Origin, Adaptation, and Types of Corn W

Total Page:16

File Type:pdf, Size:1020Kb

Origin, Adaptation, and Types of Corn W NATIONAL CORN HANDBOOK THE CORN CROP NCH-10 Origin, Adaptation, and Types of Corn W. L. Brown, Pioneer Hi-Bred International, Inc., IA; M. S. Zuber, University of MIssouri; L. L. Darrah, USDA-ARS, University of MIssouri; and D. V. Glover, Purdue University Reviewers R. G. Creech, Mississippi State University A. A. Fleming, University of Georgia K. F. Schertz, USDA-ARS, Texas A&M University A. F. Troyer, DeKalb-Pfi zer Genetics, IL ORIGIN OF CORN attention were given to determining corn’s origin and Corn (Zea mays L.) is the only important cereal more to understanding the remarkable variability found indigenous to the Western Hemisphere. Apparently within the species. originating in Mexico, it spread northward to Canada and southward to Argentina. While the possibility of Variability and Races secondary centers of origin in South America cannot Regardless of origin, corn has proven to be one of be completely ruled out, the oldest (7000 years) the most adaptable and variable members of the grass archaeological corn was found in Mexico’s Valley of family. Its evolution, a large part of which apparently Tehuacan. occurred under domestication, has resulted in biotypes The earliest “corn” of which there is record is with adaptation ranging from the tropics to the north unmistakably corn. The female infl orescence of this temperate zone, from sea level to 12,000 feet altitude 5000 B.C. corn had reached a degree of specialization and growing periods (planting to maturity) extending that precluded the possibility of natural seed dissemi- from 6 weeks to 13 months. nation. Thus, the oldest corn of record was dependent Almost 300 races of corn have been described upon man for its survival. from Mexico, Central and South America, and the Numerous theories of origin have been offered Caribbean. Although many appear synonymous, at over the years, only two of which receive serious con- least 150 distinct entities have been collected in these sideration today. One is that teosinte (Zea mexicana) areas. It was from certain of these races that most of is the wild progenitor of corn; the other is that a wild the corns of North America were ultimately derived. pod corn, now extinct, was the ancestor of domesti- cated corn. While perhaps more students of corn seem Spread from Center of Origin to accept the fi rst theory, others are equally convinced Following discovery, corn moved quickly to Europe, of the second. Africa and Asia. From Spain, it spread northward to Aside from its possible role in the origin of corn, the short-growing-season areas of France, Germany, teosinte has had major impact on its evolution. In Mexico Austria and eastern Europe, where selection for early particularly, introgression between corn and teosinte maturity has produced some of the earliest commer- has likely occurred for centuries and continues to this cial varieties of corn now available. In Italy and Spain, day. The effects are apparent in the morphology and early counterparts of many South American races are cytology of both species. There is also reason to be- evident even today. lieve that genes for resistance to certain viruses have Although introduced into Africa soon after discovery, reached corn through its introgression with teosinte. much of the corn now found in that continent is derived The origin of corn may never be known with cer- from later introductions from the southern U.S., Mexico tainty. One reason is that the hypotheses purporting to and parts of eastern South America. Most of southern explain origin cannot be tested experimentally. There- Africa’s corn traces back to varieties grown in the fore, science would perhaps be better served if less southern U.S. in colonial and post-colonial times. Corn Cooperative Extension Service Iowa State University Ames, Iowa 50011 May 1985 of tropical middle (lowland) Africa is similar to the low- and moisture levels, (3) humidity of the atmosphere land and tropical corns of Central and South America. immediately surrounding the plant, (4) wind move- The most widely used and productive corns of ment, (5) day length, (6) light intensity, (7) air pollu- Asia are derived from Caribbean-type fl ints introduced tion, (8) soil type, (9) soil fertility, (10) number of days in relatively recent times. However, older and quite exceeding 50°F, (11) competition from other plants distinct types of corn can also be found, for example, including its intended neighbors as well as weeds, and among the hill people of Mindanao in southern Philip- (12) the disease-insect complex. pines. Included are some small-eared, early-maturing Many of these factors interact in a complex man- fl ints or pops that either have the capacity to grow ner to produce stress on the plant. The plant’s reac- and mature quickly before being devastated by downy tion to stress is under genetic control, and differences mildew or carry some genetic resistance to downy among hybrids exist. Corn breeders are continuously mildew. developing and testing new genetic combinations in In the eastern Himalayas (Sikkim and Bhutan), a differing environments to fi nd types that give the best distinctive type of popcorn is found whose Western agronomic performance over a range of geographical Hemisphere progenitors seem to have disappeared. locations and years. When and how the ancestor of this corn reached Asia Corn is grown from sea-level to altitudes of more is not known. However, since it is not present on the than 12,000 feet and from the equator to about 50° Indian subcontinent to the south, it may have reached north and south latitudes. Compared to environmen- the Himalayas by way of China and Tibet. In any tal conditions of the U.S. Corn Belt, many producing event, a search for similar corns in south China and areas would be considered very much substandard. In Tibet would seem justifi ed. harsh-environment areas, the varieties grown would be considered adapted because they responded the Corn of the U.S. Corn Belt best under the unfavorable growing conditions. The Whereas most of the modern races of corn are original open-pollinated varieties have become adapt- derived from prototypes developed by early native ed through selection over time by both man and the agriculturists of Mexico, Central and South America, environment. one outstanding exception is solely the product of post-colonial North America—the yellow dent corns Adaptation Within the Corn Belt that dominate the U.S. Corn Belt, Canada and much of World production of corn in the early 1980s ap- Europe today. The origin and evolution of this remark- proached 450 million metric tons annually, with the able race of corn have been clearly documented and U.S. contributing over 48 percent of the total. Of U.S. confi rmed. annual production, the 13 Corn Belt states account for In the early 1800s, two predominant races of corn about 82 percent. of North America’s eastern seaboard—the late-matur- No area of the world equals the Corn Belt for high ing Virginia Gourdseed and the early-maturing North- yields. This is due to a combination of ideal soils and eastern Flints—were fi rst crossed, and the superiority climate, advanced farmer know-how, and the suc- of the hybrid recognized and described. The cross was cess of corn breeders in developing hybrids with high repeated many times during the western migration of genetic potential. settlers; and out of these mixtures eventually emerged Climate. Corn is considered a warm-weather the Corn Belt dents, the most productive race of corn crop. In the Corn Belt, average summer temperatures found anywhere in the world. range from 70° to 80°F daytime and exceed 58°F at It was the highly selected varieties of Corn Belt night. The average frost-free growing period is over dents that formed the basis of hybrid corn and the 140 days. Greatest yields are obtained where 30 or source of the fi rst inbred lines used to produce hybrids. more inches of rain occur during the growing season. Germplasm from some of these varieties (Reid, Lan- In areas where rainfall is less than 20 inches, yields caster, Krug, etc.) still fi gure prominently in the ances- are much reduced unless irrigation is used. try of hybrids used in the Corn Belt even to this day. Rainfall distribution greatly infl uences maximum yields, especially for the 3-week period centered ADAPTATION OF CORN around tasseling. In the southern part of the Corn Belt, high-temperature stress and rainfall defi ciencies often Defi nition and Adaptation Worldwide occur in late July and August. Therefore, farmers of Adaptation in corn means good performance with this region try to avoid having corn tassel during this respect to yield and other agronomic characteristics dry, hot period by planting earlier and using earlier- in a given environment. The environment includes fl owering hybrids. all conditions to which the plant is subjected during Maturity. Maturity of corn hybrids is a genetic the growing season (from pre-seedling emergence to characteristic and is generally defi ned as the period harvest maturity). from germination to when the kernel ceases to increase The major environmental factors are: (1) daily max- in weight. In the northern Corn Belt, early hybrids often imum and minimum temperatures, (2) soil atmosphere reach physiological maturity in less than 100 days; whereas in the extreme south, 150 or more days may 2 be needed. These day periods are measures of rela- Dent Corn tive maturity. The U.S. Corn Belt dents originated from the Hybrids have traditionally been classifi ed into hybridization of the Southern Dent or late-fl owering 15 maturity groups ranging from Agricultural Experiment maize race called Gourdseed, and the early-fl owering Station (AES) 100 to AES 1500 (earliest to latest).
Recommended publications
  • Races of Maize in Bolivia
    RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E. David H. Timothy Efraín DÍaz B. U. J. Grant in collaboration with G. Edward Nicholson Edgar Anderson William L. Brown NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 747 Funds were provided for publication by a contract between the National Academythis of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made the of the Committee on Preservation of Indigenousfor Strainswork of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E., David H. Timothy, Efraín Díaz B., and U. J. Grant in collaboration with G. Edward Nicholson Calle, Edgar Anderson, and William L. Brown Publication 747 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1960 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS -NRC Publication 453 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA M. Roberts, U. J. Grant, Ricardo Ramírez E., L. W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E.
    [Show full text]
  • Races of Maize in Brazil and Other Eastern South American Countries
    RACES OF MAIZE IN BRAZIL AND OTHER EASTERN SOUTH AMERICAN COUNTRIES F. G Brieger J. T. A. Gurgel E. Paterniani A. Blumenschein M. R. Alleoni NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 593 Funds were provided for this publication by a contract between the National Academy of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made for the work of the Committee on Preservation of Indigenous Strains of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BRAZIL AND OTHER EASTERN SOUTH AMERICAN COUNTRIES F. G. Brieger, J. T. A. Gurgel, E. Paterniani, A. Blumenschein, and M. R. Alleoni Publication 593 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1958 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS - NRC Publication 4.53 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA L. M. Roberts, U. J. Grant, Ricardo Ramirez E., W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E. J. Wellhausen, Alejandro Fuedes O., and Antonio Hernandez Corzo in collaboration with Paul C.
    [Show full text]
  • Table of Contents
    Table of Contents Foreword . 2 Introduction. 3 Industrial Uses of Refined Corn Products . 7 Industrial Markets for Starch and Corn-derived Chemicals . 11 The Enzyme Advantage . 15 Plastics from Corn—The Vision Becomes Reality . 19 Renewable Resources Bring Sustainability to DuPont’s Newest Polymer Platform . 22 Corn Industry Statistics Shipments of Products of the Corn Refining Industry - 2000 . 3 Member Company Products . 5 Corn for Grain: Yield and Production . 14 Corn: Food and Industrial Uses . 16 U.S. Per Capita Sweetener Consumption . 18 World Corn Production, Consumption and Stocks . 21 Corn: Supply and Disappearance . 23 Exports of Products from Corn . 24 2001 Corn Annual Foreword The 2001 Corn Annual focuses on industrial uses and markets for refined corn products. Of the tradi- tional products of the industry—corn starch, sweeteners, oil and feedstuffs—starch has been the leader in industrial applications. In several industrial sectors, the use of starch is well established, but development of new uses and the extension of existing applications continue. Applications for sweeteners are rooted in food manufacturing, but advances in processing technology have opened several opportunities. By exploring the uses of starch in the established sectors of paper, adhesives and textiles, we hope to convey a better understanding of how starch can advance the production process. The review is also intended to provide an appreciation for product characteristics attributable to starch. An examination of the current and potential industrial markets for corn starch and corn-derived Charles F. Conner chemicals shows promising growth for the corn wet milling industry. This market analysis is President intended to provide insight to the dynamic of the relationship between supplier and consumer Corn Refiners as well as identify the factors that will influence growth.
    [Show full text]
  • Considerable Corn
    Considerable Corn Summary: Students explore the parts of a corn plant and their functions, the seven main types of corn, the many uses of corn, and some interesting information about popcorn. Objectives: The students will: • Identify the parts of a corn plant and their functions. Grade Level: K-6 • Discuss the seven main types of corn. • Describe the many uses of corn (food and non-food products). • Identify at least three facts about popcorn. Topic: Corn, Corn products Materials: PA Environment & Ecology Activity #1: Standards Addressed: • twelve name tags (optional) • marker Agriculture and Society: Activity #2: 4.4.4.B: Identify the role of the • several food and non-food items that contain corn sciences in Pennsylvania • lunch menu from the previous week • agriculture. paper/markers/crayons • Activity #3: Identify common plants found • microwave popcorn or popcorn kernels and an air popper (enough to on Pennsylvania farms. feed each student a handful) • Identify the parts of important • paper and pencils agricultural plants. 4.4.4.C: Know that food and fiber Getting Started: originate from plants and animals. Activity #1: • Identify agricultural products • Make a copy of the corn plant illustration (in Appendix) ahead of time so that are local and regional. that you can use it to introduce the plant parts and functions to the class. • Depending on the time of the year, you may be able to bring in a real Identify an agricultural stalk of corn. product based on its origin. Activity #2: • Buy the corn-related food items ahead of time (or save empty containers Teaching Methods: from home).
    [Show full text]
  • Corn Has Diverse Uses and Can Be Transformed Into Varied Products
    Maize Based Products Compiled and Edited by Dr Shruti Sethi, Principal Scientist & Dr. S. K. Jha, Principal Scientist & Professor Division of Food Science and Postharvest Technology ICAR-Indian Agricultural Research Institute, Pusa New Delhi 110012 Maize is also known as Corn or Makka in Hindi. It is one of the most versatile crops having adaptability under varied agro-climatic conditions. Globally, it is known as queen of cereals due to its highest genetic yield potential among the cereals. In India, Maize is grown throughout the year. It is predominantly a kharif crop with 85 per cent of the area under cultivation in the season. The United States of America (USA) is the largest producer of maize contributing about 36% of the total production. Production of maize ranks third in the country after rice and wheat. About 26 million tonnes corn was produced in 2016-17 from 9.6 Mha area. The country exported 3,70,066.11 MT of maize to the world for the worth of Rs. 1,019.29 crores/ 142.76 USD Millions in 2019-20. Major export destinations included Nepal, Bangladesh Pr, Myanmar, Pakistan Ir, Bhutan The corn kernel has highest energy density (365 kcal/100 g) among the cereals and also contains vitamins namely, vitamin B1 (thiamine), B2 (niacin), B3 (riboflavin), B5 (pantothenic acid) and B6. Although maize kernels contain many macro and micronutrients necessary for human metabolic needs, normal corn is inherently deficient in two essential amino acids, viz lysine and tryptophan. Maize is staple food for human being and quality feed for animals.
    [Show full text]
  • Different Types of Corn There a Various Types of Corn and They All Have Different Purposes and Distinguished Traits
    Different Types of Corn There a various types of corn and they all have different purposes and distinguished traits. Read about the 5 different types of corn and write a 5 paragraph essay on what type of corn you would want to grow. Make sure you do your research! Dent Corn: This type of corn is often used for livestock feeds, industrial products, and as well as used to make processed foods. Another name for dent corn is “Field Corn”. This type of corn is mostly grown in the United States. This corn is a mix of hard and soft starches that become indented when the corn dries out. Flint Corn: Also known as “Indian Corn” is very similar to Dent Corn. They have primarily the same purpose as dent corn, but in the United States its main purpose is decoration. Flint Corn is primarily grown in Central and South America. It has a hard outer shell and the kernels are a variety of colors from red to white. Popcorn: Popcorn is a type of Flint Corn, although it has it has different size, shape, starch level, and moisture content. It has a soft starchy center surrounded by a very hard exterior shell. When popcorn is heated, the natural moisture inside the shell turns into steam and builds up enough pressure until it explodes. Sweet Corn: Also known as “corn on the cob”. This type of corn you will find at your summer BBQ’s and you love to enjoy it with a burger on a hot summer day. This type of corn can be canned or frozen for future consumption.
    [Show full text]
  • Identification of Valuable Corn Quality Traits for Starch Production
    Identification of Valuable Corn Quality Traits for Starch Production By: Lawrence A. Johnson Center for Crops Utilization Research Food Science and Human Nutrition C. Phillip Baumel Economics Connie L. Hardy Center for Crops Utilization Research Pamela J. White Food Science and Human Nutrition A project of the Iowa Grain Quality Initiative Traits Task Team Funded by the Iowa Corn Promotion Board 306 West Towers 1200 35th St. West Des Moines, IA 50266 October 1999 Center for Crops Utilization Research Iowa Agriculture & Home Economics Experiment Station Iowa State University, Ames, IA 2 Acknowledgment This report is intended to provoke discussion and debate that will lead to a vision among researchers in public institutions, seed companies, and the starch processing and food industries for modifying corn traits for starch (and other complex carbohydrates) production to enhance utilization and profitability of growing corn. The report attempts to provide direction to farmer organizations and to the corn industry about potential targets for investing research funds. One should recognize that some of the modifications considered required speculation about functional properties and potential applications. Additional research on the relationship between the structures of starch and other complex carbohydrates and functionality in food and industrial applications may refute some of that speculation. Also, this document is a consensus report taking into account the recommendations and reviews of the consultants and advisors identified below. Dr. Jay-lin Jane, Food Science and Human Nutrition, Iowa State University, Ames, IA Dr. Morton W. Rutenberg, Emmar Consultants, North Plainfield, NJ Dr. Henry Zobel, ABCV Starch, Darien, IL Dr. Robert Friedman, Cerestar USA, Inc., Hammond, IN Dr.
    [Show full text]
  • Breeding for Grain Quality Traits L
    Agronomy Publications Agronomy 2005 Breeding for grain quality traits L. M. Pollak United States Department of Agriculture M. P. Scott Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/170. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Maydica 50 (2005): 247-257 BREEDING FOR GRAIN QUALITY TRAITS L.M. Pollak*, M.P. Scott USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA Received February 9, 2005 ABSTRACT - Plant breeders have been extremely success- of vertically integrated grain utilization systems can ful at improving the yield of maize. Grain quality has re- capture the added value in an improved quality ceived less attention; however important advances have product. been made by breeders in this area as well. Maize with a The feasibility of breeding for grain quality in wide range of compositions and fractions within the major maize is best illustrated by the Illinois Long-Term grain components has resulted from breeders taking ad- Selection experiment for protein and oil.
    [Show full text]
  • Origin of Corn Belt Maize and Its Genetic Significance
    EDGAR ANDERSON Missouri Botanical Garden and WILLIAM L. BROWN Pioneer Hybrid Corn Company Chapter 8 Origin of Corn Belt Maize and Its Genetic Significance Several ends were in view when a general survey of the races and varieties of Zea mays was initiated somewhat over a decade ago (Anderson and Cutler, 1942). Maize, along with Drosophila, had been one of the chief tools of mod­ ern genetics. If one were to use the results of maize genetics most efficiently in building up general evolutionary theories, he needed to understand what was general and what was peculiar in the make-up of Zea mays. Secondly, since maize is one of the world's oldest and most important crops, it seemed that a detailed understanding of Zea mays throughout its entire range might be useful in interpreting the histories of the peoples who have and are using it. Finally, since maize is one of our greatest national resources, a survey of its kinds might well produce results of economic importance, either directly or indirectly. Early in the survey it became apparent that one of the most significant sub-problems was the origin and relationships of the common yellow dent corns of the United States Corn Belt. Nothing exactly like them was known elsewhere in the world. Their history, though embracing scarcely more than a century, was imperfectly recorded and exasperatingly scattered. For some time it seemed as if we might be able to treat the problem only inferentially, from data derived from the inbred descendants of these same golden dent corns. Finally, however, we have been able to put together an encouragingly complete history of this important group of maize varieties, and to confirm our historical research with genetical and cytological evidence.
    [Show full text]
  • NOF Floriani Info Sheet.Pdf
    Nick’s Organic Farm Potomac and Buckeystown, MD www.nicksorganicfarm.com ORGANIC RED FLORIANI “Spin Rossa della Valsugana” Whole-Grain Heritage Flint Corn—GMO-Free ~ Ideal for Polenta and Cornbread ~ Keep refrigerated The Story of Floriani Red Corn Originally from the Americas hundreds of years ago, “Spin Rossa della Valsugana" or “Spiny Red from the Valley of Sugana” probably arrived in Italy in the 16th century via Spain, as European explorers brought plants and animals home. Over the centuries, this Native American red flint corn adapted to the climate of northern Italy in the foothills of the Alps. The plants are open pollinated, in nature, uncontrolled by hybrid techniques, thus allowing for a wide range of genetic diversity to arise. Farmers selected which seeds to keep based on their good flavor and palatability, red color, and pointed kernels, while the plants developed an ability to germinate and mature in the cool Alpine climate. This special red corn was reintroduced to the Americas around 2008, when William Rubel, a food historian and writer, visited Italy and brought some back. Coordinating with farmers across the United States, Rubel was able to test it in various locations, effectively returning it to this side of the Atlantic. The farmers decided on the name “Floriani Red,” after the Italian family who gave Rubel the seeds. Similar efforts to revitalize red flint corns on a larger scale are also taking place today in northern Italy. This Floriani Red corn is particularly important because it is a “landrace,” that is, a traditionally farmed, locally adapted variety with high genetic diversity.
    [Show full text]
  • Hopi Crop Diversity and Change
    J. Ethtlobiol. 13(2);203-231 Winter 1993 HOPI CROP DIVERSITY AND CHANGE DANIELA SOLER I and DAVID A. CLEVELAND Center for People, Food, and Environment 344 South Third Ave. Thcson, AZ 85701 ABSTRACT.-There is increasing interest in conserving indigenous crop genetic diversity ex situ as a vital resource for industrial agriculture. However, crop diver­ sity is also important for conserving indigenously based, small-scale agriculture and the farm communities which practice it. Conservation of these resources may best be accomplished, therefore, by ensuring their survival in situ as part of local farming communities like the Hopi. The Hopi are foremost among Native Ameri­ can farmers in the United States in retaining their indigenous agriculture and folk crop varieties (FVs), yet little is known about the dynamics of change and persis­ tence in their crop repertoires. The purpose of our research was to investigate agricultural crop diversity in the form of individual Hopi farmers' crop reper­ toires, to establish the relative importance of Hopi FVs and non·Hopi crop vari­ eties in those repertoires, and to explore the reasons for change or persistence in these repertoires. We report data from a 1989 survey of a small (n "" 50), oppor­ tunistic sample of Hopi farmers and discuss the dynamics of change based on cross·sectional comparisons of the data on crop variety distribution, on farmers' answers to questions about change in their crop repertoires, and on the limited comparisons possible with a 1935 survey of Hopi seed sources. Because ours is a small, nonprobabilistic sample it is not possible to make valid extrapolations to Hopi farmers in general.
    [Show full text]
  • Zea-Amaizing - Some Facts About Corn
    Zea-amaizing - some facts about Corn Corn (Zea maize) as we know it today would There are many kinds of corn but the most not exist if humans hadn't cultivated and common types are: Flint corn, also known as developed it. It is a plant that does not grow Indian corn, that can be red, yellow, white or naturally in the wild and can only survive if blue; Dent corn, which is a yellow or white planted and protected by humans. field corn grown for livestock and industry; Unfortunately, many varieties of corn have Sweet corn, which contains more sugar and now been damaged by "genetic pollution" is for eating; and Popcorn, which is a kind of (GMO corn). 80% of conventional corn in the Flint corn with an extra starchy center and USA is GM. For more info and action go to very hard capsule. OrganicConsumers.org/corn/index.cfm Corn is gluten-free and a cupful has 16 gm Scientists believe the indigenous peoples of of protein, 1 gm of sugar (123 gm central Mexico developed corn at least 7000 carbohydrate), 12 gm of fiber and 8 gm of fat years ago. It was started from a wild grass (1 gm of which is saturated). It contains called teosinte. The kernels were small and nine amino acids that are best were not placed close together like kernels complemented by animal protein, and is on the husked ear of modern corn. Also high in magnesium, calcium, iron, known as maize, Indians throughout North phosphorus, potassium, selenium and and South America eventually depended sodium.
    [Show full text]