Natural Communities of Yellow Bogs in Lewis

Total Page:16

File Type:pdf, Size:1020Kb

Natural Communities of Yellow Bogs in Lewis NATURAL COMMUNITIES OF YELLOW BOGS IN . LEWIS, BLOOMFIELD AND BRUNSWICK, VERMONT E. Thompson Nongame & Natural Heritage Program ABSTRACT Yellow Bogs in Essex County, Vermont is a unique ecological area characterized by boreal, lowland forests and extensive bog systems. Within the area, black spruce swamps, lowland bogs and other wetlands were delineated into natural area sites and were mapped and described. Endemic plant and animal species were also identified and described for each site; many of these species are restricted to the Nulhegan Basin, of which Yellow Bogs is a part. Recommendations are provided for the management of the rare plants and natural communities of the area Technical Report 14 1989 Nongame & Natural Heritage Program Vermont Fish & Wiidiife Department Waterbury, VT 05676 (802)244-7331 INTRODUCTION The Nulhegan Basin, the lowland area east of Island Pond and mostly north of Vermont Route 10~, exemplifies the boreal lowland character of the Northeast Kingdom. Here are found the state's most extensive bogs and softwood swamps, the only breeding populations of certain boreal b i rds, rare boreal plants, and abundant moose and other northern species. The Nulhegan Basin (not specifically the Nulhegan River watershed but the lowland area that is within that watershed) is an area roughly circular in outline, about 10 miles in diameter, of relatively flat topography. The Basin is sharply demarcated on all sides by prominent hills and mountains. The flatness of this circle in comparison w.lth the surrounding hills is striking when viewed from a plane or on a topographic map (see Figure 1) . Although the area has relat.ively little topography within itself, it is nevertheless relativel y high; the- basin sits at approximately 1100 to 1400 feet elevation. Geologically, the basin is a "soft pluton". The bedrock in the basin itself is granitic rock, while the surrounding hills are generally schists or other similar metamorphic rock. The pluton was formed when molten magma underneath the crust of the earth was pushed upward by volcanic force. The magma did not erupt as a volcano but remained just below the surface, which was composed of metamorphic sedimentary rocks. The heat of the magma further metamorphosed the rock at the surface, making it very hard and resista~t to weathering. Over time, however, weatheri ng did occur, finally revealing the igneous rock below the surface rock. With more time, this igneous rock (a relatively soft granitic rock known as quartz monzonite) weathered more quickly than the surrounding,. hardened rock. Hence, a ring of resistant rock now surrounds the basin, where softer rock has gradually eroded away. During more recent geological time, the basin has become an area of glacial outwash. Following the last glaciation, the basin was likely full of flowing water while surrounding highlands were dry. Hence the basin is full of sand and grav el deposits overlying the granite bedrock. Yellow Bogs is an area that has no formal boundary demarcation, but is generally considered .to encompass the northeastern quarter or so of the Nulhegan Basin. The area considered in this study is shown in Figure 2. It is mostly within the town of Lewis, although small portions of Brunswick and Bloomfield are included as well. It is mostly east of the • Yellow Branch of the Nulhegan and north of Vermont Route 105. All waters in the study area flow southeast into the Nulhegan River and thence east into the Connecticut at Bloomfield. l OBJECTIVES The purposes of this study, as presented in the proposal, were: l. To map and describe the rare and exemplary natural communities of the Yellow Bogs area. 2. To locate and document any rare plants in the Yellow Bogs area. 3. To provide management suggestions for the natural communities and rare plants that can be integrated with management requirements for the rare animals present in the area. METHODS To meet these objectives, the following methods were used: l. Color infrared aerial photos at 1:20,000 scale were examined to determine areas of potentially significant natural communities. 2. The area was surveyed by small plane in April and October, prior to and following field work. 3. Se~eral areas identified from air photos and the flight were visited on foot during June, July and August. Species lists and community descriptions were made. 4. Areas of significant natural communities were mapped. RESULTS Map of Significant Natural Communities The results of the work are summarized on the attached map. This map should be used as the basis of information for planning and conservation work. Eight sites (some composed of several smaller sites) are identified as locations for significant natural communities and/ or rare plant habitat. These eight areas were assigned site names by the author. It should be noted that the natural area boundaries shown on the map are approximate only. In some cases the natural area boundary includes some non­ significant habitat that is regarded as important buffer area for the significant sites. The boundaries between natural communities are also only approximate; these communities (especially black spruce swamp and lowland bog) grade into one another and cannot be cleanly demarcated on a map . 2 significant Natural Communities - Description Three types of significant areas are identified: black spruce swamp, lowland bog, and other wetlands. Generalized description of these three types follow. Specific site descriptions for some of the areas can be found in Appendix I, and a list of plants found during the inventry is found in Appendix II. Black Spruce swamps - Black spruce stands are scattered throughout the Yellow Bogs area, but only the most extensive and/or least disturbed are identified here. These are wetlands, generally with shallow accumulations of peat, in which black spruce is the dominant tree. The trees are small, with diameters of 4 to 8 inches on the average. Although black spruce (Picea mariana) dominates in the canopy, balsam fir (Abies balsamea) and tamarack (Larix laricina) are present as well. The shrub layer is sparse, with scattered individuals of mountain holly (Nemopanthus mucronata), withe-rod (Viburnum cassinoides), red maple (Acer rubrum) and balsam fir. Where black spruce swamps intergrade with lowland bog areas, the spruce is more stunted and is present in the shrub layer as well as in the canopy. Other species are present in these transition areas as well. The ground layer in black spruce swamps is dominated by mosses such as Thuidium delicatulum, Pleuroziwn schreberi, Ptilium crista­ castrensis, and Sphagnum species. Scattered herbaceous plants are pink lady's slipper (Cypripedium acaule), snowberry (Gaultheria hispidula) and goldthread (Coptis qroenlandica) • The rare mountain cranberry (Vaccinium vitis-idaea) is found in these areas as well as upland forests in Yellow Bogs. Lowland bogs - Several small areas of lowland bog are present within the Yellow Bogs area. They are usually associated with black spruce stands, probably occupying the .sites where the peat is deepest. They are mostly small areas, with low species diversity. Black spruce is the dominant tree in these bogs, but the individuals are never as large as in the adjacent black spruce swamps. Stunted tamarack are present as well. There is a well-developed shrub layer, with such characteristic species as labrador tea (Ledum groenlandicum), bog laurel (Kalmia polifolia), rhodora (Rhododendron canadense), and black chokeberry (Aronia melanocarpa) . Characteristic herbs are carex disperma, small cranberry (Vaccinium oxycoccos), three-leaved false-solomon's seal (Smilacina trifolia), sundew (Drosera rotundifolia), and pitcher plant (Sarracenia purpurea). Sphagnum fuscum and other species of Sphagnum form a nearly continuous carpet under the herbaceous and woody vegetation. The largest of the lowland bogs is the westernmost one in the study area ("Western Bog"). In this bog there occurs a large population of the rare bog sedge, carex exilis. 3 Other wetlands - These are either open sedge meadows or shrub {alder) thickets. These are not uncommon communities in Vermont, so only the most extensive or otherwise unusual examples .are identified here. One of the wetland areas identified is actually an old blowdown, but is of ecological interest because of the successional processes that are taking place here. Succession has not been studied at the site, but it appears that paludification, or "swamping" is taking place here as in other areas of Yellow Bogs. Paludification is a process in which a landscape becomes wetter when a peatland raises its own water table and expands into adjacent upland areas. This process is probably active throughout much of the Yellow Bogs area, but is perhaps most dramatic in areas that have been cleared either naturally or by humans. Paludification is enhanced in cleared areas because evapotranspiration is significantly reduced with the loss of the canopy. Paludification, either natural or disturbance-induced, is a common phenomenon in northern climates but is fairly unusual in mostly temperate Vermont. Therefore paludif ied areas of both types in Yellow Bogs could serve as important research sites. DISCUSSION The results of this and other studies that have been done in Yellow Bogs are clear evidence that this is an important and highly unusual area in Vermont. The following can be said about the ecological significance of Yellow Bogs: Nowhere in Vermont is there such a high concentration of boreal bog systems. Nowhere in Vermont are there such extensive black spruce swamps. At least two rare boreal plant species occur in Yellow Bogs. The bryophyte {moss and lichen) flora, whicp has not been studied, may very well be unusual in Vermont. Paludification, an ecological process which appears to be rare in Vermont, occurs here and has likely contributed to the present-day character of Yellow Bogs. The area provides a significant amount of habitat for several boreal bird species; it is one of only a few significant areas of boreal bird habitat in Vermont.
Recommended publications
  • Propagating with Nature: Simpler Is Better by Mike Creel Written for July 21, 2005 Workshop at the 22Nd Annual Cullowhee Conference “Native Plants in the Landscape
    Propagating WITH Nature: Simpler Is Better By Mike Creel Written for July 21, 2005 workshop at The 22nd Annual Cullowhee Conference “Native Plants in the Landscape CONTENTS Page ---- Topics 1 -- Why You Came Here - To Learn Simple Propagation What Is Different About Creel-Way Propagation? Low-Tech, Simple, Outdoors, Cheap A Few “Technical Terms Why Learn to Propagate Native Plants 2 -- How to Get Started in Creel-Way Propagation Principles of Creel-Way Propagation When Sticking Cuttings When Planting Seed Pots Identification Tags Woody Cutting Theory 3 -- Selecting & Mixing Your Media One All-Purpose Media Mix Shade Cloth Cools Cuttings Just Local Humus, No Rooting Hormones, Repotting Cuttings Varmint Caps for Seed Pots 4 -- Drilling Pots To Improve Drainage Drilling Thin-Walled Plastic Rescuing Pots In Peril Hold-Down Wires 5 -- Selection And Use Of Propagation Domes 6 -- Cuttings by the Calendar - Winter, Spring, Summer, Fall 7 -- Cutting Selection for Native Azaleas and Other Plants Unusual Cutting Types - InstantPlant, SuperPlant Unorthodox Propagation Pots - High-Rise, Collander, Dome-Pot Potpourri 8 -- Propagator’s Review Propagation With Motivation, Advantages of Creel-Way My Latest Experiments, Several Rules Nature Is My Greenhouse, Sharing Your Fruits 9 -- American Native Azalea Species in Bloom Order for Southeast Photos and Illustrations 10 -- Creel-Way Dome-Pot one gallon 11 -- Recommended Pots & Domes 12 - -Drilling & Filling Pots for Good Drainage 13-- Menagerie of Dome-Pots 14 -- Collander Dome-Pot 15 -- Dormant Cuttings Are Really Pruning Mike Creel 155 Cannon Trail Road Lexington, South Carolina 29073 [email protected] 1 -- Propagating WITH Nature: Simpler Is Better by Mike Creel Why You Came - You have probably come to this workshop wanting to learn new, simpler ways to propagate native plants on a small scale, and you will! I do not use rooting hormones other than what is contained in the plant cutting and in local soil bacteria.
    [Show full text]
  • On Tropical Drosera Rotundifolia L
    Technical Refereed Contribution On tropical Drosera rotundifolia L. Andreas Fleischmann • Botanische Staatssammlung München and GeoBio-Center LMU University • Menzinger Strasse 67 • D-80638 Munich • Germany • [email protected] Abstract: Two aspects on the morphology and biology of the Philippine population of D. rotundifo- lia were not answered by Coritico and Fleischmann (2016), namely its seed morphology and sea- sonal growth cycle - especially regarding hibernaculum formation, as it is known from its temperate congeners. These gaps can now be covered from observations made from cultivated plants and shall be reported here. Further aspects on the biology of Philippine D. rotundifolia (and other tropical populations of temperate Drosera) in cultivation and natural habitat are presented. Distribution and altitudinal range of Drosera rotundifolia The generic type species of Drosera, Drosera rotundifolia L., is probably the most well-known sundew species, at least to people from the Northern Hemisphere. It is also the most widespread1, its range spans the entire boreal region (Fig. 1; Meusel et al. 1965). Its southernmost populations in the Northern Hemisphere are situated in SE China, in the mountain ranges of northern Guangdong province, at ca. 24.5°N (Coritico & Fleischmann 2016). In Europe its more or less continuous range reaches to ca. 39°N to the south in central Spain, in North America to ca. 34°N in northern Georgia and Alabama states, in Japan to 30°N on the island of Yakushima (Coritico & Fleischmann 2016). Additionally, D. rotundifolia shows a few isolated outlier populations in some areas of the Mediter- ranean [e.g. on the isle of Corsica, France (Delange & Hugot 2020), in the Sierra Nevada of southern Spain (Lorite 2016), and in northern Greece (just three sites known in the Rhodope Mountains; The- odoropoulos & Eleftheriadou 2012)], in central Lebanon (Diels 1906; Tohmé & Tohmé 2007; despite erroneous claims, e.g.
    [Show full text]
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • Natural Landscapes of Maine a Guide to Natural Communities and Ecosystems
    Natural Landscapes of Maine A Guide to Natural Communities and Ecosystems by Susan Gawler and Andrew Cutko Natural Landscapes of Maine A Guide to Natural Communities and Ecosystems by Susan Gawler and Andrew Cutko Copyright © 2010 by the Maine Natural Areas Program, Maine Department of Conservation 93 State House Station, Augusta, Maine 04333-0093 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without written permission from the authors or the Maine Natural Areas Program, except for inclusion of brief quotations in a review. Illustrations and photographs are used with permission and are copyright by the contributors. Images cannot be reproduced without expressed written consent of the contributor. ISBN 0-615-34739-4 To cite this document: Gawler, S. and A. Cutko. 2010. Natural Landscapes of Maine: A Guide to Natural Communities and Ecosystems. Maine Natural Areas Program, Maine Department of Conservation, Augusta, Maine. Cover photo: Circumneutral Riverside Seep on the St. John River, Maine Printed and bound in Maine using recycled, chlorine-free paper Contents Page Acknowledgements ..................................................................................... 3 Foreword ..................................................................................................... 4 Introduction ...............................................................................................
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Vaccinium Oxycoccos L
    Plant Guide these fruits in their food economy (Waterman 1920). SMALL CRANBERRY Small cranberries were gathered wild in England and Vaccinium oxycoccos L. Scotland and made into tarts, marmalade, jelly, jam, Plant Symbol = VAOX and added to puddings and pies (Eastwood 1856). Many colonists were already familiar with this fruit Contributed by: USDA NRCS National Plant Data in Great Britain before finding it in North America. Team, Greensboro, NC The small cranberry helped stock the larder of English and American ships, fed trappers in remote regions, and pleased the palates of Meriwether Lewis and William Clark in their explorations across the United States (Lewis and Clark 1965). The Chinook, for example, traded dried cranberries with the English vessel Ruby in 1795 and at Thanksgiving in 1805 Lewis and Clark dined on venison, ducks, geese, and small cranberry sauce from fruit brought by Chinook women (McDonald 1966; Lewis and Clark 1965). Because the small cranberry can grow in association with large cranberry (Vaccinium macrocarpon) in the Great Lakes region, northeastern USA and southeastern Canada (Boniello 1993; Roger Latham pers. comm. 2009) it is possible that the Pilgrims of Plymouth were introduced to both edible Small cranberries growing in a bog on the western Olympic species by the Wampanoag. Peninsula, Washington. Photograph by Jacilee Wray, 2006. The berries are still gathered today in the United Alternate Names States, Canada, and Europe (Himelrick 2005). The Bog cranberry, swamp cranberry, wild cranberry Makah, Quinault, and Quileute of the Olympic Peninsula still gather them every fall and non-Indians Uses from early settler families still gather them (Anderson Said to have a superior flavor to the cultivated 2009).
    [Show full text]
  • Carnivorous Plant Newsletter Vol 48 No 4 December 2019
    Drosera in the western USA—an update Barry A. Rice • Center for Plant Diversity • University of California • One Shields Avenue • Davis • California 95616 • USA • [email protected] Keywords: Taxonomy: Drosera, western USA, Drosera anglica, Drosera intermedia, Drosera linearis, Drosera × obovata, Drosera rotundifolia, Drosera × woodii. One of my primary research activities focuses on carnivorous plants in the US states of Montana, Wyoming, Colorado, New Mexico, and westward (but excluding Alaska). Throughout most of this range, the only native species of Drosera are Drosera rotundifolia L., Drosera anglica Huds., and the hybrid Drosera × obovata Mert. & Koch. These species are well-known to readers of this jour- nal, and need no further description. In this region, these plants quite often occur in sites that are widely separated, and in some states these taxa are of considerable rarity (for example, in Colorado D. rotundifolia and D. anglica are known at only 4 and 1 sites, respectively; Wolf et al. 2006). In addition to these species, there have been reports of two additional native Drosera—Drosera intermedia Hayne in northern Idaho (and perhaps adjacent eastern Washington), and Drosera lin- earis Goldie in Montana. Drosera intermedia was reported in Boundary County, Idaho by Bursik (1993), as growing with Drosera anglica, but being quite different in form. Additional populations were subsequently found in Custer County, Idaho (L. Kinter, pers. comm. 2017). Of course, the closest other Drosera inter- media plants were on the other side of the continent, so this was considered a find of great interest, and the plants were treated as of special significance. A few years ago, I decided I needed to visit and assess these plants.
    [Show full text]
  • Drosera Intermedia in a Northern Michigan Bog
    Assessment of microhabitat differences between Drosera rotundifolia and Drosera intermedia in a northern Michigan bog Andrew David University of Michigan Biological Station EEB 381, General Ecology August 19, 2010 Professor Cathy Bach Abstract The purpose of this study was to investigate microhabitat differences between two species of sundews, Drosera rotundifolia and Drosera intermedia. I tested several hypotheses: D. rotundifolia density increases with increasing height above a fixed low point, while D. intermedia density decreases with height; D. rotundifolia grows primarily on red Sphagnum moss, while D. intermedia grows primarily on green Sphagnum; the densities of both Drosera species increase with decreasing pH; the density of neither Drosera species is affected by water conductivity or dissolved oxygen content. At Mud Lake Bog in Cheboygan County, Michigan, I recorded the species of Drosera plants, as well as the height of the plants above a fixed low point and the color of Sphagnum moss on which they were growing. I also measured the pH, conductivity, and dissolved oxygen content of the water in which the plants were growing. Densities of both Drosera species decreased with increasing height, though the trend was stronger for D. intermedia. D. rotundifolia grew significantly more on red Sphagnum than did D. intermedia, while D. intermedia grew significantly more on green Sphagnum than did D. rotundifolia. D. rotundifolia density varied significantly with neither pH, conductivity, nor dissolved oxygen. D. intermedia density increased significantly with decreasing pH and increasing conductivity, but not with dissolved oxygen. My results were consistent with past research, and conclusively illustrated the differences in microhabitat preferences between the two Drosera species.
    [Show full text]
  • Anti-Carcinoma Activity of Vaccinium Oxycoccos
    Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2017, 9 (3):74-79 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Anti-carcinoma activity of Vaccinium oxycoccos Mansoureh Masoudi1, Milad Saiedi2* 1Valiasr Eghlid hospital, Shiraz University of medical sciences, Shiraz, Iran 2student of medicine, international Pardis University of Yazd, Yazd, Iran *Corresponding author: Milad Saiedi, student of medicine, international Pardis University of Yazd, Yazd, Iran _______________________________________________________ ABSTRACT Introduction: Vaccinium oxycoccos or cranberry are evergreen shrubs in the subgenus Oxycoccos of the genus Vaccinium. The aim of this study was to overview anti-carcinoma activity of Vaccinium oxycoccos. Methods: This review article was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified about 79 references. In this study, 56 studies were accepted for further screening and met all our inclusion criteria [in English, full text, therapeutic effects of Vaccinium oxycoccos and dated mainly from the year 2002 to 2016.The search terms were “Vaccinium oxycoccos”, “therapeutic properties”, “pharmacological effects”. Result: the result of this study showed that Vaccinium oxycoccos possess anti-carcinoma activity against the following cancers: prostate, bladder, lymphoma, ovarian, cervix, breast, lung, and colon. Conclusion: the results from this review are quite promising for the use of Vaccinium oxycoccos as an anti-cancer agent. Vaccinium oxycoccos possess the ability to suppress the proliferation of human breast cancer MCF-7 cells and this suppression is at least partly attributed to both the initiation of apoptosis and the G1 phase arrest. Keywords: Vaccinium oxycoccos, Phytochemicals, Therapeutic effects, Pharmacognosy, Alternative and complementary medicine.
    [Show full text]
  • Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
    CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community.
    [Show full text]
  • DROSERA ROTUNDIFOLIA DIET DETERMINATION USING DNA DATA by 1,2 2 2,3 BARBORA LEKESYTE , STEPHEN KETT and MARTIJN J.T.N
    Journal of the Lundy Field Society, 6, 2018 WHAT’S ON THE MENU: DROSERA ROTUNDIFOLIA DIET DETERMINATION USING DNA DATA by 1,2 2 2,3 BARBORA LEKESYTE , STEPHEN KETT AND MARTIJN J.T.N. TIMMERMANS 2Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London, NW4 4BT 3Department of Life Science, Natural History Museum, Cromwell Road, London, SW7 5BD 1Corresponding author, e-mail: [email protected] ABSTRACT The round-leaved sundew, Drosera rotundifolia, is a carnivorous plant species. On Lundy it is found in the nutrient-poor bog environments of Pondsbury and the northernmost quarry, where it supplements its diet with invertebrate prey. To gain insight into the diet of these two sundew populations a metabarcoding approach was trialled. This is, to our knowledge, the first study to use DNA barcodes to identify Drosera prey. At each site, a 0.25m2 quadrat was placed in a representative Drosera patch and two days’ worth of prey were collected. To identify prey items, Cytochrome c oxidase subunit I (COX1) sequences were obtained and compared to the Barcode of Life database. This revealed that Lundy sundews have a mixed diet. In total at least 20 different prey taxa were detected in the two 0.25m2 areas sampled. Sixteen taxa could be identified to species, indicating that metabarcoding permits accurate species level identification of sundew prey items. The majority of prey taxa were dipterans (two-winged flies), of which several have previously been reported on Lundy. Most prey taxa were detected in only one of the two quadrats examined (Jaccard’s index of Similarity=0.01; ‘dissimilar’).
    [Show full text]
  • Drosera Rotundifolia L.)
    Sci Pharm www.scipharm.at Research article Open Access An Improved 2-step Liquid Culture System for Efficient In Vitro Shoot Proliferation of Sundew (Drosera rotundifolia L.) Christoph WAWROSCH *, Eva BENDA, Brigitte KOPP Department of Pharmacognosy, University of Vienna, Althanstr. 14, A-1090, Vienna, Austria * Corresponding author. E-mail: [email protected] (C. Wawrosch) Sci Pharm. 2009; 77: 827–835 doi:10.3797/scipharm.0908-03 Published: September 21st 2009 Received: August 4th 2009 Accepted: September 21st 2009 This article is available from: http://dx.doi.org/10.3797/scipharm.0908-03 © Wawrosch et al; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract An efficient procedure for in vitro shoot production of the medicinal plant sundew (Drosera rotundifolia L.) was developed. Of three cytokinins tested, zeatin (ZEA) at a concentration of 2 µM resulted in the formation of large numbers of adventitious shoots on leaf explants. A larger size of the small shoots was achieved by combining a 2-weeks preculture with ZEA (step 1: shoot induction) with a 5-weeks main culture without plant growth regulators (step 2: shoot elongation). Liquid media were superior to semisolid media: An average of 27.4 shoots per leaf explant, and 53.3 shoots per shoot explant were achieved. The 2-step culture system with liquid media permits a comparatively cheap micropropagation of sundew as well as in vitro biomass production, with potential for scale-up.
    [Show full text]