Wnt/Β-Catenin Signaling Requires Interaction of the Dishevelled DEP

Total Page:16

File Type:pdf, Size:1020Kb

Wnt/Β-Catenin Signaling Requires Interaction of the Dishevelled DEP Wnt/β-catenin signaling requires interaction of the PNAS PLUS Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled Daniele V. F. Taurielloa,1,2, Ingrid Jordensa,1, Katharina Kirchnerb,3, Jerry W. Slootstrac,3, Tom Kruitwagena, Britta A. M. Bouwmana, Maria Noutsoua, Stefan G. D. Rüdigerd, Klaus Schwambornc, Alexandra Schambonyb, and Madelon M. Mauricea,4 aDepartment of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; bDevelopmental Biology Unit, Department of Biology and Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany; cPepscan Therapeutics BV, 8243 RC Lelystad, The Netherlands; and dCellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584 CH Utrecht, The Netherlands Edited by Roeland Nusse, Stanford University School of Medicine, Stanford, CA, and approved February 17, 2012 (received for review September 10, 2011) Wnt binding to members of the seven-span transmembrane croinjection of peptides comprising this motif interferes with Frizzled (Fz) receptor family controls essential cell fate decisions Wnt/β-catenin signaling in Xenopus embryos, further supporting and tissue polarity during development and in adulthood. The Fz- the functional importance of the Fz C-terminal tail. Mutagenesis mediated membrane recruitment of the cytoplasmic effector studies have revealed, however, that other Fz regions, including Dishevelled (Dvl) is a critical step in Wnt/β-catenin signaling initi- the intracellular loops, contribute to Wnt signaling by unknown ation, but how Fz and Dvl act together to drive downstream sig- mechanisms (14, 16–18). Indeed, overexpressed Drosophila Fz2 naling events remains largely undefined. Here, we use an Fz lacking its C-terminal tail still synergizes with Wnt in Dvl-de- peptide-based microarray to uncover a mechanistically important pendent signaling (19). role of the bipartite Dvl DEP domain and C terminal region (DEP-C) Dvl is a cytoplasmic scaffold protein of which three homologs in binding a three-segmented discontinuous motif in Fz. We show exist in vertebrates (Dvl1, Dvl2, and Dvl3). Dvl carries three that cooperative use of two conserved motifs in the third intracel- structurally conserved domains that are functional in Wnt-induced BIOLOGY lular loop and the classic C-terminal motif of Fz is required for DEP- signaling responses. The N-terminal DIX domain mediates Dvl DEVELOPMENTAL C binding and Wnt-induced β-catenin activation in cultured cells self-association, leading to the formation of multimerized receptor and Xenopus embryos. Within the complex, the Dvl DEP domain complexes at the membrane, which are proposed to drive signaling mainly binds the Fz C-terminal tail, whereas a short region at the positively by providing a high local concentration of binding sites Dvl C-terminal end is required to bind the Fz third loop and stabi- for Wnt signaling proteins (20–22). lize the Fz-Dvl interaction. We conclude that Dvl DEP-C binding to The PDZ domain, located in the central region of Dvl, was Fz is a key event in Wnt-mediated signaling relay to β-catenin. The shown to bind an Fz7-derived peptide containing the conserved discontinuous nature of the Fz-Dvl interface may allow for precise KTxxxW motif in vitro (23). The relative low affinity of this in- regulation of the interaction in the control of Wnt-dependent teraction suggested the need for additional molecular inter- cellular responses. actions in the formation of a stable Fz–Dvl complex in vivo in cells. Moreover, the binding cleft of Dvl PDZ appears highly peptide microarray | protein-protein interaction | Wingless signaling flexible and accommodates binding of a diverse set of peptide ligands in vitro as well as numerous Dvl PDZ binding partners in he Wnt family of secreted glycolipoproteins controls key cells (24–26). How these interactors compete for Dvl PDZ do- Tcellular processes in embryonic development and stem cell main binding and how specificity is achieved during Wnt sig- maintenance in multicellular animals. Deregulation of Wnt naling remain unresolved. pathway components is associated with various human diseases, The conserved DEP domain, located in the C-terminal half of most notably cancer (1–3). Depending on the cellular context, Dvl, is critical for membrane recruitment of Dvl during Wnt- Wnts can induce distinct intracellular signaling cascades of which mediated signaling (8, 27–30). Direct binding of a polybasic the Wnt/β-catenin and planar cell polarity (PCP) pathways are stretch in the DEP domain to negatively charged lipids was re- best described (4–6). Both pathways are initiated by Wnt-medi- cently shown to contribute to formation of the Fz–Dvl complex ated activation of members of the Frizzled (Fz) receptor family, at the PM (30). In addition, the Dvl2 DEP domain, aided by followed by the recruitment of the cytoplasmic effector protein a YHEL motif in the Dvl C terminus, interacts with μ2-adaptin, Dishevelled (Dvl) to the plasma membrane (PM) (7–9). Down- a subunit of the AP-2 clathrin adaptor complex, to facilitate stream signaling cascades are remarkably divergent, however, clathrin-mediated endocytosis of Fz4 and Dvl2 on Wnt activation leading to the activation of β-catenin–mediated gene transcrip- tion in the control of cell fate decisions or to small GTPase- mediated cytoskeletal remodelling in the planar polarization of epithelia (5, 10). How the common Fz-Dvl signaling unit dis- Author contributions: D.V.F.T., I.J., K.K., J.W.S., S.G.D.R., K.S., A.S., and M.M.M. designed tinguishes among different Wnt pathways remains obscure. In- research; D.V.F.T., I.J., K.K., J.W.S., T.K., B.A.M.B., and M.N. performed research; D.V.F.T., I.J., sight into the molecular basis by which Fz–Dvl complexes are K.K., J.W.S., S.G.D.R., K.S., A.S., and M.M.M. analyzed data; and D.V.F.T., I.J., and M.M.M. formed at the PM is essential to understand how cell fate choices wrote the paper. and morphogenesis are orchestrated. The authors declare no conflict of interest. The Fz family of Wnt receptors comprises G protein-coupled This article is a PNAS Direct Submission. receptor (GPCR)–like transmembrane proteins (7, 11–13). Fz 1D.V.F.T. and I.J. contributed equally to this work. carries an extracellular N-terminal cysteine-rich domain, which 2Present address: Institute for Research in Biomedicine Barcelona, 08028 Barcelona, Spain. mediates Wnt binding, followed by a seven-span transmembrane 3K.K. and J.W.S. contributed equally to this work. signaling moiety (Fig. 1A). The cytoplasmic C-terminal tail of Fz 4To whom correspondence should be addressed. E-mail: [email protected]. contains a conserved motif (KTxxxW) that is essential for sig- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. naling and for membrane relocalization of Dvl (9, 14, 15). Mi- 1073/pnas.1114802109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1114802109 PNAS Early Edition | 1of9 Downloaded by guest on October 1, 2021 A Intracellular loop 3 C-terminal tail (30 AA) HIS-mDvl1 ∆DIX CRD VSLFRIRSVIKQGGTKTDKLEKLMIRIGIF WIWSGKTLESWRRFTSRAAASSGHKSGG mFz5 VSLFRIRSV WIWSGKTLE SLFRIRSVI IWSGKTLES Peptide library LFRIRSVIK WSGKTLESW ..... ..... I II III IV V VI VII 22x 9-mers 22x 9-mers 22 x 22 CCS S GGG S C 484 Linear 484 Scaffolded A Y S T ∆DIX F G L L G B D V BI V T S W I L F I Ranked peptides G W F I S R Rank # Peptide # Peptide Sequence BI: AU Normalized Motif I R G I KTxxxW motif GSLFRIRSVIGLESWRRFTSG Motif II I K 1 158 1179 2.96 R Classical GKLMIRIGIFGTLESWRRFTG M T 2 156 1174 2.95 S L L 3 157 GVSLFRIRSVGLESWRRFTSG 1147 2.88 V K E 4 136 GSLFRIRSVIGTLESWRRFTG 1118 2.81 I E S 5 154 GLEKLMIRIGGTLESWRRFTG 1092 2.74 K W GKLMIRIGIFGLESWRRFTSG L 6 178 1080 2.71 Q K Motif III R 7 153 GKLEKLMIRIGTLESWRRFTG 1066 2.68 G D R G T K T 8 155 GEKLMIRIGIGTLESWRRFTG 1066 2.68 F 9 177 GEKLMIRIGIGLESWRRFTSG 1013 2.54 iLoop 3 Tail T GVSLFRIRSVGTLESWRRFTG 2.49 G S 10 135 993 G S C C R S R S C ... ... ... ... ... K H G R C E Motif I Motif II Motif III Other 8 Fz1 V S L F R I R T I M K H D - - G T K T E K L E K L M V R I G V F Fz7 VSLFRI RT I MKH D --GTKTE KLEKLMVRK I GVF 6 Fz2 V S L F R I R T I M K H D - - G T K T E K L E R L M V R I G V F DFz I S L F R I R T V M K T D - - G K R T D K L E R L M L R I G F F 4 Fz5 V S L F R I R S V I K Q - - G G T K T D K L E K L M I R I G I F 2 Fz8 V S L F R I R S V I K Q Q G G P T K T H K L E K L M I R L G L F Fz10 V A L F H I R R V M K T G - - G E N T D K L E K L M V R I G V F Frequency in the top 5% 0 Fz4 V A L F K I R S N L Q K D - - G T K T D K L E R L M V K I G V F Fz9 V A L F H I R K I M K T G - - G T N T E K L E K L M V K I G V F Fz3 I S L N R V R I E I P L E - - K E N Q D K L V K F M I R I G V F SLFRIRSVILFRIRSVIKFRIRSVIKQ RIRSVIKQG IRSVIKQGG TDKLEKLMIKLEKLMIRI LEKLMIRIGEKLMIRIGI KLMIRIGIF VSLFRIRSV RSVIKQGGTSVIKQGGTKVIKQGGTKT IKQGGTKTD KQGGTKTDK QGGTKTDKL GGTKTDKLE GTKTDKLEK TKTDKLEKL KTDKLEKLM DKLEKLMIR Fz6 I S L N HVR Q V I Q H D - - G R N Q E K L K K F M I R I G V F Fig.
Recommended publications
  • THE GENOMIC STRUCTURE of the ZEBRAFISH Wnt8b GE NE
    THE GENOMIC STRUCTURE OF THE ZEBRAFISH wnt8b GENE by Yvonne Marie Beckham Department of Zoology Submitted in partial fulfilment of the requirements for the degree of Master of Science Faculty of Graduate Studies The University of Western Ontario London, Ontario December 1997 O Yvonne Marie Beckham, 1997 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services seMces bibliographiques 395 Weüingtaci Street 395. Ne Wellington OttawaON K1AON4 OttawaON K1AW canada canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lhrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, districbuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur fonnat électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT Screening of a zebrafish genomic library to identify the prornoter elements of the zebrafish ivnr8b gene resulted in the isolation of two clones. p8b-3H and p8b-7A. Southem blot analysis demonstrated that clone p8b- 3H contained the 3' portion of the cDNA. p8b-7A showed only weak hybridization to the wnr8b cDNA used to initially isolate this clone.
    [Show full text]
  • Regulation of Dishevelled DEP Domain Swapping by Conserved Phosphorylation Sites
    Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites Gonzalo J. Beitiaa,1, Trevor J. Rutherforda,1, Stefan M. V. Freunda, Hugh R. Pelhama, Mariann Bienza, and Melissa V. Gammonsa,2 aMedical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom Edited by Roeland Nusse, Stanford University School of Medicine, Stanford, CA, and approved May 13, 2021 (received for review February 20, 2021) Wnt signals bind to Frizzled receptors to trigger canonical and with these effectors even if present at a low cellular concentra- noncanonical signaling responses that control cell fates during tion (1, 3, 12). animal development and tissue homeostasis. All Wnt signals are The DEP domain is a small globular domain composed of three relayed by the hub protein Dishevelled. During canonical (β-catenin– α-helices and a flexible hinge loop between the first (H1) and sec- dependent) signaling, Dishevelled assembles signalosomes via dy- ond helix (H2), which, in the monomeric configuration, folds back namic head-to-tail polymerization of its Dishevelled and Axin (DIX) on itself to form a prominent “DEP finger” that is responsible domain, which are cross-linked by its Dishevelled, Egl-10, and Pleck- for binding to Frizzled (Fig. 1A) (13). DEP dimerization involves strin (DEP) domain through a conformational switch from monomer a highly unusual mechanism called “domain swapping” (14). During to domain-swapped dimer. The domain-swapped conformation of this process, H1 of one DEP monomer is exchanged with H1 from a DEP masks the site through which Dishevelled binds to Frizzled, im- reciprocal one through outward motions of the hinge loops, replacing plying that DEP domain swapping results in the detachment of Dish- intra- with intermolecular contacts.
    [Show full text]
  • EGFR Confers Exquisite Specificity of Wnt9a-Fzd9b Signaling in Hematopoietic Stem Cell Development
    bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Grainger, et al, 2018 EGFR confers exquisite specificity of Wnt9a-Fzd9b signaling in hematopoietic stem cell development Stephanie Grainger1, Nicole Nguyen1, Jenna Richter1,2, Jordan Setayesh1, Brianna Lonquich1, Chet Huan Oon1, Jacob M. Wozniak2,3,4, Rocio Barahona1, Caramai N. Kamei5, Jack Houston1,2, Marvic Carrillo-Terrazas3,4, Iain A. Drummond5,6, David Gonzalez3.4, Karl Willert#,¥,1, and David Traver¥,1,7. ¥co-corresponding authors: [email protected]; [email protected] #Lead contact 1Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92037, USA. 2Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, 92037, USA. 3Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, 92093, USA. 4Department of Pharmacology, University of California, San Diego, La Jolla, California, 92092 5Massachusetts General Hospital Nephrology Division, Charlestown, Massachusetts, 02129, USA. 6Harvard Medical School, Department of Genetics, Boston MA 02115 7Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92037, USA. Running title: A mechanism for Wnt-Fzd specificity in hematopoietic stem cells Keywords: hematopoietic stem cell (HSC), Wnt, Wnt9a, human, zebrafish, Fzd, Fzd9b, FZD9, EGFR, APEX2 1 bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Recruitment of Adenomatous Polyposis Coli and B-Catenin to Axin-Puncta
    Oncogene (2008) 27, 5808–5820 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE Recruitment of adenomatous polyposis coli and b-catenin to axin-puncta MC Faux, JL Coates, B Catimel, S Cody, AHA Clayton, MJ Layton and AW Burgess Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Parkville, Victoria, Australia The adenomatous polyposis coli (APC)tumour suppressor coli (APC) form a complex that promotes the phos- is a multifunctional protein involved in the regulation of phorylation of b-catenin by glycogen synthase kinase-3-b Wnt signalling and cytoskeletal dynamics. Little is known (GSK3-b), which consequently targets b-catenin for about how APC controls these disparate functions. In this ubiquitination by bTrCP and destruction by the study, we have used APC- and axin-fluorescent fusion proteasome (Aberle et al., 1997; Orford et al., 1997; proteins to examine the interactions between these Kitagawa et al., 1999). Wnt stimulation and APC proteins and show that the functionally distinct popula- mutations disrupt the APC/axin complex and result in tions of APC are also spatially separate. Axin-RFP forms increased levels of b-catenin in the nucleus and cytoplasmic punctate structures, similar to endogenous cytoplasm (Munemitsu et al., 1995). b-Catenin is known axin puncta. Axin-RFP recruits b-catenin destruction to interact with members of the Tcf family of transcrip- complex proteins, including APC, b-catenin, glycogen tion factors to activate transcription of genes involved in synthase kinase-3-b (GSK3-b)and casein kinase-1- a proliferation and cellular transformation (Korinek (CK1-a).
    [Show full text]
  • PDZ Domain from Dishevelled — a Specificity Study Katarzyna Śmietana, Agnieszka Mateja, Artur Krężel and Jacek Otlewski*
    Vol. 58, No. 2/2011 243–249 on-line at: www.actabp.pl Regular paper PDZ domain from Dishevelled — a specificity study Katarzyna Śmietana, Agnieszka Mateja, Artur Krężel and Jacek Otlewski* Faculty of Biotechnology, Department of Protein Engineering, University of Wrocław, Wrocław, Poland Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are im- It is still unclear what mechanism governs the activa- plicated in cancerogenesis. It is still unclear how the cell tion of the correct Wnt signaling branch. Dishevelled determines which of the three possible Wnt response (Dvl) proteins, the last shared link of the canonical and mechanisms should be activated, but the decision proc- non-canonical pathways, most likely play a key regulatory ess is most likely dependent on Dishevelled proteins. role in the signal distribution process (Habas & Dawid, Dishevelled family members interact with many diverse 2005; Itoh et al., 2005; Leonard & Ettensohn, 2007). This targets, however, molecular mechanisms underlying notion is further supported by the fact that the multi- these binding events have not been comprehensively tude of Dvl binding partners includes proteins that re- described so far. Here, we investigated the specificity of lay signaling to β-catenin pathways (axin (Li et al., 1999; the PDZ domain from human Dishevelled-2 using C-ter- Wharton, 2003), GBP/Frat (Li et al., 1999)), PCP (Rac1 minal phage display, which led us to identification of a (Fanto et al., 2000), Daam1 (Habas et al., 2001), strabis- 2+ leucine-rich binding motif strongly resembling the con- mus (Bastock et al., 2003)) and Ca (Gαo/Gαt (Liu et al., sensus sequence of a nuclear export signal.
    [Show full text]
  • Roco Proteins and the Parkinson's Disease-Associated LRRK2
    International Journal of Molecular Sciences Review Roco Proteins and the Parkinson’s Disease-Associated LRRK2 Jingling Liao 1,2,* and Quyen Q. Hoang 2,3,4,* 1 Department of Public Health, Wuhan University of Science and Technology School of Medicine, Wuhan 430081, China 2 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA 3 Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA 4 Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA * Correspondence: [email protected] (J.L.); [email protected] (Q.Q.H.); Tel.: +86-177-8646-6520 (J.L.); +1-317-274-4371 (Q.Q.H.) Received: 15 November 2018; Accepted: 14 December 2018; Published: 17 December 2018 Abstract: Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that form transient heterodimers with specific effector proteins in the ‘on’ state, and cycle to back to the monomeric conformation in the ‘off’ state. A new class of small G-proteins called “Roco” was discovered about a decade ago; this class is distinct from the typical G-proteins in several intriguing ways. Their switch module resides within a polypeptide chain of a large multi-domain protein, always adjacent to a unique domain called COR, and its effector kinase often resides within the same polypeptide. As such, the mechanisms of action of the Roco G-proteins are likely to differ from those of the typical G-proteins.
    [Show full text]
  • Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
    HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • The Developmental Biology of Dishevelled: an Enigmatic Protein Governing Cell Fate and Cell Polarity John B
    Review 4421 The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity John B. Wallingford1 and Raymond Habas2,3 1Section of Molecular Cell and Developmental Biology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA 2Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA 3Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA e-mail: [email protected] and [email protected] Development 132, 4421-4436 Published by The Company of Biologists 2005 doi:10.1242/dev.02068 Summary The Dishevelled protein regulates many developmental adult, ranging from cell-fate specification and cell polarity processes in animals ranging from Hydra to humans. Here, to social behavior. Dishevelled also has important roles in we discuss the various known signaling activities of this the governance of polarized cell divisions, in the directed enigmatic protein and focus on the biological processes that migration of individual cells, and in cardiac development Dishevelled controls. Through its many signaling activities, and neuronal structure and function. Dishevelled plays important roles in the embryo and the Introduction experiments demonstrated that dishevelled was also involved In its original definition, the word ‘dishevelled’ applied in the Frizzled-dependent signaling cascade governing PCP in specifically to one’s hair, its definition being ‘without a hat’ or, the wing, legs and abdomen (Krasnow et al., 1995; Theisen et more commonly, ‘un-coiffed’. Fittingly, the dishevelled gene al., 1994). The cloning of the Drosophila dsh gene unveiled a was first identified and so named because in flies bearing this novel protein (Klingensmith et al., 1994; Theisen et al., 1994), mutation the body and wing hairs fail to orient properly and additional experiments in the fly demonstrated that Development (Fahmy and Fahmy, 1959).
    [Show full text]
  • Head Formation Requires Dishevelled Degradation That Is Mediated By
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev143107. doi:10.1242/dev.143107 RESEARCH ARTICLE Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1 Hyeyoon Lee*,**, Seong-Moon Cheong‡,**, Wonhee Han, Youngmu Koo, Saet-Byeol Jo, Gun-Sik Cho§, Jae-Seong Yang¶, Sanguk Kim and Jin-Kwan Han‡‡ ABSTRACT phosphorylate LRP6 (Bilic et al., 2007). Inhibition of GSK3β by Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt the phospho-LRP6-containing activated receptor complex protects β signaling essential for embryogenesis and homeostasis. However, -catenin from proteasomal degradation (Logan and Nusse, 2004; β whether the antagonism of Wnt signaling that is necessary for MacDonald et al., 2009). Consequently, -catenin accumulates and vertebrate head formation can be achieved through regulation of Dsh interacts with T-cell factor/lymphoid-enhancer factor (TCF/LEF) in protein stability is unclear. Here, we show that membrane-associated the nucleus, thereby initiating transcription. RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes During vertebrate development, the canonical Wnt pathway plays Wnt signaling by regulating the turnover of Dsh protein via ubiquitin- a crucial role in head formation (Glinka et al., 1997; Kiecker and mediated lysosomal degradation in the prospective head region of Niehrs, 2001; Yamaguchi, 2001). Proper head formation requires Xenopus. We further found that March2 acquires regional and inhibition of the canonical
    [Show full text]
  • From Src Homology Domains to Other Signaling Modules: Proposal of the `Protein Recognition Code'
    Oncogene (1998) 17, 1469 ± 1474 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc From Src Homology domains to other signaling modules: proposal of the `protein recognition code' Marius Sudol The Department of Biochemistry, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA The study of oncogenes has illuminated many aspects of domains have identi®ed a set of common features cellular signaling. The delineation and characterization which aids in their description. The domains are of protein modules exempli®ed by Src Homology composed of 40 ± 150 amino acids which fold to domains has revolutionized our understanding of the generate one or more ligand-binding surfaces, known molecular events underlying signal transduction path- as `recognition pockets'. Generally, conserved residues ways. Several well characterized intracellular modules of the domain are directly involved in mediating which mediate protein-protein interactions, namely SH2, contacts with the amino acids of the ligand and in SH3, PH, PTB, EH, PDZ, EVH1 and WW domains, maintaining the structure of the domain. Ligands are directly involved in the multitude of membrane, interact with their complementary domains through cytoplasmic and nuclear processes in multicellular and/or short sequence motifs (also called core motifs), unicellular organisms. The modular character of these composed of only 3 ± 6 amino acids (Figure 1). The protein domains and their cognate motifs, the univers- sequence of the core determines the selection of the ality of their molecular function, their widespread domains (Songyang and Cantley, 1995). The most occurrence, and the speci®city as well as the degeneracy `important' amino acid within the core is traditionally of their interactions have prompted us to propose the designated `0' and the remaining amino acids are concept of the `protein recognition code'.
    [Show full text]