The Dust Bowl 1

Total Page:16

File Type:pdf, Size:1020Kb

The Dust Bowl 1 ECHOLS MIDDLE SCHOOL CONTINUITY ASSIGNMENT ACADEMIC HELP LINE: Open Monday-Thursday from 8:30-11:30 WEEK: May 18-21 GRADE: 6th SUBJECT: Science Teachers: Mars and Williams 16 ) Implement scientific principles to design processes for monitoring and minimizing human impact on the environment (e.g., water usage, including withdrawal of water from streams and aquifers or construction of dams and levees; land usage, including urban development, agriculture, or removal of wetlands; pollution of air, water, and land).* I CAN: Cite textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text. Determine a central idea of a text and how it is conveyed through particular details; provide a summary of the text distinct from personal opinions or judgments. Analyze in detail how a key individual, event, or idea is introduced, illustrated, and elaborated in a text (e.g., through examples or anecdotes). Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings. ACTIVITY: Read the Science article and answer the following questions The Dust Bowl 1. There is no doubt that humans have significantly changed ecosystems since they first began roaming the Earth. Sometimes natural habitats are destroyed or damaged. At other times, human activities have caused the extinction of organisms. But most often these activities were not intentional. As humans entered new areas, they did not always know that their activities could hurt the environment. Often, the harm did not show until it was too late. Most often we have learned from those mistakes and have made changes that then benefit the very same environment. Let us look at an example where human activity had a negative impact but was later corrected. 2. One striking example happened as early Americans moved west in search of land and financial freedom. Before the westward expansion, most Americans lived east of the Mississippi River. This ecosystem was dramatically different from the ecosystem of the Great Plains in the Midwest. The eastern ecosystem received more rainfall and had rich soil and plenty of trees. The people from these areas used agricultural practices that worked very well in the eastern ecosystem. 3. When settlers moved west, they encountered an unfamiliar and wonderful landscape. The prairies of the Great Plains seemed endless and bountiful. Grasses grew taller than the head of a man riding on a horse. The rains seemed plentiful. There were no fences and few natural barriers such as mountains. This land looked as if it were theirs for the taking. This led newcomers to feel that they had limitless grazing potential for their livestock. They also felt that this land would serve as rich agricultural land. Ranchers let large herds of animals freely graze on the prairie year-round. Farmers broke through the thick sod created by the grasses and plowed fields. After World War I, farm machinery became mechanized, and farmers were able to plow larger and larger fields. One of the largest ecological disasters that this country has ever seen was on the horizon. Those early settlers had no clue that their farming and grazing practices would cause it. 4. The farming and grazing practices of the settlers severely affected the landscape. Overgrazing removed the lush grasses from the Great Plains. This activity removed the plant material above the ground. More importantly, it also removed the deep root systems that held the soils in place. Even worse, plows at that time overturned the soil and buried any plant material underground. And the settlers’ irrigation practices dried up the streams and rivers that fed the area. The result of all of these seemingly innocent practices left an ecosystem that would not be able to tolerate a drought. And in the 1930s, the drought came. 5. The country was already suffering from the Great Depression started by the stock market crash in September of 1929. Many people lost everything they had. This meant that there was no money available to help people in the country. This was especially hard for farmers and ranchers. Crop prices fell, and most of the people who had moved to the Great Plains found themselves in economic crisis. Some tried to plant more crops in order to make up the difference. But then severe drought hit the Great Plains. All of the crops that were planted could not tolerate the dry conditions and high heat, so they withered and died. Grasses could not grow for the livestock to eat, and many animals died. The once thriving Great Plains could no longer support life. But the worst part of the drought was the dust storms that were created. The root systems were no longer there to hold the soil. Relentless winds whipped up the loose topsoil into huge dust storms called “black blizzards.” These dust storms removed millions of acres of topsoil from the land, spinning it into the air. Many people came down with “dust pneumonia.” People could no longer live in the area. Over 60% of the people who lived in the Great Plains were forced to move. 6. As terrible as the Dust Bowl era was, many good things came from it. Farmers and ranchers realized that the practices they had used would not work in that environment anymore. The United States government set up new agencies to help bring the Great Plains back to life. The Soil Conservation Service was started in 1935. Its main job was to oversee the rebuilding of farmland. This organization worked together with farmers to make several important changes that are still used today. Grasses and trees were planted to recreate root systems that could hold the soil in place. Fields were terraced, or created in levels, allowing them to hold both irrigation water and rainwater. Perhaps most importantly, farmers were required to leave parts of their fields fallow for at least a year. This means that the farmers were not allowed to plow or plant on sections of their farms. This way, the land had a chance to “rest” between plantings. These changes went a long way toward restoring the Great Plains to their former glory. 7. Even today, measures are being taken to ensure that this country does not find itself in another Dust Bowl situation. New types of plows have been invented that break up the soil from underneath. This practice allows the majority of the plant material that is plowed to remain on top of the soil instead of getting buried. The former Soil Conservation Service is still around today but is now called the Natural Resource Conservation Service. Its job is to make sure that not only farmland is conserved, but all of the surrounding areas as well. The agency works to monitor air and water quality, as well as wildlife habitat. Our early settlers unknowingly caused a huge national disaster, but we have learned from their mistakes. Farming and ranching practices have changed forever in the hopes that we will never see another Dust Bowl. 1. Which statement about human activity and the environment is NOT true? a. Humans knowingly create environmental disasters. b. Humans affect ecosystems in many ways. c. Humans can create solutions to disasters. d. Humans have altered ecosystems for a long time.2 2. There were many aspects of the Great Plains that looked promising to early settlers. Which of the following was NOT one of those aspects? a. The Great Plains had endless grass. b. The Great Plains had plenty of rainfall. c. The Great Plains had lots of trees. d. The Great Plains had few natural barriers. 3. The farming and grazing practices of the early settlers led to a natural disaster. Which of the following practices led to the creation of this ecosystem disaster? a. Overplanting crops that could not stand drought b. Plowing the soils so that plant materials were buried c.Overgrazing the prairie d. All of the above 4. There were many factors that affected people who lived in the Great Plains during the Dust Bowl era. What was the main factor that drove people away from the Great Plains? a. The high temperatures. b. The low rainfall c. The crash of the stock market. d. The severe and frequent dust storm 5. Many efforts were made after the Dust Bowl to make sure that a disaster such as this never happened again. Which of the following was NOT one of those efforts? a. Farmers and ranchers changed their practices. b. Trees and grasses were planted. c. Fields were sloped to decrease water runoff. d. Farmland was left fallow for a year. 6. Use what you have learned in this passage to answer the following question. Which of the following statements is most true regarding this passage on the Dust Bowl? a. Human activity always hurts an environment. b. Humans are able to change practices to help an environment they have hurt. c. Natural disasters always happen in newly settled areas. d. There is nothing that humans can do to prevent natural disasters .
Recommended publications
  • Wildland Firefighter Smoke Exposure
    ❑ United States Department of Agriculture Wildland Firefighter Smoke Exposure EST SERVIC FOR E Forest National Technology & 1351 1803 October 2013 D E E P R A U RTMENT OF AGRICULT Service Development Program 5100—Fire Management Wildland Firefighter Smoke Exposure By George Broyles Fire Project Leader Information contained in this document has been developed for the guidance of employees of the U.S. Department of Agriculture (USDA) Forest Service, its contractors, and cooperating Federal and State agencies. The USDA Forest Service assumes no responsibility for the interpretation or use of this information by other than its own employees. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C.
    [Show full text]
  • Protect Your Health During Wildfires
    Protect Your Health During Wildfires Smoke from wildfires can harm anyone nearby and even many miles downwind. Breathing smoke can shorten lives and cause heart attacks, asthma attacks and other dangerous health effects. Even healthy adults can risk coughing, wheezing, and difficulty breathing. Preparation for wildfires Coordinating Partners: Before a wildfire occurs Preparation is key to protecting your family, especially if you live where wildfire risk is high. Here are some steps to take: • Know how you will get alerts and health warnings about high fire risk or an active fire. Contact your local authorities how to sign up for alerts. • Before fire season begins, make sure you have extra food, water, and medications on hand to last for several days so that you don’t need to go out during the event. • Designate a clean room in your home. That room may need a properly-sized air purifier with a HEPA filter to further reduce particles coming from the outside. • Understand what plans your workplace, or your child’s school or day care center has in place when wildfires occur. • If you think you’ll need to be outside during the fire, consider getting disposable respirator masks that are rated as N95 or higher to help reduce inhalation of particle pollution. These masks must fit securely to work. They do not work for children or people with beards. Do not use dust masks or surgical masks because they do not filter out harmful particles. Go here to learn how to wear an N95 mask. Talk with your doctor Talk with your doctor about how to prepare for this smoke, especially if you or someone in the family fits into one of these categories: works outdoors; is under age 18 or over age Smoke from 65; is pregnant; or has asthma, COPD or other lung diseases, cardiovascular disease, or diabetes.
    [Show full text]
  • The Dynamics of Dust Particles Near the Sun Geofísica Internacional, Vol
    Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Maravilla, Dolores The dynamics of dust particles near the Sun Geofísica Internacional, vol. 38, núm. 3, july-september, 1999, p. 0 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56838306 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geofísica Internacional (1999), Vol. 38, Num. 3, pp. The dynamics of dust particles near the Sun Dolores Maravilla Instituto de Geofísica, UNAM, México, D.F., México. Received: August 27, 1998; accepted: March 10, 1999. RESUMEN El propósito de este trabajo es estudiar la dinámica de las partículas de polvo (granos) que se encuentran cerca de la corona solar partiendo de un modelo tridimensional que describe la ecuación de movimiento de las partículas tomando en cuenta las fuerzas gravitacional y de Lorentz. Las soluciones del modelo tridimensional proporcionan las superficies de reflexión dentro de las cuales los granos pueden quedar confinados. Cuando sólo hay movimiento en un plano, las soluciones tridimensionales son reducidas a soluciones bidimensionales. En particular, se estudia la dinámica de los granos cerca de la corona para dos mínimos solares consecutivos (i.e. antes y después del máximo solar) incluyendo en la ecuación de movimiento la fuerza de presión de radiación. Las soluciones bidimensionales proporcionan las regiones de confinamiento del polvo alrededor del Sol, así como aquellas regiones en donde el polvo escapa de la heliosfera.
    [Show full text]
  • Gusty Winds Causing Blowing Dust and Continuing Wildfire Smoke Prompt Health Caution Potential Elevated PM10 and PM2.5 Pose Health Concern
    For immediate release 10-25-2020 Media Contact: Heather Heinks (559) 994-7591 Attn: Local news, weather, health and assignment editors Gusty winds causing blowing dust and continuing wildfire smoke prompt health caution Potential elevated PM10 and PM2.5 pose health concern Gusty winds are causing localized blowing dust, which can result in elevated concentrations of particulate matter 10 microns and smaller (PM10). As a result, local air pollution officials are issuing a health cautionary statement effective today (10/25) through Monday (10/26) for San Joaquin, Stanislaus, Merced, Madera, and Fresno Counties. In addition, the SQF Complex Fire in Tulare County, Creek Fire in Madera/Fresno counties and other California wildfires continue to generate smoke, which contains particulate matter pollution (PM2.5). Smoke impacts are expected to continue until the fires are extinguished. Exposure to particulate matter pollution can trigger asthma attacks, aggravate chronic bronchitis, and increase the risk of heart attack and stroke. Individuals with heart or lung disease should follow their doctors’ advice for dealing with episodes of PM exposure. Those with existing respiratory conditions, including COVID-19, young children and the elderly, are especially susceptible to the health effects from this form of pollution. Anyone experiencing poor air quality due to wildfire smoke should move indoors, to a filtered, air-conditioned environment with windows closed. The common cloth and paper masks individuals are wearing due to COVID-19 concerns may not protect them from wildfire smoke. Residents can use the District’s Real-time Air Advisory Network (RAAN) to track air quality at any Valley location by visiting myRAAN.com.
    [Show full text]
  • Wildfire Smoke and Your Health When Smoke Levels Are High, Even Healthy People May Have Symptoms Or Health Problems
    PUBLIC HEALTH DIVISION http://Public.Health.Oregon.gov Wildfire Smoke and Your Health When smoke levels are high, even healthy people may have symptoms or health problems. The best thing to do is to limit your exposure to smoke. Depending on your situation, a combination of the strategies below may work best and give you the most protection from wildfire smoke. The more you do to limit your exposure to wildfire smoke, the more you’ll reduce your chances of having health effects. Keep indoor air as clean as possible. Keep windows and doors closed. Use a Listen to your body high- efficiency particulate air (HEPA) and contact your filter to reduce indoor air pollution. healthcare provider Avoid smoking tobacco, using or 911 if you are wood-burning stoves or fireplaces, burning candles, experiencing health incenses or vacuuming. symptoms. If you have to spend time outside when the Drink plenty air quality is hazardous: of water. Do not rely on paper or dust masks for protection. N95 masks properly worn may offer Reduce the some protection. amount of time spent in the smoky area. Reduce the amount of time spent outdoors. Avoid vigorous Stay informed: outdoor activities. The Oregon Smoke blog has information about air quality in your community: oregonsmoke.blogspot.com 1 Frequently asked questions about wildfire smoke and public health Wildfire smoke Q: Why is wildfire smoke bad for my health? A: Wildfire smoke is a mixture of gases and fine particles from burning trees and other plant material. The gases and fine particles can be dangerous if inhaled.
    [Show full text]
  • Atmospheric Dust on Mars: a Review
    47th International Conference on Environmental Systems ICES-2017-175 16-20 July 2017, Charleston, South Carolina Atmospheric Dust on Mars: A Review François Forget1 Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Universités, UPMC Univ Paris 06, PSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Ecole Polytechnique, CNRS, Paris, France Luca Montabone2 Laboratoire de Météorologie Dynamique (LMD/IPSL), Paris, France & Space Science Institute, Boulder, CO, USA The Martian environment is characterized by airborne mineral dust extending between the surface and up to 80 km altitude. This dust plays a key role in the climate system and in the atmospheric variability. It is a significant issue for any system on the surface. The atmospheric dust content is highly variable in space and time. In the past 20 years, many investigations have been conducted to better understand the characteristics of the dust particles, their distribution and their variability. However, many unknowns remain. The occurrence of local, regional and global-scale dust storms are better documented and modeled, but they remain very difficult to predict. The vertical distribution of dust, characterized by detached layers exhibiting large diurnal and seasonal variations, remains quite enigmatic and very poorly modeled. Nomenclature Ls = Solar Longitude (°) MY = Martian year reff = Effective radius τ = Dust optical depth (or dust opacity) CDOD = Column Dust Optical Depth (i.e. τ integrated over the atmospheric column) IR = Infrared LDL = Low Dust Loading (season) HDL = High Dust Loading (season) MGS = Mars Global Surveyor (NASA spacecraft) MRO = Mars Reconnaissance Orbiter (NASA spacecraft) MEX = Mars Express (ESA spacecraft) TES = Thermal Emission Spectrometer (instrument aboard MGS) THEMIS = Thermal Emission Imaging System (instrument aboard NASA Mars Odyssey spacecraft) MCS = Mars Climate Sounder (instrument aboard MRO) PDS = Planetary Data System (NASA data archive) EDL = Entry, Descending, and Landing GCM = Global Climate Model I.
    [Show full text]
  • OSHA's Respirable Crystalline Silica Standard for Construction
    FactSheet OSHA’s Respirable Crystalline Silica Standard for Construction Workers who are exposed to respirable crystalline silica dust are at increased risk of developing serious silica-related diseases. OSHA’s standard requires employers to take steps to protect workers from exposure to respirable crystalline silica. What is Respirable Crystalline Silica? some operations, respirators may also be needed. Crystalline silica is a common mineral that is found Employers who follow Table 1 correctly are not in construction materials such as sand, stone, required to measure workers’ exposure to silica concrete, brick, and mortar. When workers cut, from those tasks and are not subject to the PEL. grind, drill, or crush materials that contain crystalline silica, very small dust particles are created. These Table 1 Example: Handheld Power Saws tiny particles (known as “respirable” particles) can If workers are sawing silica-containing materials, travel deep into workers’ lungs and cause silicosis, they can use a saw with a built-in system that applies an incurable and sometimes deadly lung disease. water to the saw blade. The water limits the amount Respirable crystalline silica also causes lung cancer, of respirable crystalline silica that gets into the air. other potentially debilitating respiratory diseases such as chronic obstructive pulmonary disease, and Table 1: Specified Exposure Control Methods kidney disease. In most cases, these diseases occur When Working With Materials Containing after years of exposure to respirable crystalline silica.
    [Show full text]
  • Dust Near the Sun
    Dust Near The Sun Ingrid Mann and Hiroshi Kimura Institut f¨urPlanetologie, Westf¨alischeWilhelms-Universit¨at,M¨unster,Germany Douglas A. Biesecker NOAA, Space Environment Center, Boulder, CO, USA Bruce T. Tsurutani Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Eberhard Gr¨un∗ Max-Planck-Institut f¨urKernphysik, Heidelberg, Germany Bruce McKibben Department of Physics and Space Science Center, University of New Hampshire, Durham, NH, USA Jer-Chyi Liou Lockheed Martin Space Operations, Houston, TX, USA Robert M. MacQueen Rhodes College, Memphis, TN, USA Tadashi Mukai† Graduate School of Science and Technology, Kobe University, Kobe, Japan Lika Guhathakurta NASA Headquarters, Washington D.C., USA Philippe Lamy Laboratoire d’Astrophysique Marseille, France Abstract. We review the current knowledge and understanding of dust in the inner solar system. The major sources of the dust population in the inner solar system are comets and asteroids, but the relative contributions of these sources are not quantified. The production processes inward from 1 AU are: Poynting- Robertson deceleration of particles outside of 1 AU, fragmentation into dust due to particle-particle collisions, and direct dust production from comets. The loss processes are: dust collisional fragmentation, sublimation, radiation pressure acceler- ation, sputtering, and rotational bursting. These loss processes as well as dust surface processes release dust compounds in the ambient interplanetary medium. Between 1 and 0.1 AU the dust number densities and fluxes can be described by inward extrapolation of 1 AU measurements, assuming radial dependences that describe particles in close to circular orbits. Observations have confirmed the general accuracy of these assumptions for regions within 30◦ latitude of the ecliptic plane.
    [Show full text]
  • AP-42, CH 13.2: Fugitive Dust Sources
    13.2 Fugitive Dust Sources Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, and heavy construction operations. For the above sources of fugitive dust, the dust-generation process is caused by 2 basic physical phenomena: 1. Pulverization and abrasion of surface materials by application of mechanical force through implements (wheels, blades, etc.). 2. Entrainment of dust particles by the action of turbulent air currents, such as wind erosion of an exposed surface by wind speeds over 19 kilometers per hour (km/hr) (12 miles per hour [mph]). In this section of AP-42, the principal pollutant of interest is PM-10 — particulate matter (PM) no greater than 10 micrometers in aerodynamic diameter (µmA). Because PM-10 is the size basis for the current primary National Ambient Air Quality Standards (NAAQS) for particulate matter, it represents the particle size range of the greatest regulatory interest. Because formal establishment of PM-10 as the primary standard basis occurred in 1987, many earlier emission tests have been referenced to other particle size ranges, such as: TSP Total Suspended Particulate, as measured by the standard high-volume ("hi-vol") air sampler, has a relatively coarse size range. TSP was the basis for the previous primary NAAQS for PM and is still the basis of the secondary standard. Wind tunnel studies show that the particle mass capture efficiency curve for the high-volume sampler is very broad, extending from 100 percent capture of particles smaller than 10 µm to a few percent capture of particles as large as 100 µm.
    [Show full text]
  • The Turbulent Birth of Stars and Planets
    PHYSICS & ASTRONOMY_Protoplanetary Disks The Turbulent Birth of Stars and Planets Exoplanets – planets that orbit stars other than the Sun – used to be a matter of science fiction. Some 15 years ago, with the first detection of an exoplanet, they became a matter of observational astronomy. Since then, exoplanet observations have provided astronomers with intriguing clues as to the formation of stars and planets. This is invaluable information for researchers interested in planetary and star formation, such as the team led by Thomas Henning, Director at the Max Planck Institute for Astronomy in Heidelberg. TEXT THOMAS BÜHRKE he birth of planets and stars begins with clouds of gas and dust measuring many light- years in size. Such clouds can be found throughout our ga- T lactic home, the Milky Way, and for billions of years, they have acted as cosmic nurseries. In broad terms, what happens next has been known for de- cades: when a suitably large part of such a cloud exceeds a certain density, it begins to contract under its own grav- ity. Typically, such a region will not be perfectly motionless; instead, it is like- ly to rotate, if only ever so slightly. That is why, once contraction starts, there are two significant physical effects: contraction will reduce the cloud’s overall size. But at the same time, the rotation becomes faster and faster, due to what physicists call the conservation of angular momentum – think of a fig- ure skater who pulls her arms close to her body in order to execute a pirou- ette. As the speed of rotation increases, the interplay between gravity and the centrifugal force pulls the collapsing cloud into the shape of a disk.
    [Show full text]
  • Tracing the Nature and Evolution of Dust with Dustem
    A&A 525, A103 (2011) Astronomy DOI: 10.1051/0004-6361/201015292 & c ESO 2010 Astrophysics The global dust SED: tracing the nature and evolution of dust with DustEM M. Compiègne1, L. Verstraete2,A.Jones2,J.-P.Bernard3, F. Boulanger2,N.Flagey4, J. Le Bourlot5, D. Paradis4, and N. Ysard6 1 Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada e-mail: [email protected] 2 Institut d’Astrophysique Spatiale, UMR8617, CNRS, Université Paris-sud XI, Bât. 121, 91405 Orsay Cedex, France 3 Centre d’Etude Spatiale des Rayonnements, CNRS et Université Paul Sabatier-Toulouse 3, Observatoire Midi-Pyrénées, 9 Av. du Colonel Roche, 31028 Toulouse Cedex 04, France 4 Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 220-6, Pasadena, CA 91125, USA 5 Observatoire de Paris, LUTH and Université Denis Diderot, Place J. Janssen, 92190 Meudon, France 6 Helsinki University Observatory, 00014, University of Helsinki, Finland Received 28 June 2010 / Accepted 12 October 2010 ABSTRACT The Planck and Herschel missions are currently measuring the far-infrared to millimeter emission of dust, which combined with existing IR data, will for the first time provide the full spectral energy distribution (SED) of the galactic interstellar medium dust emission, from the mid-IR to the mm range, with an unprecedented sensitivity and down to spatial scales ∼30. Such a global SED will allow a systematic study of the dust evolution processes (e.g. grain growth or fragmentation) that directly affect the SED because they redistribute the dust mass among the observed grain sizes.
    [Show full text]
  • 5.3 Modeling of the Orbital Evolution of Vaporizing Dust Particles Near the Sun
    5.3 MODELING OF THE ORBITAL EVOLUTION OF VAPORIZING DUST PARTICLES NEAR THE SUN Zdenek Sekanina Center for Astrophysics Harvard College Observatory and Smithsonian Astrophysical Observatory Cambridge, Massachusetts 02138, U.S.A. The Poynting-Robertson (P-R) effect (Robertson, 1937, Wyatt and Whipple, 1950), assisted by a pseudo P-R effect due to the sputtering (Whipple, 1955, 1967), is known to cause small dust particles in inter­ planetary space to spiral toward the sun. Evaporation from the surface of such particles thus increases progressively with time and their size is being reduced accordingly. When the rate of evaporation is no longer negligibly low, it induces on the particle a measurable dynamical effect, which is associated with the implied variations in the magnitude of solar radiation pressure relative to solar attraction. By gradually reducing solar attraction, the particle evaporation tends to increase the orbit dimensions, thus acting against P-R. The P-R inward spiraling, far ex­ ceeding the dynamical effect from evaporation at larger heliocentric dis­ tances, slows gradually down as the particle approaches the sun, and vir­ tually ceases when the critical distance is reached, where the two forces approximately balance each other. Then, typically, the perihelion dis­ tance stabilizes, while the eccentricity starts increasing very rapidly until the particle is swept out of the solar system. This, in brief, is the orbital evolution of a vaporizing particle in the absence of other potentially important but rather poorly known processes, such as particle collisions, rotational bursting, electric charging and interactions with the solar wind and with the interplanetary magnetic field.
    [Show full text]