Preliminary Analysis of Precipitation Runoff Features in the Jinsha River Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Triplophysa Pseudostenura, a New Nemacheiline Loach (Cypriniformes: Balitoridae) from the Yalong River of China
Zootaxa 3586: 272–280 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:06C92974-A6A3-4D2F-97CC-2D3CA362B41F Triplophysa pseudostenura, a new nemacheiline loach (Cypriniformes: Balitoridae) from the Yalong River of China CHUNLIN HE1,2, E ZHANG2 & ZHAOBIN SONG1,3,4 1Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065 P. R. China 2Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 P. R. China 3Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P. R. China 4Corresponding author. E-mail: [email protected] Abstract A new species of nemacheiline loach, Triplophysa pseudostenura, is described from the Yalong River, a tributary of the upper Yangtze River drainage in China. Previous collectors misidentified the species as T. stenura. Triplophysa pseudostenura can be separated from T. stenura and other valid species of Triplophysa by the following combination of characters: body smooth and without scales; head tapering; lips thin and smooth; trunk and caudal peduncle slender, laterally compressed; depth of caudal peduncle tapering posteroventrally approaching caudal fin; posterior chamber of gas bladder reduced or absent; intestine short, forming a zigzag loop posterior to bottom of ‘U’-shaped stomach; insertion of pelvic fins anterior to dorsal-fin origin; caudal fin deeply concave. Key words: Teleost, new species, Upper Yangtze River, fish Introduction The genus Triplophysa is a species-rich group in the subfamily Nemacheilinae, and is currently hypothesized to have 126 species, 108 of which are thus far known from China (He 2008; He et al. -
Quantifying Trends of Land Change in Qinghai-Tibet Plateau During 2001–2015
remote sensing Article Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015 Chao Wang, Qiong Gao and Mei Yu * Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR 00936, USA; [email protected] (C.W.); [email protected] (Q.G.) * Correspondence: [email protected]; Tel.: +1-787-764-0000 Received: 1 September 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of 5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural − land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 ( 3.4%) mainly in the − southern and southeastern QTP. -
Report on Domestic Animal Genetic Resources in China
Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers. -
Download E-Copy
China Yearbook 2012 Editor Rukmani Gupta Copyright © Institute for Defence Studies and Analyses, 2013 Institute for Defence Studies and Analyses No.1, Development Enclave, Rao Tula Ram Marg, Delhi Cantt., New Delhi - 110 010 Tel. (91-11) 2671-7983 Fax.(91-11) 2615 4191 E-mail: [email protected] Website: http://www.idsa.in ISBN: 978-93-82512-03-5 First Published: October 2013 The covers shows delegates at the 18th National Congress of the Communist Party of China, 2012. Photograph courtesy: Wikimedia Commons, http://en.wikipedia.org/wiki/18th_National_Congress_of_ the_Communist_Party_of_China Disclaimer: The views expressed in this Report are those of the authors and do not necessarily reflect those of the Institute or the Government of India. Published by: Magnum Books Pvt Ltd Registered Office: C-27-B, Gangotri Enclave Alaknanda, New Delhi-110 019 Tel.: +91-11-42143062, +91-9811097054 E-mail: [email protected] Website: www.magnumbooks.org All rights reserved. No part of this publication may be reproduced, sorted in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-copying, recording or otherwise, without the prior permission of the Institute for Defence Studies and Analyses (IDSA). Contents Introduction 5 Section I: Internal Issues 9 1. Politics in China in 2012: Systemic Incrementalism and Beyond 11 Avinash Godbole 2. State and Society in 2012 – Protesting for Responsive Governance Structures 17 Rukmani Gupta 3. China’s Economy in 2012 – A Review 23 G. Balachandran 4. The Chinese Military in 2012 29 Mandip Singh Section II: External Relations 41 5. Sino-Indian Jostling in South Asia 43 Rup Narayan Das 6. -
Discovery of the Genus Platycerus (Coleoptera, Lucanidae) in Guizhou Province, South China
Elytra, Tokyo, 37(1): 77ῌ81, May 29, 2009 Discovery of the Genus Platycerus (Coleoptera, Lucanidae) in Guizhou Province, South China Yuˆk iIMURA Shinohara-choˆ1249ῌ8, Koˆh oku-ku, Yokohama, 222ῌ0026 Japan Abstract Anewspecies of the genus Platycerus is described from Mt. Fanjing Shan in northeastern Guizhou, South China, under the name P. mandibularis.Thisis the first record of the genus from Guizhou Province. Up to the present, no Platycerus lucanid beetles have been recorded from Guizhou Province in South China. Very recently, I had an opportunity to make a faunal survey on Mt. Fanjing Shan in the northeastern part of the province, and succeeded in collecting a long series of the Platycerus specimens. Though considerably variable in dorsal coloration, above all in the male, the series is composed of a single species and is considered to be new to science. In the following lines, I am going to describe it as a new species under the name of Platycerus mandibularis.According to the present discovery, distributional range of the genus Platycerus in China now extends over the following ten administrative districts: Liaoning, Neimenggu, Zhejiang, Henan, Hubei, Shaanxi, Chongqing, Sichuan, Yunnan and Guizhou (IBJG6,2006 b; IBJG6 &W6C,2006, etc.). Before going into further details, I wish to express my heartfelt thanks to Messrs. F6C Ting (International Academic Exchange Center of the Academia Sinica, Chengdu) and Y6D Guang-Lie (Academia Sinica, Guiyang) for their kind aid through my field works, to Mr. Yoshiyuki N6<6=6I6 (Yamagata University) for his help in various ways, and to Dr. Shun-Ichi U´:CD (National Museum of Nature and Science, Tokyo) for reviewing the manuscript of this paper. -
Article-Lanzhou
13 by He Yuanqing, Yao Tandong, Cheng Guodong, and Yang Meixue Climatic records in a firn core from an Alpine temperate glacier on Mt. Yulong, southeastern part of the Tibetan Plateau Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 73000, China. Mt. Yulong is the southernmost glacier-covered area in Asian southwestern monsoon climate. Their total area is 11.61 km2. Eurasia, including China. There are 19 sub-tropical The glaciers resemble a group of flying dragons, giving Mt. Yulong temperate glaciers on the mountain, controlled by the (white dragon) as its name. Many explorers, tourists, poets and scientists have described southwestern monsoon climate. In the summer of 1999, Mt. Yulong from different points of view (Ward, 1924; Wissmann, a firn core, 10.10 m long, extending down to glacier ice, 1937). However, as they were unable to cross the extremely steep was recovered in the accumulation area of the largest mountain slopes and the forested area to the glacier above 4000 m a.s.l., some reported data were not correct. Most of the literature has glacier, Baishui No.1. Periodic variations of climatic focussed on the alpine landscape and the snow scenery, and there are signals above 7.8 m depth were apparent, and net accu- few accounts of the existing glaciers. Ren et al (1957) and Luo and mulation of four years was identified by the annual Yang (1963) first reported the distribution of these glaciers and of the late Pleistocene glacial landforms. To clarify the scale of glacia- oscillations of isotopic and ionic composition. -
Diversity and Geographical Pattern of Altitudinal Belts in the Hengduan Mountains in China
J. Mt. Sci. (2010) 7: 123–132 DOI: 10.1007/s11629-010-1011-9 Diversity and Geographical Pattern of Altitudinal Belts in the Hengduan Mountains in China YAO Yonghui, ZHANG Baiping*, HAN Fang, and PANG Yu Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. E-mail: [email protected] * Corresponding author, e-mail: [email protected] © Science Press and Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2010 Abstract: This paper analyses the diversity and effect needs further study. In addition, the data spatial pattern of the altitudinal belts in the quality and data accuracy at present also affect to Hengduan Mountains in China. A total of 7 types of some extent the result of quantitative modeling and base belts and 26 types of altitudinal belts are should be improved with RS/GIS in the future. identified in the study region. The main altitudinal belt lines, such as forest line, the upper limit of dark Keywords: Hengduan Mountains; Altitudinal belt coniferous forest and snow line, have similar spectra; Exposure effect; Quadratic model latitudinal and longitudinal spatial patterns, namely, arched quadratic curve model with latitudes and concave quadratic curve model along longitudinal Introduction direction. These patterns can be together called as “Hyperbolic-paraboloid model”, revealing the complexity and speciality of the environment and Globally and generally, the upper and lower ecology in the study region. This result further limits of altitudinal belts vary (increase) from high validates the hypnosis of a common quadratic model latitudes to low latitudes, from continental for spatial pattern of mountain altitudinal belts peripheries to inland areas, and from very humid proposed by the authors. -
Essd-2020-71.Pdf
Discussions https://doi.org/10.5194/essd-2020-71 Earth System Preprint. Discussion started: 7 September 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data 1 Consolidating the Randolph Glacier Inventory and the Glacier 2 Inventory of China over the Qinghai-Tibetan Plateau and th 3 Investigating Glacier Changes Since the mid-20 Century 4 Xiaowan Liu1,2,3, Zongxue Xu1,2, Hong Yang3,4, Xiuping Li5, Dingzhi Peng1,2 5 1College of Water Sciences, Beijing Normal University, Beijing, 100875, China 6 2Beijiing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing, 100875, China 7 3Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland 8 4Department of Environmental Science, MGU University of Basel, Petersplatz 1, 4001, Switzerland 9 5Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China 10 Correspondence to: Zongxue Xu ([email protected]) 11 Abstract. Glacier retreat in the Qinghai-Tibetan Plateau (QTP), the ‘third pole of the world’, has attracted the 12 attention of researchers worldwide. Glacier inventories in the 1970s and the 2000s provide valuable information 13 to infer changes in individual glaciers. However, individual glacier volumes are either missing, incomplete or have 14 large errors in these inventories, and thus, the use of these datasets to investigate changes in glaciers in QTP in the 15 past few decades has become a challenge, particularly in the context of climate change. In this study, individual 16 glacier volume data in the Randolph Glacier Inventory version 4.0 (RGI 4.0, 1970s) and the second Glacier 17 Inventory of China (GIC-Ⅱ, 2000s) are recalculated and consolidated using a slope-dependent algorithm based on 18 elevation datasets for the QTP. -
Downloaded from Brill.Com10/07/2021 12:04:04PM Via Free Access © Koninklijke Brill NV, Leiden, 2017
Amphibia-Reptilia 38 (2017): 517-532 A new moth-preying alpine pit viper species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae) Jingsong Shi1,2,∗, Gang Wang3, Xi’er Chen4, Yihao Fang5,LiDing6, Song Huang7,MianHou8,9, Jun Liu1,2, Pipeng Li9 Abstract. The Sanjiangyuan region of Qinghai-Tibetan Plateau is recognized as a biodiversity hotspot of alpine mammals but a barren area in terms of amphibians and reptiles. Here, we describe a new pit viper species, Gloydius rubromaculatus sp. n. Shi, Li and Liu, 2017 that was discovered in this region, with a brief taxonomic revision of the genus Gloydius.The new species can be distinguished from the other congeneric species by the following characteristics: cardinal crossbands on the back, indistinct canthus rostralis, glossy dorsal scales, colubrid-like oval head shape, irregular small black spots on the head scales, black eyes and high altitude distribution (3300-4770 m above sea level). The mitochondrial phylogenetic reconstruction supported the validity of the new species and furthermore reaffirms that G. intermedius changdaoensis, G. halys cognatus, G. h. caraganus and G. h. stejnegeri should be elevated as full species. Gloydius rubromaculatus sp. n. was found to be insectivorous: preying on moths (Lepidoptera, Noctuidae, Sideridis sp.) in the wild. This unusual diet may be one of the key factors to the survival of this species in such a harsh alpine environment. Keywords: Gloydius rubromaculatus sp. n., insectivorous, new species, Sanjiangyuan region. Introduction leopards (Uncia uncia), wild yaks (Bos grun- niens) and Tibetan antelopes (Pantholops hodg- The Sanjiangyuan region (the Source of Three sonii) (Shen and Tan, 2012). -
World Bank Document
Documentof The World Bank FOR OFFICIAL USE ONLY Lodv3/ 7 -C9 Public Disclosure Authorized ReportNo. 8470-CHA STAFF APPRAISAL REPORT Public Disclosure Authorized CHINA ERTAN HYDROELECTRIC PROJECT Public Disclosure Authorized June 11, 1991 Industry and Energy OperationsDivision Public Disclosure Authorized Country Department Asia Regional Office This doument ha a restlcted dsirbuton and may be used by redpint only in the perfonnance of their offic&adies. Its contt may no otherwise be dblosed whout World Bank atolzaton CURRENCY EQUIVALENTS (As of April 1991) Currency Yuan (Y) $1.00 Y 5.24 Y 1.00 $0.19 Y 1.00 100 fen FISCAL YEAR January 1 to December 31 WEIGHTS AND MEASURES km - Kilometer (0.62 miles) kWh - kilowatt hour GWh - Gigawatt hour (1 million kWh) TWh - Terawatt hour (1 billion kWh) kW - Kilowatt (1,000 watts) MW - Megawatt (1,000 kW) GW - Gigawatt (1 million kW) kV - Kilovolt (1,000 volts) kVA - Kilovolt-ampere MVA - Megavolt-ampere(1,000 kilovolt-ampere) GVA - Gigavolt-ampere(1 million kVA) ton - 1,000 kg GLOSSARY AND ABBREVIATIONS CHIDI - Chengdu Hydro Investigationand Design Institute DRB - Disputes Review Board EEC - Ertan EngineeringCorporation EHDC - Ertan HydroelectricDevelopment Corporation EP - Environmental Panel ETIC - Energy and Transport InvestmentCorporation (SichuanProvince) GNP - Gross National Product GOC - Government of China HIPDC - Huaneng InternationalPower DevelopmentCorporation ICB - InternationalCompetitive Bidding LRMC - Long-Run Marginal Cost MOE - Ministry of Energy MWREP - Ministry of Water Resource..and -
Tight Gas Reservoirs of the Xu2 Member in the Middle- South Transition Region, Sichuan Basin, China
Pet.Sci.(2013)10:171-182 171 DOI 10.1007/s12182-013-0264-7 Geological characteristics and accumulation mechanisms of the “continuous” tight gas reservoirs of the Xu2 Member in the middle- south transition region, Sichuan Basin, China Zou Caineng1, 2, Gong Yanjie1, 2 , Tao Shizhen1 and Liu Shaobo1, 2 1 5HVHDUFK,QVWLWXWHRI3HWUROHXP([SORUDWLRQ 'HYHORSPHQW3HWUR&KLQD%HLMLQJ&KLQD 2 State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China © China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2013 Abstract: “Continuous” tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological IHDWXUHVRIWKHVRXUFHURFNVDQG³FRQWLQXRXV´WLJKWJDVUHVHUYRLUVLQWKH;XMLDKH)RUPDWLRQRIWKHPLGGOH VRXWKWUDQVLWLRQUHJLRQ6LFKXDQ%DVLQ7KHVRXUFHURFNVRIWKH;X0HPEHUDQGUHVHUYRLUURFNVRIWKH ;X0HPEHUDUHWKLFN ;X0HPEHUP;X0HPEHUP DQGDUHGLVWULEXWHGFRQWLQXRXVO\LQ WKLVVWXG\DUHD7KHUHVXOWVRIGULOOHGZHOOVVKRZWKDWWKHZLGHVSUHDGVDQGVWRQHUHVHUYRLUVRIWKH;X 0HPEHUDUHFKDUJHGZLWKQDWXUDOJDV7KHUHIRUHWKHQDWXUDOJDVUHVHUYRLUVRIWKH;X0HPEHULQWKH middle-south transition region are “continuous” tight gas reservoirs. The accumulation of “continuous” tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a “one-dimensional” physical simulation experiment. In this simulation, the natural gas of “continuous” tight gas reservoirs moves forward with no preferential SHWUROHXPPLJUDWLRQSDWKZD\V -
GRACE-Derived Terrestrial Water Storage Changes in the Inter-Basin Region and Its Possible Influencing Factors: a Case Study of the Sichuan Basin, China
remote sensing Article GRACE-Derived Terrestrial Water Storage Changes in the Inter-Basin Region and Its Possible Influencing Factors: A Case Study of the Sichuan Basin, China Chaolong Yao 1,2, Zhicai Luo 1,3,4,5, Haihong Wang 1,*, Qiong Li 6 and Hao Zhou 6 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, Hubei, China; [email protected] (C.Y.); [email protected] (Z.L.) 2 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, Guangxi, China 3 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, Hubei, China 4 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Hubei, China 5 Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan 430079, Hubei, China 6 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; [email protected] (Q.L.); [email protected] (H.Z.) * Correspondence: [email protected]; Tel.: +86-27-6877-1756 Academic Editors: Cheinway Hwang, Wenbin Shen, C.K. Shum, Stéphane Calmant, Magaly Koch and Prasad S. Thenkabail Received: 27 February 2016; Accepted: 19 May 2016; Published: 26 May 2016 Abstract: We investigate terrestrial water storage (TWS) changes over the Sichuan Basin and the related impacts of water variations in the adjacent basins from GRACE (Gravity Recovery and Climate Experiment), in situ river level, and precipitation data. Although GRACE shows water increased over the Sichuan Basin from January 2003 to February 2015, two heavy droughts in 2006 and 2011 have resulted in significant water deficits.