Drosera Anglica Huds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Tropical Drosera Rotundifolia L
Technical Refereed Contribution On tropical Drosera rotundifolia L. Andreas Fleischmann • Botanische Staatssammlung München and GeoBio-Center LMU University • Menzinger Strasse 67 • D-80638 Munich • Germany • [email protected] Abstract: Two aspects on the morphology and biology of the Philippine population of D. rotundifo- lia were not answered by Coritico and Fleischmann (2016), namely its seed morphology and sea- sonal growth cycle - especially regarding hibernaculum formation, as it is known from its temperate congeners. These gaps can now be covered from observations made from cultivated plants and shall be reported here. Further aspects on the biology of Philippine D. rotundifolia (and other tropical populations of temperate Drosera) in cultivation and natural habitat are presented. Distribution and altitudinal range of Drosera rotundifolia The generic type species of Drosera, Drosera rotundifolia L., is probably the most well-known sundew species, at least to people from the Northern Hemisphere. It is also the most widespread1, its range spans the entire boreal region (Fig. 1; Meusel et al. 1965). Its southernmost populations in the Northern Hemisphere are situated in SE China, in the mountain ranges of northern Guangdong province, at ca. 24.5°N (Coritico & Fleischmann 2016). In Europe its more or less continuous range reaches to ca. 39°N to the south in central Spain, in North America to ca. 34°N in northern Georgia and Alabama states, in Japan to 30°N on the island of Yakushima (Coritico & Fleischmann 2016). Additionally, D. rotundifolia shows a few isolated outlier populations in some areas of the Mediter- ranean [e.g. on the isle of Corsica, France (Delange & Hugot 2020), in the Sierra Nevada of southern Spain (Lorite 2016), and in northern Greece (just three sites known in the Rhodope Mountains; The- odoropoulos & Eleftheriadou 2012)], in central Lebanon (Diels 1906; Tohmé & Tohmé 2007; despite erroneous claims, e.g. -
Carnivorous Plant Newsletter Vol 47 No 1 March 2018
What’s new in the world of carnivorous plants – Summary of two symposia held in July 2017 Simon Poppinga • Albert-Ludwigs-Universität Freiburg • Germany • simon.poppinga@ biologie.uni-freiburg.de Firman Alamsyah • Ctech Labs and Indonesian Carnivorous Plant Community • Indonesia Ulrike Bauer • University of Bristol • UK Andreas Fleischmann • Botanische Staatssammlung München • Germany Martin Horstmann • University of Bochum • Germany Saskia Klink • University of Bayreuth • Germany Sebastian Kruppert • University of Bochum • Germany Qianshi Lin • University of British Columbia • Canada Ulrike Müller • California State University Fresno • USA Amanda Northrop • University of Vermont • USA Bartosz J. Płachno • Jagiellonian University in Kraków • Poland Anneke Prins • Middlesex University • UK Mathias Scharmann • ETH Zürich • Switzerland Dagmara Sirová • University of South Bohemia • Czech Republic Laura Skates • University of Western Australia • Australia Anna Westermeier • Albert-Ludwigs-Universität Freiburg • Germany Aaron M. Ellison • Harvard Forest • USA • [email protected] Dozens of scientific papers about carnivorous plant research are published each year on diverse topics ranging from new species descriptions, through phylogenetic approaches in taxonomy and systematics, to ecology and evolution of botanical carnivory, biomechanics and physiology of traps, among many others. By the time a paper is published, however, it is already “old news” because the salient results often are presented months or even years earlier at scientific conferences. Such meetings are the perfect venues to discuss ongoing research and “hot” topics and present them to colleagues from around the world. The first and last authors of this report were in the lucky situation to organize symposia about carnivorous plant biology during two major conferences: Simon Poppinga chaired a one-day ses- sion—“Carnivorous plants - Physiology, ecology, and evolution”—on July 6, 2017, as part of the Annual Main Meeting of the Society for Experimental Biology (SEB) in Gothenburg, Sweden. -
Foraging Modes of Carnivorous Plants Aaron M
Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191066 Foraging modes of carnivorous plants Aaron M. Ellison* Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory. -
Huntley Meadows Park Wildflowers
CI Mountain-mint, Narrow-leaved Pycnanthemum 0 Solomon's-seal Polygonatum biflorum 0 Vervain, White Verbena urticifolia tenuifolium O Sorrel, Sheep (Field) Rumex acetosella ID Vetch, Crown (Oxseed) Coronilla varia o Mugwort Artemisia vulgaris CI Sow-thistle, Common Sonchus o/eraceus 0 Vetch, Narrow-leaved Vicia angustdolia 0 Mullein, Common Verbascum thapsus o Spatterdock (Southern Pond Lily) Nuphar advena 0 Vetch, Spring Vicia sativa O Mullein, Moth Verbascum blattaria o Spearwort Ranunculus pusillus O Violet, Arrow-leaved Viola sagittata Huntley O Mustard, Field Bra ssica rapa 0 Speedwell, Common Veronica officinalis 0 Violet, Birdfoot Viola pedata 0 Mustard, Garlic Alliaria officinalis 0 Speedwell, Corn Veronica arvensis 0 Violet, Common Blue Viola papilionacea 0 Nettle, False (Bog-hemp) Boehmeria cylindrica 0 Speedwell, Ivy-leaved Veronica hederaefolia 0 Violet, Early Blue (Palmate) Viola palmata 0 Nightshade, Common Solanum nigrum ID Speedwell, Persian (Bird's-eye) Veronica persica 0 Violet, Lance-leaved Viola lanceolata Meadows 0 Orange Grass Hypericum gent ianoides O Speedwell, Thyme-leaved Veronica serpyllifolia 0 Violet, Leconte's Viola affinis o Orchis, Cranefly Tipularia discolor O Spring-beauty Claytonia virgin/ca 0 Violet, Marsh Blue Viola cucullata 0 Orchis, Ragged Fringed Habenaria lacera O Spurge, Flowering Euphorbia corollata 0 Violet, Primrose-leaved Viola primulifolia 0 Orchis, Yellow Fringed Habenaria ciliaris 13 St. Johnswort, Common Hypericum perforat urn 0 Violet, Stone's Viola stoneana O Water-hemlock Park 0 Pansy, -
Status of Insectivorous Plants in Northeast India
Technical Refereed Contribution Status of insectivorous plants in northeast India Praveen Kumar Verma • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box # 136 • Jorhat 785 001 (Assam) • India • [email protected] Jan Schlauer • Zwischenstr. 11 • 60594 Frankfurt/Main • Germany • [email protected] Krishna Kumar Rawat • CSIR-National Botanical Research Institute • Rana Pratap Marg • Lucknow -226 001 (U.P) • India Krishna Giri • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box #136 • Jorhat 785 001 (Assam) • India Keywords: Biogeography, India, diversity, Red List data. Introduction There are approximately 700 identified species of carnivorous plants placed in 15 genera of nine families of dicotyledonous plants (Albert et al. 1992; Ellison & Gotellli 2001; Fleischmann 2012; Rice 2006) (Table 1). In India, a total of five genera of carnivorous plants are reported with 44 species; viz. Utricularia (38 species), Drosera (3), Nepenthes (1), Pinguicula (1), and Aldrovanda (1) (Santapau & Henry 1976; Anonymous 1988; Singh & Sanjappa 2011; Zaman et al. 2011; Kamble et al. 2012). Inter- estingly, northeastern India is the home of all five insectivorous genera, namely Nepenthes (com- monly known as tropical pitcher plant), Drosera (sundew), Utricularia (bladderwort), Aldrovanda (waterwheel plant), and Pinguicula (butterwort) with a total of 21 species. The area also hosts the “ancestral false carnivorous” plant Plumbago zelayanica, often known as murderous plant. Climate Lowland to mid-altitude areas are characterized by subtropical climate (Table 2) with maximum temperatures and maximum precipitation (monsoon) in summer, i.e., May to September (in some places the highest temperatures are reached already in April), and average temperatures usually not dropping below 0°C in winter. -
Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Carnivorous Plant Responses to Resource Availability
Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier. -
The Genus Cosmoclostis Meyrick Indudes 12 Species: Arborea Roxb
GENERAL NOTES Jour/wi o{llte Le/lid,,!'ler;,.!.,' Sociely 60(2). 2006, 92-fJ7 COSMOCLOSTIS ACLAODESMA: DESCRIPTION OF THE LARVA AND PUPA (PTEROPHORIDAE: PTEROPHORINAE: PTEROPHORINI) Additional key wonls: Illorphology, characters, illlmatlll'e stages, tribal placement, Australia The genus Cosmoclostis Meyrick indudes 12 species: arborea Roxb. as the host for C. aglaodesma from 3 Australasian, 3 Afrotropical, and 6 Oriental in Assam, India, but accorcling to Arenberger (1998), C. distribution (Fletcher 1947, Gielis 2003, Hao et al. aglaodesma is restricted to Australia and these records 2(04). Hostplants have been reported for 4 species are based on misdetennined specimens. Gmelina (Hao et a1. 2004, Matthews & Lott 2005) but the w-boma is the host for C. leucomochla Fletcher in India immature stages are poorly known. Fletcher (1932) (Nair 2001) and C. gmelina I-lao, Li, & v\lu in China illustrated and briefly described the larva and pupa of C. (Hao et a1. 2004). Gmelina 11'wluccana Backer ex K. pesseuta Meyrick (as C. premnicola Fletcher). We Heyne is the host for C lamprosema Fletcher in the describe and illustrate the pupa and a late instal' larva of Solomon Islands (Arenberger 1998). the type species, C. aglaoclesma Meyrick, using setal Material examined. Australia: Queensland: Iron nomenclature following Stehr (1987) and Heinrich Range 19 March 1964 I.B.F. Cornman & M.S. Upton, (1916). Arenberger (1998) illustrates the adult and on Gmelina sp. (1 larva, 1 pupa) [Australian National genitalia of this species. Insect Collection]. Specimens identified by I.B.F. Cosmoclostis aglaoclesma occurs along the Pacific Common. H.im of Australia. -
Carnivorous Plant Newsletter Vol 48 No 4 December 2019
Drosera in the western USA—an update Barry A. Rice • Center for Plant Diversity • University of California • One Shields Avenue • Davis • California 95616 • USA • [email protected] Keywords: Taxonomy: Drosera, western USA, Drosera anglica, Drosera intermedia, Drosera linearis, Drosera × obovata, Drosera rotundifolia, Drosera × woodii. One of my primary research activities focuses on carnivorous plants in the US states of Montana, Wyoming, Colorado, New Mexico, and westward (but excluding Alaska). Throughout most of this range, the only native species of Drosera are Drosera rotundifolia L., Drosera anglica Huds., and the hybrid Drosera × obovata Mert. & Koch. These species are well-known to readers of this jour- nal, and need no further description. In this region, these plants quite often occur in sites that are widely separated, and in some states these taxa are of considerable rarity (for example, in Colorado D. rotundifolia and D. anglica are known at only 4 and 1 sites, respectively; Wolf et al. 2006). In addition to these species, there have been reports of two additional native Drosera—Drosera intermedia Hayne in northern Idaho (and perhaps adjacent eastern Washington), and Drosera lin- earis Goldie in Montana. Drosera intermedia was reported in Boundary County, Idaho by Bursik (1993), as growing with Drosera anglica, but being quite different in form. Additional populations were subsequently found in Custer County, Idaho (L. Kinter, pers. comm. 2017). Of course, the closest other Drosera inter- media plants were on the other side of the continent, so this was considered a find of great interest, and the plants were treated as of special significance. A few years ago, I decided I needed to visit and assess these plants. -
Florida Council of Bromeliad Societies, Inc
Florida Council of Bromeliad Societies, Inc. In This Issue: 2007 Shows and Sales Cold Hardy Bromeliads List Vol. 27 Issue 1 February 2007 FCBS Affiliated Societies and Representatives B. Guild Tampa Bay Caloosahatchee Tom Wolfe Vicky Chirnside 5211 Lake LeClare Road 951 Southland Road Lutz 33558 Venice 34293 813-961-1475 941-493-5825 [email protected] [email protected] Bob Teems Tom Foley 813-855-0938 239-458-4656 Broward County Fl. East Coast Jose Donayre Calandra Thurrott 1240 Jefferson St. 713 Breckenridge Drive Hollywood 33019-1807 Port Orange 32127 954-925-5112 386-761-4804 Jcadonayre @bellsouth.net [email protected] Colleen Hendrix Carolyn Schoenau 954-530-0076 352-372-6589 Central Florida F. West Coast Betsy McCrory Linda Sheetz 3615 Boggy Creek Rd. 1153 Williams Dr. S Kissimmee 34744 St. Petersburg 33705 407-348-2139 727-864-3165 [email protected] [email protected] Butch Force Brian Corey 407-886-4814 727-864-3165 South Florida Gainesville Juan Espinosa-Almodovar Al Muzzell P.O. Box 430722 P.O. Box 14442 Miami 33243 Gainesville 32604 305-667-6155 352-372-4576 [email protected] John R. Moxley Michael Michalski 352-528-0783 305-279-2416 (Continued on the inside back cover.) 2007 Bromeliad Extravaganza Presented by Florida Council of Bromeliad Societies Hosted by the Bromeliad Society of Broward County Saturday, September 29, 2007 at the Hilton Ft. Lauderdale Airport Hotel 1870 Griffin Rd. Dania Beach, FL 33004 954-920-3300 954-920-3348 (fax) Room rates: Single or double $89.00 Rates in effect until September 14, 2007 Sale, Banquet, Raffle and Rare Plant Auction will take place at the same location. -
Drosera Intermedia in a Northern Michigan Bog
Assessment of microhabitat differences between Drosera rotundifolia and Drosera intermedia in a northern Michigan bog Andrew David University of Michigan Biological Station EEB 381, General Ecology August 19, 2010 Professor Cathy Bach Abstract The purpose of this study was to investigate microhabitat differences between two species of sundews, Drosera rotundifolia and Drosera intermedia. I tested several hypotheses: D. rotundifolia density increases with increasing height above a fixed low point, while D. intermedia density decreases with height; D. rotundifolia grows primarily on red Sphagnum moss, while D. intermedia grows primarily on green Sphagnum; the densities of both Drosera species increase with decreasing pH; the density of neither Drosera species is affected by water conductivity or dissolved oxygen content. At Mud Lake Bog in Cheboygan County, Michigan, I recorded the species of Drosera plants, as well as the height of the plants above a fixed low point and the color of Sphagnum moss on which they were growing. I also measured the pH, conductivity, and dissolved oxygen content of the water in which the plants were growing. Densities of both Drosera species decreased with increasing height, though the trend was stronger for D. intermedia. D. rotundifolia grew significantly more on red Sphagnum than did D. intermedia, while D. intermedia grew significantly more on green Sphagnum than did D. rotundifolia. D. rotundifolia density varied significantly with neither pH, conductivity, nor dissolved oxygen. D. intermedia density increased significantly with decreasing pH and increasing conductivity, but not with dissolved oxygen. My results were consistent with past research, and conclusively illustrated the differences in microhabitat preferences between the two Drosera species.