The Microbiology of Table Salts

Total Page:16

File Type:pdf, Size:1020Kb

The Microbiology of Table Salts The microbiology of table salts Seana P. Thompson Cooperative Institute for Research in Environmental Sciences and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA Honors Thesis Committee: Noah Fierera, Abby Hickcoxb, Ravinder Singhc, Alison Vigersd a Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA b Arts and Sciences Honors Program, University of Colorado, Boulder, Colorado, USA c Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, Colorado, USA d Thesis Advisor. Department of Molecular, Cellular, Developmental Biology, Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA Defense Date: April 3rd, 2020 Abstract The dominant bacteria and archaea on table salts from around the world were identified and how these halophilic families varied as a function of salt chemical makeup was investigated. Through this study, the dominant taxa found on table salts were reported to be: Haloferacaceae, Pseudomonadaceae, Halomicrobiaceae, Halobacteriaceae, Nanohaloarchaeaceae, Rhodothermaceae, Burkholderiaceae, and Rhizobiaceae Marinobacteraceae, Alteromonadaceae, Rhodobacteraceae, Micrococcaceae, Moracellaceae, Staphylococcaceae, Oligoflexaceae, Halomonadaceae, and Flavobacteriaceae. The relative abundance of these microorganisms across samples was variable and related to the chemical composition of the table salts, including concentrations of iron (Fe), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca). The microbial families clustered into three general clusters. The three clusters were defined by Fe/K abundance, Na abundance, and Ca/Mg abundance. The Fe/K cluster showed the smallest range of microbial diversity and hosted a community dominated by Haloferacaceae. The Na cluster also hosted a dominant community of Haloferacaceae. This cluster also had a greater range of other microbes including Pseudomonadaceae, Halomicrobiaceae, Halobacteriaceae, Nanohaloarchaeaceae, Rhodothermaceae, Burkholderiaceae, and Rhizobiaceae. The Ca/Mg cluster showed the greatest diversity of microorganisms including Haloferacaceae, Pseudomonadaceae, Halomicrobiaceae, Halobacteriaceae, Nanohaloarchaeaceae, Rhodothermaceae, Burkholderiaceae, and Rhizobiaceae Marinobacteraceae, Alteromonadaceae, Rhodobacteraceae, Micrococcaceae, Moracellaceae, Staphylococcaceae, Oligoflexaceae, Halomonadaceae, and Flavobacteriaceae. These finding indicate a potential correlation between certain elements present in table salts and the microorganisms that reside there. Diverse microbial families thrive on table salts of varying composition, emphasizing the unique microbiology of a widely used food item. Introduction Environments with high concentrations of salt are considered extreme. These places foster microbial families that are unique from more hospitable environments because microorganisms must have a high salt tolerance to survive. Even something as small as a grain of salt can host a microbiome that is distinct from other environments. Microbes that thrive in salty conditions are called halophiles, and they are found across all three domains of life. Within the Bacteria domain of life, halophiles are found within the Fig. 1 The set of 40 table salt samples received from the Robert Dunn Lab at North Carolina State University. Cyanobacteria, Proteobacteria, Firmicutes, Photo taken by Lauren Nichols from the Robert Dunn Lab. Actinobacteria, Spirochaetes, and Bacteroidetes phyla [7]. Within the Archaea domain, halophilic microorganisms are found in the class Halobacteria and in Methods the order Methanococci [7]. Halophiles and non-halophilic microbes are often found A set of 40 table salt samples was collected within the same lineages. However, certain by the Robert Dunn Lab at North Carolina cohorts are made up entirely of halophilic State University from various salt species. These halophile-specific groups are companies across the world (Fig. 2). This set the order Halobacteriales of family was sent to the Fierer Lab and were stored in Halobacteriaceae (Euryarchaeota), the the -20C freezer to arrest microbial growth. order Halanaerobiales (Firmicutes) of The following procedures were followed for bacteria, the family Halomonadaceae the 40 samples examined in this study. (Gammaproteobacteria). Table salt is known generally by the chemical formula NaCl. However, there are Filtering Protocol other elements present in salt and each salt has a unique elemental makeup. With this in 0.25 grams of each salt was weighed and put mind, and the knowledge that different in individual 50 mL conical tubes. 50 mL elemental abundances can host unique microbial families, elemental composition of sterile water was measured into each tube. Tubes containing salt and sterile water were environments could be used to explain vortexed until the salt was fully dissolved. variation in microbial families. Specifically, The contents of each tube were poured over the elemental composition of different table a filter and filtered via vacuum filtration. salts could explain some of the apparent Another 50 mL of sterile water was poured variation in microorganisms across different salts. Fig. 2 The metadata that was received with the collection of salt samples. Not all information was available for each sample. An Invitrogen SequelPrep Normalization over the same filter and filtered via vacuum Plate (96) Kit was used to normalize the filtration. The filter was then removed with amplified PCR products. tweezers and put in individually labeled The microbial dataset was produced whirlpak bags and stored in a -20C freezer. using Illumina DNA sequencing, in which When original samples contained enough DNA is amplified, sequenced, and then salt to run the protocol again, duplicates analyzed. More information on sequencing were taken. can be found in the references [1]. Note: Filter blanks, extraction blanks, DNA Extractions and PCR blanks were all done as controls to compare to microorganisms found in all Salt sample filters were cut into pieces on samples. sterile petri dishes with tweezers and razor blades to make them the correct size to fit Salt Samples Chemical Analysis into DNA extraction single tubes. After the filters were cut and placed into DNA Each salt sample was chemically analyzed extraction single tubes, the DNeasy for presence and abundance of iron, PowerSoil Kits (Qiagen, DE) instructions potassium, magnesium, calcium, and sodium were followed. using inductively coupled plasma mass spectrometry. Mantel tests were run using PCR Bray-Curtis transformation to test for correlations between chemical elements. 16S rRNA gene PCR was performed on the extracted salt samples to amplify the DNA. Excel and R Studio Analysis Gel electrophoresis was done to verify the success of the PCR and DNA extractions Raw data was processed and filtered using using agarose gel and a DNA ladder for standard methods via DADA2 [1]. Blanks comparison. The gel was made with 135 mL were found to have very low community of Syber Safe and 2.5 grams of agarose. It abundance compared to the majority of the was run at 140 V for 45 minutes. samples. Thus, a cutoff of 8,000 total ASV reads was used to remove the blanks from downstream microbial analysis. Chloroplast, check if chemical elements were driving mitochondria, eukaryote, unassigned, and microbial community difference by NAs were filtered out and data was rarefied comparing individual matrices of chemistry to a depth of 8,000. Taxonomic relative and microbial data. PCoA was made to abundances were summarized. Using the extract ordination score and check metadata that came with the salt samples, correlation with chemical variables. PCoA dissimilarity matrices and ordination plots with Hellinger transformation was graphed were used to try to find clustering of the using Bray-Curtis Matrix and different samples. Ordinations were done with the metadata factors to find possible explanation metadata “Color”, “Type”, “Salt”, and for clusters. Chemistry data vectors were “Continent”. Microbial taxonomy was added to the microbial clustering graph. plotted in stacked bar plots at the order and Heatmaps for chemical abundance in family levels. Duplicates were dropped since samples and heatmaps for dominant duplicates were not able to be done for all microbial taxa in samples were created using samples. A taxa dissimilarity matrix was the ggplot2 package [2] and using Bray- calculated using the Bray-Curtis square root Curtis Square Root and Hellinger transformation. A mantel test was used to transformations. Fig. 3 The top 50 ASV reads from the microbial sequencing data. A majority of the top ASVs are salt- specific microbes. Fig. 4 Stacked bar plot showing the top 19 microbes found in the salt samples at the order level. “Na” is an unknown order of the Millicutes class of microbes. Results range of variation in families. There was a total range of 4,709 unique ASVs. Sequencing shows dominant microbial Ordinations done with the metadata “Color”, taxa found to be salt-specific microbes “Type”, “Salt”, and “Continent” were not valuable for explaining the clustering of Sequencing of the DNA extracted from the microbial samples. Without different salt samples gave us taxonomy (taxa) metadata, only stacked bar plots comparing information about the microorganisms found the abundances of microbial families within on these samples. The top
Recommended publications
  • Bradymonabacteria, a Novel Bacterial Predator Group with Versatile
    Mu et al. Microbiome (2020) 8:126 https://doi.org/10.1186/s40168-020-00902-0 RESEARCH Open Access Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments Da-Shuai Mu1,2, Shuo Wang2, Qi-Yun Liang2, Zhao-Zhong Du2, Renmao Tian3, Yang Ouyang3, Xin-Peng Wang2, Aifen Zhou3, Ya Gong1,2, Guan-Jun Chen1,2, Joy Van Nostrand3, Yunfeng Yang4, Jizhong Zhou3,4 and Zong-Jun Du1,2* Abstract Background: Bacterial predation is an important selective force in microbial community structure and dynamics. However, only a limited number of predatory bacteria have been reported, and their predatory strategies and evolutionary adaptations remain elusive. We recently isolated a novel group of bacterial predators, Bradymonabacteria, representative of the novel order Bradymonadales in δ-Proteobacteria. Compared with those of other bacterial predators (e.g., Myxococcales and Bdellovibrionales), the predatory and living strategies of Bradymonadales are still largely unknown. Results: Based on individual coculture of Bradymonabacteria with 281 prey bacteria, Bradymonabacteria preyed on diverse bacteria but had a high preference for Bacteroidetes. Genomic analysis of 13 recently sequenced Bradymonabacteria indicated that these bacteria had conspicuous metabolic deficiencies, but they could synthesize many polymers, such as polyphosphate and polyhydroxyalkanoates. Dual transcriptome analysis of cocultures of Bradymonabacteria and prey suggested a potential contact-dependent predation mechanism. Comparative genomic analysis with 24 other bacterial predators indicated that Bradymonabacteria had different predatory and living strategies. Furthermore, we identified Bradymonadales from 1552 publicly available 16S rRNA amplicon sequencing samples, indicating that Bradymonadales was widely distributed and highly abundant in saline environments. Phylogenetic analysis showed that there may be six subgroups in this order; each subgroup occupied a different habitat.
    [Show full text]
  • New 16S Rrna Primers to Uncover Bdellovibrio and Like Organisms Diversity and Abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet
    New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet To cite this version: Jade Ezzedine, Cécile Chardon, Stéphan Jacquet. New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance. Journal of Microbiological Methods, Elsevier, 2020, 10.1016/j.mimet.2020.105996. hal-02935301 HAL Id: hal-02935301 https://hal.inrae.fr/hal-02935301 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Microbiological Methods 175 (2020) 105996 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity T and abundance ⁎ Jade A. Ezzedine, Cécile Chardon, Stéphan Jacquet Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France ARTICLE INFO ABSTRACT Keywords: Appropriate use and specific primers are important in assessing the diversity and abundance of microbial groups Bdellovibrio and like organisms of interest. Bdellovibrio and like organisms (BALOs), that refer to obligate Gram-negative bacterial predators of Primer design other Gram-negative bacteria, evolved in terms of taxonomy and classification over the past two decades.
    [Show full text]
  • Genome Sequence and Description of Haloferax Massiliense Sp. Nov., a New Halophilic Archaeon Isolated from the Human Gut
    Extremophiles (2018) 22:485–498 https://doi.org/10.1007/s00792-018-1011-1 ORIGINAL PAPER Genome sequence and description of Haloferax massiliense sp. nov., a new halophilic archaeon isolated from the human gut Saber Khelaifa1 · Aurelia Caputo1 · Claudia Andrieu1 · Frederique Cadoret1 · Nicholas Armstrong1 · Caroline Michelle1 · Jean‑Christophe Lagier1 · Felix Djossou2 · Pierre‑Edouard Fournier1 · Didier Raoult1,3 Received: 14 November 2017 / Accepted: 5 February 2018 / Published online: 12 February 2018 © The Author(s) 2018. This article is an open access publication Abstract By applying the culturomics concept and using culture conditions containing a high salt concentration, we herein isolated the frst known halophilic archaeon colonizing the human gut. Here we described its phenotypic and biochemical characteriza- tion as well as its genome annotation. Strain Arc-HrT (= CSUR P0974 = CECT 9307) was mesophile and grew optimally at 37 °C and pH 7. Strain Arc-HrT was also extremely halophilic with an optimal growth observed at 15% NaCl. It showed gram-negative cocci, was strictly aerobic, non-motile and non-spore-forming, and exhibited catalase and oxidase activities. The 4,015,175 bp long genome exhibits a G + C% content of 65.36% and contains 3911 protein-coding and 64 predicted RNA genes. PCR-amplifed 16S rRNA gene of strain Arc-HrT yielded a 99.2% sequence similarity with Haloferax prahovense, the phylogenetically closest validly published species in the Haloferax genus. The DDH was of 50.70 ± 5.2% with H. prahovense, 53.70 ± 2.69% with H. volcanii, 50.90 ± 2.64% with H. alexandrinus, 52.90 ± 2.67% with H.
    [Show full text]
  • Downloaded from the National Center for Biotechnology Information (NCBI)
    microorganisms Article Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters Qing-Mei Li 1,2, Ying-Li Zhou 1,2, Zhan-Fei Wei 1,2 and Yong Wang 1,* 1 Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; [email protected] (Q.-M.L.); [email protected] (Y.-L.Z.); [email protected] (Z.-F.W.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Abstract: Bdellovibrionota is composed of obligate predators that can consume some Gram-negative bacteria inhabiting various environments. However, whether genomic traits influence their distribu- tion and marine adaptation remains to be answered. In this study, we performed phylogenomics and comparative genomics studies using 132 Bdellovibrionota genomes along with five metagenome- assembled genomes (MAGs) from deep sea zones. Four phylogenetic groups, Oligoflexia, Bdello- group1, Bdello-group2 and Bacteriovoracia, were revealed by constructing a phylogenetic tree, of which 53.84% of Bdello-group2 and 48.94% of Bacteriovoracia were derived from the ocean. Bacteri- ovoracia was more prevalent in deep sea zones, whereas Bdello-group2 was largely distributed in the epipelagic zone. Metabolic reconstruction indicated that genes involved in chemotaxis, flagellar (mobility), type II secretion system, ATP-binding cassette (ABC) transporters and penicillin-binding protein were necessary for the predatory lifestyle of Bdellovibrionota. Genes involved in glycerol metabolism, hydrogen peroxide (H2O2) degradation, cell wall recycling and peptide utilization were ubiquitously present in Bdellovibrionota genomes. Comparative genomics between marine and Citation: Li, Q.-M.; Zhou, Y.-L.; Wei, non-marine Bdellovibrionota demonstrated that betaine as an osmoprotectant is probably widely Z.-F.; Wang, Y.
    [Show full text]
  • Genome Size Evolution in the Archaea
    Kellner, S., Spang, A., Offre, P., Szollosi, G. J., Petitjean, C., & Williams, T. (2018). Genome size evolution in the Archaea. Emerging Topics in Life Sciences. https://doi.org/10.1042/ETLS20180021 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1042/ETLS20180021 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Portland Press at http://www.emergtoplifesci.org/content/early/2018/11/13/ETLS20180021 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Emerging Topics in Life Sciences (2018) https://doi.org/10.1042/ETLS20180021 Review Article Genome size evolution in the Archaea Siri Kellner1, Anja Spang2,3, Pierre Offre2, Gergely J. Szöllo˝si4,5, Celine Petitjean6 and Tom A. Williams6 1School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, U.K.; 2NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands; 3Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden; 4MTA-ELTE Lendület Evolutionary Genomics Research Group, 1117 Budapest, Hungary; 5Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary; 6School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, U.K.
    [Show full text]
  • Haloferax Massiliensis Sp. Nov., the First Human-Associated Halophilic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector NEW SPECIES Haloferax massiliensis sp. nov., the first human-associated halophilic archaea S. Khelaifia1,2 and D. Raoult1,2 1) Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS (UMR 7278), IRD (198), INSERM (U1095), AMU (UM63) and 2) Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Aix-Marseille Université, Marseille, France Abstract We report the main characteristics of Haloferax massiliensis strain Arc-HrT (= CSUR P974) isolated from stool specimen of a 22-year-old Amazonian obese female patient. © 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Culturomics, genomics, Haloferax massiliensis, taxonogenomics, taxonomy Original Submission: 6 May 2016; Revised Submission: 9 May 2016; Accepted: 10 May 2016 Article published online: 14 May 2016 low speed. The pure culture of this halophilic archaea grew Corresponding author: S. Khelaifia, URMITE, CNRS (UMR 7278), aerobically after 7-day incubation at 37°C. Strain Arc-Hr ex- IRD (198), INSERM (U1095), AMU (UM63), Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille hibits positive catalase and oxidase activities. The growing col- Cedex 5, France onies on the halophilic medium were red, opaque and 0.5 to fi E-mail: khelai [email protected] 1 mm in diameter. Cells were Gram-negative cocci, nonmotile and non–spore forming with a diameter of 0.9 μm. The 16S rRNA gene was sequenced using the primers as previously described [4] using a 3130-XL sequencer (Applied Biosciences, In December 2013, we successfully isolated the strain Arc-Hr Saint Aubin, France).
    [Show full text]
  • Emended Descriptions of Genera of the Family Halobacteriaceae
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 637–642 DOI 10.1099/ijs.0.008904-0 Taxonomic Emended descriptions of genera of the family Note Halobacteriaceae Aharon Oren,1 David R. Arahal2 and Antonio Ventosa3 Correspondence 1Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, Aharon Oren The Hebrew University of Jerusalem, Jerusalem 91904, Israel [email protected] 2Departamento de Microbiologı´a y Ecologı´a and Coleccio´n Espan˜ola de Cultivos Tipo (CECT), Universidad de Valencia, 46100 Burjassot, Valencia, Spain 3Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain The family Halobacteriaceae currently contains 96 species whose names have been validly published, classified in 27 genera (as of September 2008). In recent years, many novel species have been added to the established genera but, in many cases, one or more properties of the novel species do not agree with the published descriptions of the genera. Authors have often failed to provide emended genus descriptions when necessary. Following discussions of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteriaceae, we here propose emended descriptions of the genera Halobacterium, Haloarcula, Halococcus, Haloferax, Halorubrum, Haloterrigena, Natrialba, Halobiforma and Natronorubrum. The family Halobacteriaceae was established by Gibbons rRNA gene sequence-based phylogenetic trees rather than (1974) to accommodate the genera Halobacterium and on true polyphasic taxonomy such as recommended for the Halococcus. At the time of writing (September 2008), the family (Oren et al., 1997). As a result, there are often few, if family contained 96 species whose names have been validly any, phenotypic properties that enable the discrimination published, classified in 27 genera.
    [Show full text]
  • Pan-Genome Analysis and Ancestral State Reconstruction Of
    www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea.
    [Show full text]
  • The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
    biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations.
    [Show full text]
  • Silvanigrella Aquatica Gen. Nov., Sp. Nov., Isolated from a Freshwater Lake, Description of Silvanigrellaceae Fam
    Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Item Type Article Authors Hahn, Martin W; Schmidt, Johanna; Koll, Ulrike; Rohde, M; Verbarg, Susanne; Pitt, Alexandra; Nakai, Ryosuke; Naganuma, Takeshi; Lang, Elke Citation Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. 2017, 67 (8):2555-2568 Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.001965 Journal International journal of systematic and evolutionary microbiology Download date 01/10/2021 04:23:14 Item License http://creativecommons.org/licenses/by-nc-sa/4.0/ Link to Item http://hdl.handle.net/10033/621138 1 2nd revision IJSEM-D-16-00979R1 2 Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake 3 located in the Black Forest, Germany, description of Silvanigrellaceae fam. 4nov., Silvanigrellales
    [Show full text]
  • Mesohaline Responses to Cycles of “Famine Or Feast” in Layered Brines
    Int. Assoc. Sedimentol. Spec. Publ. (2011) 43, 315–392 Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines JOHN K. WARREN International Master Program in Petroleum Geoscience, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. Formerly: Shell Professor in Carbonate Studies, Oil and Gas Research Centre, Sultan Qaboos University, Muscat, Oman (E-mail: [email protected]) ABSTRACT Organic matter in modern saline systems tends to accumulate in bottom sediments beneath a density-stratified mass of saline water where layered hydrologies are subject to oscillations in salinity and brine level. Organic matter is not produced at a constant rate in such systems; rather, it is generated in pulses by a halotolerant community in response to relatively short times of less stressful conditions (brackish to mesohaline) that occur in the upper part of the layered hydrology. Accumulations of organic matter can occur in any layered brine lake or epeiric seaway when an upper less-saline water mass forms on top of nutrient-rich brines, or in wet mudflats wherever waters freshen in and above the uppermost few millimetres of a microbial mat. A flourishing community of halotolerant algae, bacteria and archaeal photosynthesizers drives the resulting biomass bloom. Brine freshening is a time of “feast” characterized by very high levels of organic productivity. In a stratified brine column (oligotrophic and meromictic) the typical producers are planktonic algal or cyanobacterial communities inhabiting the upper mesohaline portion of the stratified water mass. In mesohaline holomictic waters, where light penetrates to the water bottom, the organic-producing layer is typically the upper algal and bacterial portion of a benthic laminated microbialite characterized by elevated numbers of cyanobacteria.
    [Show full text]
  • Salinity Drives Archaeal Distribution Patterns in High Altitude Lake Sediments on the Tibetan Plateau Yongqin Liu 1,2,∗, John C
    FEMS Microbiology Ecology, 92, 2016, fiw033 doi: 10.1093/femsec/fiw033 Advance Access Publication Date: 16 February 2016 Research Article RESEARCH ARTICLE Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau Yongqin Liu 1,2,∗, John C. Priscu3, Jinbo Xiong4, Ralf Conrad5, Trista Vick-Majors3, Haiyan Chu6 and Juzhi Hou1 Downloaded from 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Beijing 100101, China, 2CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China, 3Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA, 4Faculty of Marine Sciences, Ningbo University, Ningbo http://femsec.oxfordjournals.org/ 315211, China, 5Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany and 6State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China ∗Corresponding author: Institute of Tibetan Plateau, Chinese Academy of Science, No. 16, Lincuo Rd., Beijing 100101, China. Tel: 86-10-84097122; E-mail: [email protected] One sentence summary: We represent a comprehensive investigation of archaeal diversity in the pristine lake sediments across the Tibetan Plateau, and found salinity is the key factor controlling archaeal community diversity and composition. Editor: Dirk Wagner by guest on April 5, 2016 ABSTRACT Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world’s highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes.
    [Show full text]