52818210.2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

52818210.2019.Pdf Estrategia De Modificación Metabólica De Una Cepa Nativa De Clostridium Para La Producción De 1,3-Propanodiol A Partir De Glicerol Ximena Carolina Pérez Mancilla, M.Sc. Universidad Nacional de Colombia Facultad de Ciencias, Doctorado en Biotecnología Bogotá, Colombia 2019 Estrategia De Modificación Metabólica De Una Cepa Nativa De Clostridium Para La Producción De 1,3-Propanodiol A Partir De Glicerol Ximena Carolina Pérez Mancilla, M.Sc. Tesis presentada como requisito parcial para optar al título de: Doctora en Ciencias- Biotecnología Directora: Dr. rer. nat. Dolly Montoya Castaño Codirector: Dr. rer. nat Diego Mauricio Riaño Pachón Línea de Investigación: Microorganismos Solventogénicos Grupo de Investigación: Bioprocesos y Bioprospección Universidad Nacional de Colombia Facultad de Ciencias, Doctorado en Biotecnología Bogotá, Colombia 2019 A mi mamá, eres mi apoyo, mi razón de ser, mi ejemplo. Todo en la vida te lo debo a ti. A mi familia, lo más grande y verdadero que Dios me dio, cómplices y consejeros en este largo camino. Agradecimientos A mi profesora Dolly Montoya, gracias por acompañar mi camino desde hace tantos años, por ser ejemplo, tutora y amiga; hoy soy una persona mejor por usted. A mi codirector, Diego Riaño. Gracias por sus enseñanzas, consejos, disposición, paciencia y apoyo, sin lo que no habría podido alcanzar este objetivo de vida. Al grupo de investigación de Bioprocesos y Bioprospección donde he estado por 12 años de mi vida formándome y particularmente al Ingeniero Gustavo Buitrago y a Mauricio Bernal por sus contribuciones y apoyo. Al programa de Doctorado en Biotecnología y quienes lo apoyan. A BIOS por abrirme un espacio para iniciar mi curva de conocimiento en bioinformática. A Jason Papin y su grupo de investigación en la Universidad de Virginia, que fue mi hogar por 6 meses y donde me sentí acogida y apreciada, intelectualmente y como persona. Al IBUN en general por todo lo que me ha brindado. A la Universidad Nacional de Colombia que me ha hecho quien soy como profesional y que me ha dado todas las herramientas y oportunidades. A mis amigos, especialmente a Pats, Diego, Yamile, Diana B., Laura M. y Natalia Taboada. Su lealtad, compañía, cariño y apoyo son invaluables para mí. Resumen El incremento de la producción de fuentes energéticas alternativas como biodiesel ha conllevado a estudiar la posibilidad de establecer biorrefinerías donde se haga uso del subproducto glicerol sin purificar como sustrato para la producción de 1,3-Propanodiol (1,3-PD) por parte de microorganismos del género Clostridium. Con el propósito de establecer una estrategia de modificación genética a partir del análisis del transcriptoma de Clostridium sp. IBUN13A para la producción de 1,3-PD se obtuvo inicialmente su genoma, lo que otorgó un panorama global del potencial metabólico de la cepa, así como la base de la construcción de un modelo metabólico. Así mismo se realizó un estudio de genómica comparativa entre 32 cepas del género, mostrando que este tiene una amplia plasticidad génica. Tomando en cuenta la tendencia actual de comprender globalmente la información que se puede obtener a partir de técnicas moleculares de punta y generar modelos predictivos de los organismos vivos a partir de la biología de sistemas, se utilizó la red metabólica obtenida previamente dentro del grupo de investigación para implementar estrategias de manipulación in silico de triples mutantes, que nos permitieron evaluar la viabilidad de modificar de forma racional al microorganismo y para lo que no se encontraron incrementos en el rendimiento molar del diol de más de 2%. De igual forma se establecieron las diferencias en el perfil transcriptómico global de la cepa en cultivo con glicerol respecto a glucosa, lo cual es fuente de información sobre la fisiología de esta bacteria y sobre posibles blancos de manipulación genética. Palabras clave: Clostridium, transcriptoma, genoma, genómica comparativa, red metabólica, 1,3-Propanodiol. X Estrategia De Modificación Metabólica De Una Cepa Nativa De Clostridium Para La Producción De 1,3- Propanodiol A Partir De Glicerol Abstract The increase in the production of alternative energy sources such as biodiesel, has encouraged the study about the possibility of establishing biorefineries where glycerol (byproduct of this process) can be used without purifying as a substrate to produce 1,3- propanediol (1,3-PD) by microorganisms of the genus Clostridium. In order to establish a genetic modification strategy based on the analysis of the transcriptome of Clostridium sp. IBUN13A for producing 1,3-PD, at first its genome was obtained, which gave an overview of the metabolic potential of the strain, as well as the basis of the construction of a metabolic model. Likewise, a study of comparative genomics was carried out among 32 strains of the genus, showing that it has a broad genetic plasticity. Taking into account the current trend of globally understanding the information that can be obtained from cutting-edge molecular techniques and generating predictive models of living organisms from Systems Biology, we used the metabolic network previously obtained within the research group to implement strategies of in silico manipulation of triple mutants, which allowed us to evaluate the feasibility of modifying the microorganism rationally and for which no were found increases in the molar yield of the alcohol of more than 2%. Also, the differences in the global transcriptomic profile of the strain cultured with glycerol were established with respect to glucose, which is a source of information about the physiology of this strain and possible targets of genetic manipulation. Keywords: Clostridium, transcriptome, genome, comparative genomics, metabolic network, 1,3-Propanediol Contenido XI Contenido Pág. Resumen y Abstract ....................................................................................................... IX Lista de figuras ..................................................................................................................XIV Lista de tablas ............................................................................................................. XVI Introducción .................................................................................................................... 1 Capítulo 1. Estado del Arte ............................................................................................. 5 1.1. Metabolismo del glicerol para la obtención de productos de valor agregado vía biotecnológica ............................................................................................................... 5 1.2. 1,3-Propanodiol y su importancia a nivel industrial ............................................. 7 1.3. Clostridium sp. y metabolismo del glicerol .......................................................... 8 1.4 Estrategias de modificación genética para la producción de 1,3-Propanodiol a partir de glicerol ................................................................................................................... 10 1.5 Transcriptoma y su aplicación en el conocimiento del metabolismo de Clostridium ................................................................................................................................... 12 1.5.1 Avances en el análisis del metabolismo de Clostridium por medio de transcriptómica ......................................................................................................... 13 1.6 Reconstrucción metabólica: herramienta para análisis in silico de la información ómica de clostridios ................................................................................................................ 16 1.7 Avances en el estudio de cepas de Clostridium por parte del Grupo de Bioprocesos y Bioprospección de la Universidad Nacional de Colombia ......................................... 17 1.8 Referencias ........................................................................................................... 19 Capítulo 2. Potencial metabólico de clostridium sp para producir 1,3-propanodiol27 2.1 Introducción ...................................................................................................... 29 2.2 Métodos ................................................................................................................ 31 2.2.1 Anotación del genoma: .................................................................................... 31 2.2.1.1 Cepas bacterianas: ....................................................................................... 31 2.2.1.2 Ensamblaje y anotación: ............................................................................... 31 2.2.2 Análisis del genoma in silico - Genómica comparativa ....................................... 32 2.2.2.1 Secuencias: .................................................................................................... 32 2.2.2.2 Análisis de genómica comparativa: ........................................................... 32 2.3 Resultados ............................................................................................................ 33 2.3.1 Potencial metabólico global de la cepa Clostridium IBUN13A: ....................... 33 2.3.2 Genómica comparativa de cepas de Clostridium IBUN13A con capacidad de obtener 1,3-Propanodiol: .......................................................................................... 40 2.4 Discusión ........................................................................................................
Recommended publications
  • Structure and Dynamics of the Microbial Communities Underlying the Carboxylate Platform for Biofuel Production
    Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production E.B. Hollister 1, A.K. Forrest 2, H.H. Wilkinson 3, D.J. Ebbole 3, S.A. Malfatti 4, S.G. Tringe 4, M.T. Holtzapple 2, T.J. Gentry 1 1 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA 77843-2474 2 Department of Chemical Engineering, Texas A&M University, College Station, TX, USA 77843-3122 3 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX USA 77843-2132 4 DOE Joint Genome Institute, Walnut Creek, CA, USA 94598 July 31, 2010 ACKNOWLEDGMENT The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Supplementary Materials
    SUPPLEMENTARY MATERIALS Table S1. Chemical characteristics of the two digestate forms (SD and WD). Values quoted are expressed as % of air-dry digestate (means followed by standard error in brackets). References for the employed methods used for determination of each chemical characteristic is also reported. SD WD Reference Org C % 44.4 (0.33) 1.1 (0.01) [81] Tot N % 1.4 (0.01) 0.4 (0.01) [82] C/N 31.4 (0.17) 3.1 (0.04) NH4-N % n.d 0.2 (0.00) [83] K % 1.7 (0.00) n.d. [84] P % 0.9 (0.01) n.d. [84] S % 0.23 (0.02) n.d. [85] SD = solid digestate; WD = whole digestate. Table S2. Soil physical and chemical characteristics at the beginning of trial (t0) (means from 9 observations followed by standard errors in brackets). Clay (%) 41.9 (1.22) Silt (%) 47.8 (2.13) Moisture (%) 24.46 (1.24) Bulk density (g cm-3) 1.39 (0.04) pH 8.3 (0) CaCO3 (%) 11.4 (0.7) TOC (g kg-1) 12.8 (0.3) TN (g kg-1) 1.4 (0) C/N 9.4 (0.3) CEC (cmol(+) kg-1) 21.0 (0.7) Exchangeable Bases (mg kg-1) K 278.7 (8.0) Na 22.0 (3.0) Mg 201.7 (25.6) Ca 3718.6 (176.3) Available Microelements (mg kg-1) Cu 28.0 (5.0) Zn 1.7 (0.2) Fe 15.4 (0.5) Mn 16.3 (0.5) TOC = total organic C; TN = total N; CEC = cation exchange capacity Table S3.
    [Show full text]
  • Clostridium Amazonitimonense, Clostridium Me
    ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6].
    [Show full text]
  • A Report of 22 Unrecorded Bacterial Species in Korea, Isolated from Namhangang
    Journal114 of Species Research 7(2):114-122, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 2 A report of 22 unrecorded bacterial species in Korea, isolated from Namhangang Chaeyun Baek1 and Hana Yi1,2,* 1Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea 2School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea *Correspondent: [email protected] As part of a larger study of indigenous prokaryotic species diversity in South Korea, various samples from Namhangang were subjected to analyses. Fresh water, underwater sediment, and moss-inhabiting aerobic and anaerobic bacteria were isolated. 22 of the isolates were identified as unrecorded bacterial species in Korea that had ≥98.7% 16S rRNA gene sequence similarity with published species. The aerobic strains isolated were Kurthia gibsonii and Massilia plicata. Also identified were four facultative anaerobic strains: Bacillus hisashii, Enterococcus rotai, Paenibacillus vini, and Pediococcus pentosaceus. 16 strictly anaerobic strains were identified as Bacteroides xylanolyticus, Carnobacterium maltaromaticum, Clostridium argentinense, Clostridium beijerinckii, Clostridium butyricum, Clostridium cavendishii, Clostridium diolis, Clostridium frigidicarnis, Clostridium perfringens, Clostridium saccharoperbutylacetonicum, Clostridium sphenoides, Clostridium subterminale, Cutibacterium acnes, Paraclostridium bifermentans, Prevotella paludivivens, and Romboutsia lituseburensis. Based on the examination of morphological, cultural, physiological, and biochemical properties of the isolates, descriptive information of these previously unrecorded species is provided here. Keywords: anaerobes, Namhangang, unrecorded species Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.2.114 INTRODUCTION and Jungnyeongcheon, are freshwater rivers with 10.19 km2, 69.11 km2, 150.5 km2, and 130.19 km2 areas, respec- While molecular methods have supplanted traditional tively.
    [Show full text]
  • André Luis Alves Neves 6
    Elucidating the role of the rumen microbiome in cattle feed efficiency and its 1 potential as a reservoir for novel enzyme discovery 2 3 by 4 5 André Luis Alves Neves 6 7 8 9 10 11 12 A thesis submitted in partial fulfillment of the requirements for the degree of 13 14 15 Doctor of Philosophy 16 17 in 18 19 Animal Science 20 21 22 23 24 25 Department of Agricultural, Food and Nutritional Science 26 University of Alberta 27 28 29 30 31 32 33 34 35 36 37 © André Luis Alves Neves, 2019 38 39 40 Abstract 1 2 The rapid advances in omics technologies have led to a tremendous progress in our 3 understanding of the rumen microbiome and its influence on cattle feed efficiency. 4 However, significant gaps remain in the literature concerning the driving forces that 5 influence the relationship between the rumen microbiota and host individual variation, and 6 how their interactive effects on animal productivity contribute to the identification of cattle 7 with improved feed efficiency. Furthermore, little is known about the impact of mRNA- 8 based metatranscriptomics on the analysis of rumen taxonomic profiles, and a strategy 9 for the discovery of lignocellulolytic enzymes through the targeted functional profiling of 10 carbohydrate-active enzymes (CAZymes) remains to be developed. Study 1 investigated 11 the dynamics of rumen microorganisms in cattle raised under different feeding regimens 12 (forage vs. grain) and studied the relationship among the abundance of these 13 microorganisms, host individuality and the diet. To examine host individual variation in 14 the rumen microbial abundance following dietary switches, hosts were grouped based on 15 the magnitude of microbial population shift using log2-fold change (log2-fc) in the copy 16 numbers of bacteria, archaea, protozoa and fungi.
    [Show full text]
  • Outline Release 7 7C
    Garrity, et. al., March 6, 2007 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 7 – The Bacteria: Phylum “Firmicutes”: Class “Clostridia” George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall F Phylum Firmicutes AL N4Lid DOI: 10.1601/nm.3874 Class "Clostridia" N4Lid DOI: 10.1601/nm.3875 71 Order Clostridiales AL Prévot 1953. N4Lid DOI: 10.1601/nm.3876 Family Clostridiaceae AL Pribram 1933. N4Lid DOI: 10.1601/nm.3877 Genus Clostridium AL Prazmowski 1880. GOLD ID: Gi00163. GCAT ID: 000971_GCAT. Entrez genome id: 80. Sequenced strain: BC1 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 6 (GOLD) 6 (NCBI). N4Lid DOI: 10.1601/nm.3878 Clostridium butyricum AL Prazmowski 1880. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 19398. High-quality 16S rRNA sequence S000436450 (RDP), M59085 (Genbank). N4Lid DOI: 10.1601/nm.3879 Clostridium aceticum VP (ex Wieringa 1940) Gottschalk and Braun 1981. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 35044. High-quality 16S rRNA sequence S000016027 (RDP), Y18183 (Genbank). N4Lid DOI: 10.1601/nm.3881 Clostridium acetireducens VP Örlygsson et al. 1996. Source of type material recommended for DOE sponsored genome sequencing by the JGI: DSM 10703. High-quality 16S rRNA sequence S000004716 (RDP), X79862 (Genbank). N4Lid DOI: 10.1601/nm.3882 Clostridium acetobutylicum AL McCoy et al. 1926. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 824.
    [Show full text]
  • General Intoduction
    UNIVERSITÁ DEGLI STUDI DI CATANIA Dipartimento di Agricoltura, Alimentazione e Ambiente PhD Research in Food Production and Technology- XXVIII cycle Alessandra Pino Lactobacillus rhamnosus: a versatile probiotic species for foods and human applications Doctoral thesis Promoter Prof. C.L. Randazzo Co-promoter Prof. C. Caggia TRIENNIUM 2013-2015 Science knows no country, because knowledge is the light that illuminated the word 2 TABLE OF CONTENTS CHAPTER 1 General introduction and thesis outline 1 CHAPTER 2 Lactobacillus rhamnosus in Pecorino Siciliano 36 production and ripening CHAPTER 3 Lactobacillus rhamnosus in table olives 80 production CHAPTER 4 Lactobacillus rhamnosus GG for Bacterial 115 Vaginosis treatment CHAPTER 5 Lactobacillus rhamnosus GG supplementation 159 in Systemic Nickel allergy Syndrome patients APPENDICES List of figures 212 List of tables 216 List of pubblications 218 Poster presentations 220 Acknowledgements 221 Chapter 1 General introduction and thesis outline 4 Chapter 1 INTRODUCTION The term probiotic is a relatively new word meaning “for life”, used to designate microorganisms that are associated with the beneficial effects for humans and animals. These microorganisms contribute to intestinal microbial balance and play an important role in maintaining health. Several definitions of “probiotic” have been used over the years but the one derived by the Food and Agriculture Organization of the United Nations/World Health Organization (2001) (29), endorsed by the International Scientific Association for Probiotics
    [Show full text]
  • Characterization of Clostridium Spp. Isolated from Selected Surface Water Systems and Aquatic Sediment
    Characterization of Clostridium spp. isolated from selected surface water systems and aquatic sediment JCJ Fourie 22820337 Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in Microbiology at the Potchefstroom Campus of the North-West University Supervisor: Prof CC Bezuidenhout Co-Supervisor: Dr C Mienie May 2017 Abstract Clostridium are ubiquitous in nature and common inhabitants of the gastrointestinal track of humans and animals. Some are pathogenic or toxin producers. These pathogenic Clostridium species can be introduced into surface water systems through various sources, such as effluent from wastewater treatment plants (WWTP) and surface runoff from agricultural areas. In a South African context, little information is available on this subject. Therefore, this study aimed to characterize Clostridium species isolated from surface water and aquatic sediment in selected river systems across the North West Province in South Africa. To achieve this aim, this study had two main objectives. The first objective focused on determining the prevalence of Clostridium species in surface water of the Schoonspruit, Crocodile and Groot Marico Rivers and evaluate its potential as an indicator of faecal pollution, along with the possible health risks associated with these species. The presence of sulphite-reducing Clostridium (SRC) species were confirmed in all three surface water systems using the Fung double tube method. The high levels of SRC were correlated with those of other faecal indicator organisms (FIO). WWTP alongside the rivers were identified as one of the major contributors of SRC species and FIO in these surface water systems. These findings supported the potential of SRC species as a possible surrogate faecal indicator.
    [Show full text]
  • Genomic Insights from Monoglobus Pectinilyticus: a Pectin-Degrading Specialist Bacterium in the Human Colon
    The ISME Journal (2019) 13:1437–1456 https://doi.org/10.1038/s41396-019-0363-6 ARTICLE Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon 1,2 1,3 4 2 2 5 Caroline C. Kim ● Genelle R. Healey ● William J. Kelly ● Mark L. Patchett ● Zoe Jordens ● Gerald W. Tannock ● 6 6 1 7,8,9 1 Ian M. Sims ● Tracey J. Bell ● Duncan Hedderley ● Bernard Henrissat ● Douglas I. Rosendale Received: 19 April 2018 / Revised: 7 January 2019 / Accepted: 19 January 2019 / Published online: 6 February 2019 © International Society for Microbial Ecology 2019 Abstract Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate- 1234567890();,: 1234567890();,: active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M.
    [Show full text]
  • Isolation of New Strains of Bacteria Able to Synthesize 1, 3-Propanediol from Glycerol
    Advances in Microbiology, 2013, 3, 171-180 http://dx.doi.org/10.4236/aim.2013.32027 Published Online June 2013 (http://www.scirp.org/journal/aim) Isolation of New Strains of Bacteria Able to Synthesize * 1,3-Propanediol from Glycerol Daria Szymanowska-Powałowska#, Agnieszka Drożdżyńska, Natalia Remszel Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland Email: #[email protected], [email protected], [email protected] Received February 7, 2013; revised March 7, 2013; accepted April 7, 2013 Copyright © 2013 Daria Szymanowska-Powałowska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The natural environment is inhabited by many species that exhibit very specific metabolic activities that may find in- dustrial applications. The aim of the study was to select non-pathogenic cultures of bacteria of the genus Clostridium and lactic acid bacteria able to convert glycerol into 1,3-propanediol (1,3-PD). Another aim of this study was to identify the isolates that best produced 1,3-propanediol both from pure and crude glycerol. The most efficient strains identified (Cl. butyricum) were analysed on a bioreactor scale. The aim was to determine temperature conditions on the efficiency and duration of 1,3-PD synthesis. The species Clostridium were identified using amplification of the 16S rRNA coding sequence. A total of 123 isolates (of the genus Clostridium and lactic acid bacteria) were isolated; a vast majority of these were able to synthesize 1,3-PD.
    [Show full text]
  • Clostridium Cellulolyticum: Model Organism of Mesophilic Cellulolytic Clostridia
    FEMS Microbiology Reviews 29 (2005) 741–764 www.fems-microbiology.org Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia Mickae¨l Desvaux * Institute for Biomedical Research, The University of Birmingham – The Medical School, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK Received 26 November 2003; received in revised form 27 April 2004; accepted 1 November 2004 First published online 7 December 2004 Abstract Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon sub- strates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon con- sumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellod- extrin, and with pure cellulose, as a carbon source more
    [Show full text]
  • Effects of Heat Treatment on Hydrogen Production Potential and Microbial Community of Thermophilic Compost Enrichment Cultures
    1 1 Effects of heat treatment on hydrogen production potential 2 and microbial community of thermophilic compost 3 enrichment cultures 4 5 Marika E. Nissiläa,*, Hanne P. Tähtib, Jukka A. Rintalab, Jaakko A. Puhakkaa 6 7 a Department of Chemistry and Bioengineering, Tampere University of Technology, 8 Tampere, Finland. 9 b Department of Biological and Environmental Science, University of Jyväskylä, 10 Jyväskylä, Finland 11 * Corresponding author. Address: Tampere University of Technology, Department of 12 Chemistry and Bioengineering, P.O. Box 541, FIN-33101, Tampere, Finland; Tel.: 13 +358 40 198 1140; Fax: +358 3 3115 2869; e- mail: [email protected]. 14 15 Abstract 16 17 Cellulosic plant and waste materials are potential resources for fermentative hydrogen 18 production. In this study, hydrogen producing, cellulolytic cultures were enriched from 19 compost material at 52, 60 and 70ºC. Highest cellulose degradation and highest H2 yield -1 -1 20 were 57 % and 1.4 mol-H2 mol-hexose (2.4 mol-H2 mol-hexose-degraded ), 21 respectively, obtained at 52°C with the heat-treated (80°C for 20 min) enrichment 22 culture. Heat-treatments as well as the sequential enrichment decreased the diversity of 23 microbial communities. The enrichments contained mainly bacteria from families 24 Thermoanaerobacteriaceae and Clostridiaceae, from which a bacterium closely related 2 25 to Thermoanaerobium thermosaccharolyticum was mainly responsible for hydrogen 26 production and bacteria closely related to Clostridium cellulosi and Clostridium 27 stercorarium were responsible for cellulose degradation. 28 29 Keywords: Dark fermentation, cellulose, mixed culture, thermophilic, 30 Thermoanaerobium thermosaccharolyticum 31 32 1 Introduction 33 34 Increasing energy demand and global warming that is associated with the increasing use 35 of fossil fuels increase the demand to produce clean, renewable energy.
    [Show full text]