle function. • Structure and functions of smooth muscles including contraction of smooth muscle Upon successful completion of the laboratory portion of this course, the students will be able to describe, identify, explain, perform, and/or measure: • Computer simulations of the membrane potential, action potential, and synaptic neurotransmission. • Skeletal muscle mechanics, and the electromyogram (EMG). Required Course Materials: • Any textbook of physiology (human or medical) published within the last four years will be appropriate.
    [Show full text]
  • Rho Kinase Proteins—Pleiotropic Modulators of Cell Survival and Apoptosis
    ANTICANCER RESEARCH 31: 3645-3658 (2011) Review Rho Kinase Proteins—Pleiotropic Modulators of Cell Survival and Apoptosis CATHARINE A. STREET1 and BRAD A. BRYAN2 1Ghosh Science and Technology Center, Department of Biology, Worcester State University, Worcester, MA, U.S.A.; 2Center of Excellence in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A. Abstract. Rho kinase (ROCK) proteins are Rho-GTPase regulators of actin cytoskeletal dynamics, and therefore activated serine/threonine kinases that function as modulators control cell migration and motility (1). Specifically, ROCK of actin-myosin cytoskeletal dynamics via regulation of Lin11, proteins promote the formation of stress fibers and focal Isl-1 & Mec-3 domain (LIM) kinase, myosin light chain (MLC), adhesions (Figure 1), but have also been implicated in and MLC phosphatase. A strong correlation between diverse processes such as cell junction integrity and cell cytoskeletal rearrangements and tumor cell invasion, metastasis, cycle control (2). ROCK activity is responsible for and deregulated microenvironment interaction has been stabilization of actin microfilaments as well as promoting reported in the literature, and the utilization of pharmacological cellular contraction and cell substratum contact. ROCK inhibitors of ROCK signaling for the treatment of cancer is stimulates actin polymerization via an inhibitory actively being pursued by a number of pharmaceutical phosphorylation of the actin severing LIM kinase (Figure 2). companies. Indeed, in many preclinical models ROCK inhibitors ROCK promotes cellular contraction and attachment via an have shown remarkable efficacy in reducing tumor growth and activating phosphorylation of myosin light chain (MLC) to metastasis.
    [Show full text]
  • Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer
    cancers Review Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer Nayden G. Naydenov 1, Susana Lechuga 1, Emina H. Huang 2 and Andrei I. Ivanov 1,* 1 Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] (N.G.N.); [email protected] (S.L.) 2 Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-445-5620 Simple Summary: Colorectal cancer (CRC) is a deadly disease that may go undiagnosed until it presents at an advanced metastatic stage for which few interventions are available. The develop- ment and metastatic spread of CRC is driven by remodeling of the actin cytoskeleton in cancer cells. Myosins represent a large family of actin motor proteins that play key roles in regulating actin cytoskeleton architecture and dynamics. Different myosins can move and cross-link actin filaments, attach them to the membrane organelles and translocate vesicles along the actin filaments. These diverse activities determine the key roles of myosins in regulating cell proliferation, differ- entiation and motility. Either mutations or the altered expression of different myosins have been well-documented in CRC; however, the roles of these actin motors in colon cancer development remain poorly understood. The present review aims at summarizing the evidence that implicate myosin motors in regulating CRC growth and metastasis and discusses the mechanisms underlying the oncogenic and tumor-suppressing activities of myosins. Abstract: Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide.
    [Show full text]
  • Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension
    life Review Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension Qunhui Yang * and Masatoshi Hori Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-7940; Fax: +81-3-5841-8183 Abstract: Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contrac- tion contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signal- ing pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension. Keywords: vascular smooth muscle contraction; hypertension; CPI-17 Citation: Yang, Q.; Hori, M. 1. Introduction Characterization of Contractile Three types of muscle tissues are found in vertebrates: skeletal muscle, cardiac muscle, Machinery of Vascular Smooth and smooth muscle [1]. Muscle contraction depends on the ATP-driven sliding of highly Muscles in Hypertension. Life 2021, organized arrays of actin filaments against arrays of myosin II filaments [2]. In smooth 11, 702. https://doi.org/10.3390/ muscle, phosphorylation at Thr18/Ser19 of the myosin regulatory light chain results in life11070702 myosin ATPase enzymatic activity that induces actin and myosin attachment to regulate smooth muscle contraction [3,4].
    [Show full text]
  • Problem-Based Review: a Patient with Metabolic Acidosis
    Acute Medicine 2012 11(4): 251-256 251 Trainee Section Problem-Based Review: A patient 251 with metabolic acidosis saf R Allan & C Foster Abstract Metabolic acidosis is a common metabolic derangement present in the acute medical patient. A thorough and structured investigative approach is required as there are many causes and management is reliant on identifying these. In particular calculation of the anion gap with correction for albumin level and use of the delta ratio can be helpful in complex cases especially in patients where a combination of metabolic derangements may be present. Keywords metabolic acidosis, anion gap, delta ratio, renal tubular acidosis, bicarbonate Key points • Calculation of the anion gap is crucial in identifying the cause of metabolic acidosis. • Metabolic acidosis is often multi-factorial and the delta ratio calculation can be useful in identifying situations where a normal gap acidosis coexists with a raised anion gap cause. • Identification of the specific cause(s) of metabolic acidosis is vital as this will usually guide treatment. • Bicarbonate treatment has a role in some cases but adverse effects should be considered. Case Vignette Although the anion gap calculation will narrow A 37 year old male with no past medical history presents our differential (Table 2), many possible explanations to the acute medical unit (AMU) with a history of general for the acidosis remain, especially when the gap is deterioration in health over the last 8 months. He has lost 10 high. The mnemonic MUDPILERS (Methanol, kg of weight and has severe fatigue. More recently he describes a Uraemia, Diabetic Ketoacidosis or other causes Table 1.
    [Show full text]
  • PHAR 503 Exam 2
    PHAR 503 Exam 2 Rho Chi Acid-Base Disorders Which medication would most likely NOT lead to a metabolic alkalosis? A. Loop Diuretic B. Thiazide Diuretic C. Desmopressin D. Citrate Which medication would most likely NOT lead to a metabolic alkalosis? A. Loop Diuretic B. Thiazide Diuretic C. Desmopressin D. Citrate Diuretics increase loss of H+, vomiting, hypokalemia, citrate is metabolized to HCO3- A patient suffering from an acute panic attack might be at risk for developing: A. Respiratory alkalosis B. Metabolic alkalosis C. Respiratory Acidosis D. Metabolic Acidosis A patient suffering from an acute panic attack might be at risk for developing: A. Respiratory alkalosis B. Metabolic alkalosis C. Respiratory Acidosis D. Metabolic Acidosis Hyperventilating -> blowing off CO2 (acid) If you have a patient who is experiencing a respiratory acidosis, which of the following sets of labs would most likely match the patient? A. pH: 7.41, HCO3-: 20 B. pH: 7.35, CO2: 52 C. pH: 7.35, HCO3-: 20 D. pH: 7.45, CO2: 32 If you have a patient who is experiencing a respiratory acidosis, which of the following sets of labs would most likely match the patient? A. pH: 7.41, HCO3-: 20 B. pH: 7.35, CO2: 52 C. pH: 7.35, HCO3-: 20 D. pH: 7.45, CO2: 32 Metabolic: HCO3- abnormalities, respiratory: PaCO2 What is the normal range for PaCO2? What is the normal range for HCO3-? What is the normal range for PaCO2? 35-45 (40!) What is the normal range for HCO3-? 22-26 (24!) ROME Respiratory Opposite: PaCo2 and pH go in opposite directions Metabolic Equal: HCO3- and pH go in the same direction Which of the following would NOT cause a metabolic acidosis? A.
    [Show full text]
  • Diabetic Ketoalkalosis in Children and Adults
    Original Article Diabetic Ketoalkalosis in Children and Adults Emily A. Huggins, MD, Shawn A. Chillag, MD, Ali A. Rizvi, MD, Robert R. Moran, PhD, and Martin W. Durkin, MD, MPH and DR are calculated because the pH and bicarbonate may be near Objectives: Diabetic ketoacidosis (DKA) with metabolic alkalosis normal or even elevated. In addition to having interesting biochemical (diabetic ketoalkalosis [DKALK]) in adults has been described in the features as a complex acid-base disorder, DKALK can pose diagnostic literature, but not in the pediatric population. The discordance in the and/or therapeutic challenges. change in the anion gap (AG) and the bicarbonate is depicted by an Key Words: delta ratio, diabetic ketoacidosis, diabetic ketoalkalosis, elevated delta ratio (DR; rise in AG/drop in bicarbonate), which is metabolic alkalosis normally approximately 1. The primary aim of this study was to de- termine whether DKALK occurs in the pediatric population, as has been seen previously in the adult population. The secondary aim was iabetic ketoacidosis (DKA), a common and serious dis- to determine the factors that may be associated with DKALK. Dorder that almost always results in hospitalization, is de- Methods: A retrospective analysis of adult and pediatric cases with a fined by the presence of hyperglycemia, reduced pH, metabolic 1 primary or secondary discharge diagnosis of DKA between May 2008 and acidosis, elevated anion gap (AG), and serum or urine ketones. August 2010 at a large urban hospital was performed. DKALK was as- In some situations, a metabolic alkalosis coexists with DKA sumedtobepresentiftheDRwas91.2 or in cases of elevated bicarbonate.
    [Show full text]
  • Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function
    cells Review Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function Cláudia Brito 1,2 and Sandra Sousa 1,* 1 Group of Cell Biology of Bacterial Infections, i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] 2 Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal * Correspondence: [email protected] Received: 19 May 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target. Keywords: non-muscle myosin 2A (NM2A); NM2A activity regulation; NM2A filament assembly; actomyosin cytoskeleton; cell migration; cell adhesion; plasma membrane blebbing 1. Superfamily of Myosins The cell cytoskeleton is an interconnected and dynamic network of filaments essential for intracellular organization and cell shape maintenance.
    [Show full text]
  • ABG Analysis in Clinical Setting
    CHAPTER ABG Analysis in Clinical Setting 117 Rajesh Mahajan, Suman Sethi INTRODUCTION defined by the ratio of PCO2 to HCO3 and not by absolute Acid-Base balance is an intricate concept which requires an value of either one alone.5,6 intimate and detailed knowledge of the body’s metabolic Overview of Fundamentals of Acid-Base Disorder pathways used to eliminate the H+ ion. Accurately Normal metabolism of proteins and nucleotides generates interpreting acid-base balance requires simultaneous about 100 mmol H+ per day in the form of sulphuric and measurements of arterial pH and plasma electrolytes, phosphoric acids. By comparison, hydration of CO2 to as well as knowledge of compensatory physiologic form H CO generates 12,500 mmol H+ per day. mechanisms. In this article, we’ll review normal acid-base 2 3 physiology, acid-base disturbances, and lab techniques Carbon dioxide transport and mathematical calculations used to identify the cause 1. Transport of carbon dioxide in the blood is of acid-base derangements. considerably more complex. A small portion of carbon dioxide, about 5 percent, remains BASIC PHYSIOLOGY unchanged and is transported dissolved in blood. Acid-base Chemistry 2. The remainder is found in reversible chemical pH combinations in red blood cells or plasma. Some The concept of pH was put forward by the Danish chemist, carbon dioxide binds to blood proteins, principally Soren Peter Sorensen in 1909 to refer to the negative hemoglobin, to form a compound known as logarithm of hydrogen ion (H+) concentration. An increase carbamate. in the pH indicates a proportionate decrease in the 3., About 88 percent of carbon dioxide in the blood is [H+] and a decrease in the pH indicates a proportionate in the form of bicarbonate ion.
    [Show full text]
  • Muscle Tissue
    Muscle Tissue Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Functions of muscle tissue . Movement . Maintenance of posture . Joint stabilization . Heat generation Tendon Dr. Heba Kalbouneh Dr. Belly Tendon Types of Muscle Tissue . Skeletal muscle . Cardiac muscle Dr. Heba Kalbouneh Dr. Smooth muscle Skeletal Attach to and move skeleton 40% of body weight Fibers = multinucleate cells (embryonic cells fuse) Cells with obvious striations Contractions are voluntary Cardiac: only in the wall of the heart Cells are striated Contractions are involuntary Dr. Heba Kalbouneh Dr. Smooth: walls of hollow organs Lack striations Contractions are involuntary . Their cells are called fibers because they are elongated Similarities… . Contraction depends on myofilaments . Actin . Myosin . Plasma membrane is called sarcolemma . Sarkos = flesh . Lemma = sheath Skeletal muscle Cardiac muscle Smooth muscle Dr. Heba Kalbouneh Dr. Skeletal muscle Epimysium surrounds whole muscle Endomysium is around each Dr. Heba Kalbouneh Dr. muscle fiber Perimysium is around fascicle Epimysium Fascicle Fascicle Fascicle Fascicle Fascicle Dr. Heba Kalbouneh Dr. Fascicle Perimysium Cell Cell Cell Dr. Heba Kalbouneh Dr. Cell Cell Endomysium Dr. Heba Kalbouneh Dr. Muscle fiber== musclemuscle cell=cell= myofibermyofiber Skeletal muscle This big cylinder is a fiber: a cell Fibers (each is one cell) have striations Myofibril is an organelle Myofibrils are organelles of the cell, are made up of myofilaments Myofibrils are long rows of repeating Dr. Heba Kalbouneh
    [Show full text]