Rapid Communication Morphological Support For

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Communication Morphological Support For Journal of Vertebrate Paleontology 23(4):991±996, December 2003 q 2003 by the Society of Vertebrate Paleontology RAPID COMMUNICATION MORPHOLOGICAL SUPPORT FOR A CLOSE RELATIONSHIP BETWEEN HIPPOS AND WHALES JONATHAN H. GEISLER1 and MARK D. UHEN2 1Department Geology/Geography and Georgia Southern Museum, Georgia Southern University, Statesboro, Georgia 30460-8149, [email protected]; 2Cranbrook Institute of Science, 39221 Woodward Avenue, P.O. Box 801, Bloom®eld Hills, Michigan 48303-0801, [email protected] Recent discoveries of the ankles of fossil whales, reported tree for 1,000 iterations of the parsimony ratchet (Nixon, 1999), by Gingerich et al. (2001) and Thewissen et al. (2001b), cor- which was implemented with the command nix*1000. Bremer roborated the molecular hypothesis that Cetacea (whales, dol- support values were calculated using the programs PAUP 3.1.1 phins, and porpoises) are closely related to artiodactyls (even- (Swofford, 1993) and TreeRot (Sorenson, 1996), with modi®- hoofed mammals including hippopotami, pigs, deer, and cam- cations to the TreeRot commands ®le as described in Geisler els); however, major points of disagreement remain. A mor- (2001a). Lists of unequivocal synapomorphies for each node phology-based study incorporating some of these new data were compiled using the apo/ command in NONA 1.9. Where (Thewissen et al., 2001b) supported the exclusion of Cetacea we describe synapomorphies supported by our study, we cite from the clade of living artiodactyls. In contrast, a vast amount previous studies that have reached the same conclusion. of molecular data support placement of Cetacea within Artio- Institutional Abbreviations AMNH, American Museum dactyla, as close relatives to Hippopotamidae (Gatesy et al., of Natural History, Departments of Mammalogy and Vertebrate 1996, 1999; Montgelard et al., 1997; Shimamura et al., 1997, Paleontology (New York); GSM, Georgia Southern Museum, 1999; Nikaido et al., 2001). Here we report that morphological Vertebrate Collection (Statesboro, Georgia); IVPP, Institute of data from extinct and extant taxa support placement of Cetacea Vertebrate Paleontology and Paleoanthropology, Chinese Acad- within Artiodactyla as the closest relatives of Hippopotamidae emy of Sciences (Beijing, China). (Fig. 1B) and indicate that molecular and morphological evi- dence for the phylogeny of these taxa are now much more con- RESULTS gruent than previously thought. A total of 45 most parsimonious trees of 1,513 steps in length were found (within-taxon polymorphism was not counted as MATERIALS AND METHODS extra steps). All most parsimonious trees have Cetacea deeply Our result is based on a cladistic analysis of a modi®ed ver- nested within Artiodactyla as the sister-group to Hippopotami- sion of the character/taxon matrix of Geisler (2001a). The pre- dae (Fig. 1B), like molecular studies and unlike the most recent sent matrix incorporates new information on the early cetaceans morphological-based analysis (Thewissen et al., 2001b) (Fig. Artiocetus, Rodhocetus (Gingerich et al., 2001), and Pakicetus 1A). The novel morphological result reported here is primarily (Thewissen et al., 2001b); includes some changes in the scoring attributed to recently described cetacean fossils (Gingerich et of Basilosaurus; adds the artiodactyls Amphirhagatherium wei- al., 2001; Thewissen et al., 2001b), because a study with similar gelti (Heller, 1934; Erfurt, 2000; Hooker and Thomas, 2001) characters and taxa, but without the new ankle data, supported and Raoellidae (Kumar and Sahni, 1985; Thewissen et al., the exclusion of Cetacea from Artiodactyla and a close rela- 2001b); includes the mesonychid Ankalagon (AMNH-VP 776, tionship between Cetacea and Mesonychidae (Geisler, 2001a), 777, 2454; O'Leary et al., 2000); adds seven characters from an extinct group of hoofed mammals. We concur with recent Thewissen et al. (2001b), and consists of 195 characters scored authors (Gingerich et al., 2001; Thewissen et al., 2001b) that a for 69 mammalian taxa. The matrix and character list are avail- suite of characters in the ankles of early whales supports a clade able on the internet at http://www.vertpaleo.org/jvp/JVPcon- comprised of Cetacea and Artiodactyla but not mesonychids. tents.html. Of the 195 characters, 121 are binary, 14 are unor- The sister-group to the hippo/whale clade varies among the dered multistate characters, and 60 are ordered multistate char- most parsimonious trees; in 36 trees the sister-group is a clade acters. Although we do not claim to have included every pub- of suiform artiodactyls including Suina (pigs and peccaries), lished character relevant to cetartiodactyl phylogeny, we note Entelodontidae, and Anthracotheriidae (represented by Elome- that this matrix has substantially more taxa and more morpho- ryx); and in the remaining nine trees it is Raoellidae. The latter logical characters than previous phylogenetic analyses (e.g., trees are interesting because like cetaceans, raoellids possess a Geisler and Luo, 1998; O'Leary, 1998, 2001; Luo and Ginger- P4 paracone that is much higher than those of the succeeding ich, 1999; O'Leary and Geisler, 1999; O'Leary and Uhen, molars. Like pakicetids (Thewissen and Hussain, 1998) and the 1999; Thewissen et al., 2001b). protocetid Artiocetus (Gingerich et al., 2001), raoellids such as The computer program NONA 1.9 (Goloboff, 1994) was Kunmunella kalakotensis (Kumar and Shani, 1985) also have a used to ®nd most parsimonious trees. An initial search was single-rooted P1. Intriguingly, raoellid fossils are abundant in conducted using two commands: mult*100; hold/10, which in- the same Asian sites that produce pakicetids (Thewissen et al., voke 100 iterations of TBR (tree bisection and reconnection) 2001a). Unfortunately, the non-dental anatomy of raoellids is branch swapping and save only 10 trees per iteration. The most undescribed. Discoveries of new raoellid fossils would not only parsimonious tree from the initial search was used as a starting test the hypothesis that they are closely related to hippos and 991 992 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 23, NO. 4, 2003 FIGURE 1. A comparison of the strict consensus tree of Thewissen et al. (2001b) (A) and the strict consensus tree for the present study (B). Note that in the consensus of Thewissen et al. (2001b) the Cetacea are not inside the clade of extant artiodactyls, and the hippopotamus is not closely related to whales. In contrast, the morphological data analyzed in this study support the inclusion of Cetacea within Artiodactyla as the sister-group to Hippopotamidae, as suggested by numerous molecular studies (e.g., Gatesy et al., 1999). To facilitate comparison and to highlight key features, some taxa have been collapsed into higher-level groups. In cases where a higher-level taxon includes three or more taxa, parentheses are used to describe the phylogeny in the strict consensus of the present study: (all taxa with ``*'' are in the current study only): Cameloidea 5 (Eotylops*(Poebrotherium (Llama*, Camelus*))); Entelodontidae (Archaeotherium); Hapalodectes 5 (H. hetangensis*, H. leptognathus*); Me- sonychidae 5 (Dissacus praenuntius*, Dissacus navajovius*, Mongolian Dissacus*(Ankalagon (Sinonyx (Pachyaena gigantea*, Pachyaena ossifraga*, (Mesonyx, Harpagolestes, Synoplotherium))))); Mysticeti 5 (Balaenoptera); Odontoceti 5 (Physeter (Tursiops, Delphinapterus); Or- eodontoidea 5 (Agriochoerus, Merycoidodon*); Perissodactyla 5 ((Equus*, Mesohippus*) (Heptodon*, Hyracotherium*)); Phenacodontidae 5 (Meniscotherium, Phenacodus); Protoceratidae 5 (Leptoreodon*(Heteromeryx*, Protoceras*)); Ruminantia 5 (Hypertragulus*(Leptomeryx* (Tragulus (Bos*(Odocoileus*, Ovis*))))); Suina 5 (Perchoerus*(Sus, Tayassu*)); and Xiphodontoidea 5 (Xiphodon*, Amphimeryx*). In the GEISLER AND UHENÐWHALES AND HIPPOS CLOSELY RELATED 993 tiodactyla has a Bremer support of 3; the Cetacea and Hippo- potamidae clade has a Bremer support of 2. In all most-parsimonious trees, many ``suiform'' artiodactyls (e.g., anthracotheres, entelodontids, suids, tayassuids) are close- ly related to the Hippopotamidae and Cetacea clade. Even though the exact phylogenetic arrangement of the ``suiform'' artiodactyls varies among our shortest trees, their proximity to cetaceans and hippopotamids is supported by an enlarged facial portion of the lacrimal. In Hippopotamus and early whales such as Georgiacetus (Hulbert et al., 1998) and Remingtonocetus (Kumar and Sahni, 1986:®g. 4) the distance between the anter- iormost point of the lacrimal and the anterior edge of the orbit is greater than the anteroposterior diameter of the orbit (Fig. 3A, B). By contrast, mesonychids such as Sinonyx (Zhou et al., 1995) have a much smaller exposure of the lacrimal on the face (Fig. 1C). A large lacrimal also occurs on the face of extant ruminants (e.g., Odocoileus, Ovis, Tragulus); however, this sim- ilarity is interpreted as convergent because the basal ruminants Hypertragulus (e.g., AMNH 53802, 1341) and Leptomeryx (e.g., AMNH 11870) have a small facial portion of the lacrimal. Although our morphological data and molecules agree on a sister-group relationship between Hippopotamidae and Cetacea, FIGURE 2. Posterior view of the left squamosal, petrosal, and tym- molecular data do not support a close relationship between the panic bulla of a juvenile Hippopotamus amphibius (AMNH 130247). cetacean/hippopotamid clade and ``suiform'' artiodactyls. In- Lateral is to the left, dorsal is to the top, and the occipital bones have stead, vastly different
Recommended publications
  • South Dakota to Nebraska
    Geological Society of America Special Paper 325 1998 Lithostratigraphic revision and correlation of the lower part of the White River Group: South Dakota to Nebraska Dennis O. Terry, Jr. Department of Geology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0340 ABSTRACT Lithologic correlations between type areas of the White River Group in Nebraska and South Dakota have resulted in a revised lithostratigraphy for the lower part of the White River Group. The following pedostratigraphic and lithostratigraphic units, from oldest to youngest, are newly recognized in northwestern Nebraska and can be correlated with units in the Big Badlands of South Dakota: the Yellow Mounds Pale- osol Equivalent, Interior and Weta Paleosol Equivalents, Chamberlain Pass Forma- tion, and Peanut Peak Member of the Chadron Formation. The term “Interior Paleosol Complex,” used for the brightly colored zone at the base of the White River Group in northwestern Nebraska, is abandoned in favor of a two-part division. The lower part is related to the Yellow Mounds Paleosol Series of South Dakota and rep- resents the pedogenically modified Cretaceous Pierre Shale. The upper part is com- posed of the unconformably overlying, pedogenically modified overbank mudstone facies of the Chamberlain Pass Formation (which contains the Interior and Weta Paleosol Series in South Dakota). Greenish-white channel sandstones at the base of the Chadron Formation in Nebraska (previously correlated to the Ahearn Member of the Chadron Formation in South Dakota) herein are correlated to the channel sand- stone facies of the Chamberlain Pass Formation in South Dakota. The Chamberlain Pass Formation is unconformably overlain by the Chadron Formation in South Dakota and Nebraska.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Hoganson, J.W., 2009. Corridor of Time Prehistoric Life of North
    Corridor of Time Prehistoric Life of North Dakota Exhibit at the North Dakota Heritage Center Completed by John W. Hoganson Introduction In 1989, legislation was passed that directed the North Dakota and a laboratory specialist, a laboratory for preparation of Geological Survey to establish a public repository for North fossils, and a fossil storage area. The NDGS paleontology staff, Dakota fossils. Shortly thereafter, the Geological Survey signed now housed at the Heritage Center, consists of John Hoganson, a Memorandum of Agreement with the State Historical Society State Paleontologist, and paleontologists Jeff Person and Becky of North Dakota which provided space in the North Dakota Gould. This arrangement has allowed the Geological Survey, in Heritage Center for development of this North Dakota State collaboration with the State Historical Society of North Dakota, Fossil Collection, including offices for the curator of the collection to create prehistoric life of North Dakota exhibits at the Heritage Center and displays of North Dakota fossils at over 20 other museums and interpretive centers around the state. The first of the Heritage Center prehistoric life exhibits was the restoration of the Highgate Mastodon skeleton in the First People exhibit area (fig. 1). Mastodons were huge, elephant- like mammals that roamed North America at the end of the last Ice Age about 11,000 years ago. This exhibit was completed in 1992 and was the first restored skeleton of a prehistoric animal ever displayed in North Dakota. The mastodon exhibit was, and still is, a major attraction in the Heritage Center. Because of its popularity, it was decided that additional prehistoric life displays should be included in the Heritage Center exhibit plans.
    [Show full text]
  • Wann Langston, Jr. – a Life Amongst Bones Christopher J
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103, 189–204, 2013 (for 2012) Wann Langston, Jr. – a life amongst bones Christopher J. Bell1, Matthew A. Brown,2, 4 Mary R. Dawson3 and Ernest L. Lundelius, Jr2 1 Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78712, USA Email: [email protected] 2 Vertebrate Paleontology Laboratory, University of Texas at Austin, 10100 Burnet Rd, R7600, Austin, TX 78758, USA Emails: [email protected]; [email protected] 3 Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213–4080, USA Email: [email protected] 4 School of Museum Studies, University of Leicester, Museum Studies Building, 19 University Road, Leicester LE1 7RF, UK Wann Langston Jr. was born on 10 July, 1921 in Oklahoma another nurse, Clara Louise Jones. Wann was, thus, raised in City, Oklahoma. He was the only surviving son of Wann a family in which higher education, and specifically medical Langston and Myrtle Fanning Langston, who died in child- and anatomical training, was common to both parents. Clara’s birth as his life began. Three previous children all died young. father was the headmaster of Salado College and was a Regent The derivation of the name ‘‘Wann’’ is not fully known, but of The University of Texas, where Wann later spent much of his appears to have been the patronymic of an itinerant, African- professional career as a palaeontologist. Clara was a gifted American Baptist preacher who visited Wann’s grandfather linguist, with an especial passion for Greek (although she did and made a sufficiently strong impression that he named his not know the word ‘palaeontologist’; Wann remembers her son Wann.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236617870 The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia Article in Paleontological Journal · July 2001 CITATIONS READS 10 212 1 author: Alexey V. Lopatin Russian Academy of Sciences 369 PUBLICATIONS 1,647 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: New genera of baleen whales (Cetacea, Mammalia) from the Miocene of the northern Caucasus and Ciscaucasia View project Early evolution of mammals View project All content following this page was uploaded by Alexey V. Lopatin on 05 August 2014. The user has requested enhancement of the downloaded file. Paleontological Journal, Vol. 35, No. 4, 2001, pp. 426–432. Translated from Paleontologicheskii Zhurnal, No. 4, 2001, pp. 90–96. Original Russian Text Copyright © 2001 by Lopatin. English Translation Copyright © 2001 by åÄIä “Nauka /Interperiodica” (Russia). The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia A. V. Lopatin Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117868 Russia Received October 20, 1999 Abstract—A lower jaw containing complete tooth rows of the earliest hapalodectid mesonychian, Hapalo- dectes dux sp. nov., is described from the Upper Paleocene of Tsagan-Khushu, Mongolia (Naran Bulak Forma- tion, Zhigden Member). The new species is smaller than the Middle Eocene H. serus and larger than the Early Eocene H. hetangensis. The lower molars of H. dux have distinct metaconid, protocristid, rudimentary hypo- conulid, and entoconid; M2 and M3 are equal in size. These characters suggest that H. dux is the most primitive species of the genus Hapalodectes.
    [Show full text]
  • Resources Abello, A., Montalvo, C. & Goin, F. 2002
    Resources Abello, A., Montalvo, C. & Goin, F. 2002, Marsupiales del Mioceno Superior de Caleufu (La Pampa, Argentina), Ameghiniana 39(4) Agusti, J. & Anton, M. 2002, Mammoths, Sabertooths & Hominids:65 Million Years of Mammalian Evolution in Europe, Columbia University Press, NY Alroy, J. 2002-2003, North American Fossil Mammal Systematics Database-iNet: <http://www.nceas.ucsb.edu/~alroy/nafmsd.html> American Museum of Natural History, 2001-2003, Fossil Database, <http://paleo.amnh.org/fossil/seek.html> American Museum of Natural History, 1994, Mammals & Their Extinct Relatives, American Museum of Natural History, NY Archibald, J. & Averianov, A. 2003, The Late Cretaceous Placental Mammal Kulbeckia, Journal of Vertebrate Paleontology vol 23 #2 Archibald, J. & Averianov, A. 2001,Paranyctoides and allies from the Late Cretaceous of North America and Asia, Acta Palaeontologica Polonica vol 46 #4 Arduini, P. & Teruzzi, G. 1986,Simon & Schusters Guide to Fossils, Simon & Schuster Inc, NY Argot, C. 2004, Evolution of South American mammalian predators (Borhyaenoidea): anatomical & palaeobiological implications, Zoological Journal of the Linnean Society Vol 140 Issue 4 April Argot, C. 2003, Functional adaptations of the Postcranial Skeleton of two Miocene Borhyaenoids (Mammalia, Metatheria), Borhyaena & Prothylacinus, from South America, Palaeontology Vol 46 part 6 Asher, R., McKenna, M., Emry, R., Tabrum, A. & Kron, D. 2002, Morphology & Relationships of Apternodus & other Extinct, Zalambdodont, Placental Mammals, Bulletin of the American Museum of Natural History #273 Astruc, J., Hugueney, M., Escarguel, G., Legendre, S., Rage, J-C., Simon-Coincon, R., Sudre, J. & Sige, B. 2003, Puycelci, a new vertebrate-bearing locality in the Aquitaine molassic basin. Density & continuity of the Paleogene biochronologic record in the Quercy & peripheral basins area, Geobios Vol 36 #6 November-December Averianov, A., Archibald, J.
    [Show full text]
  • The New Adaption Gallery
    Introduction In 1991, a group of Heritage Center staff began meeting informally after work to discuss a Heritage Center expansion. This “committee” was formalized in 1992 by Jim Sperry, Superintendent of the State Historical Society of North Dakota, and became known as the Space Planning About Center Expansion (SPACE) committee. The committee consisted of several Historical Society staff and John Hoganson representing the North Dakota Geological Survey. Ultimately, some of the SPACE committee ideas were rejected primarily because of anticipated high cost such as a planetarium, arboretum, and day care center but many of the ideas have become reality in the new Heritage Center expansion. In 2009, the state legislature appropriated $40 million for a $52 million Heritage Center expansion. The State Historical Society of North Dakota Foundation was given the task to raise the difference. On November 23, 2010 groundbreaking for the expansion took place. Planning for three new galleries began in earnest: the Governor’s Gallery (for large, temporary, travelling exhibits), Innovation Gallery: Early Peoples, and Adaptation Gallery: Geologic Time. The Figure 1. Partial Stratigraphic column of North Dakota showing Figure 2. Plate tectonic video. North Dakota's position is indicated by the the age of the Geologic Time Gallery displays. red symbol. JULY 2014 1 Orientation Featured in the Orientation area is an interactive touch table that provides a timeline of geological and evolutionary events in North Dakota from 600 million years ago to the present. Visitors activate the timeline by scrolling to learn how the geology, environment, climate, and life have changed in North Dakota through time.
    [Show full text]
  • Thewissen Et Al. Reply Replying To: J
    NATURE | Vol 458 | 19 March 2009 BRIEF COMMUNICATIONS ARISING Hippopotamus and whale phylogeny Arising from: J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai & B. N. Tiwari Nature 450, 1190–1194 (2007) Thewissen etal.1 describe new fossils from India that apparentlysupport fossils, Raoellidae or the raoellid Indohyus is more closely related to a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as Cetacea than is Hippopotamidae (Fig. 1). Hippopotamidae is the the sister group to the extinct family Raoellidae, and Hippopotamidae exclusive sister group to Cetacea plus Raoellidae in the analysis that as more closely related to pigs and peccaries (that is, Suina) than to down-weights homoplastic characters, althoughin the equallyweighted cetaceans. However, our reanalysis of a modified version of the data set analysis, another topology was equally parsimonious. In that topology, they used2 differs in retaining molecular characters and demonstrates Hippopotamidae moved one node out, being the sister group to an that Hippopotamidae is the closest extant family to Cetacea and that Andrewsarchus, Raoellidae and Cetacea clade. In neither analysis is raoellids are the closest extinct group, consistent with previous phylo- Hippopotamidae closer to the pigs and peccaries than to Cetacea, the genetic studies2,3. This topology supports the view that the aquatic result obtained by Thewissen et al.1. In all our analyses, pachyostosis adaptations in hippopotamids and cetaceans are inherited from their (thickening) of limb bones and bottom walking, which occur in hippo- common ancestor4. potamids9,10, are interpreted to have evolved before the pachyostosis of To conduct our analyses, we started with the same published matrix the auditory bulla, as seen in raoellids and cetaceans1.
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]