The Tripartite Motif Coiled-Coil Is an Elongated Antiparallel Hairpin Dimer

Total Page:16

File Type:pdf, Size:1020Kb

The Tripartite Motif Coiled-Coil Is an Elongated Antiparallel Hairpin Dimer The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer Jacint G. Sancheza,1, Katarzyna Okreglickaa,1, Viswanathan Chandrasekaranb, Jordan M. Welkera, Wesley I. Sundquistb, and Owen Pornillosa,2 aDepartment of Molecular Physiology and Biological Physics and The Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908; and bDepartment of Biochemistry, University of Utah, Salt Lake City, UT 84112 Edited by Alfonso Mondragon, Northwestern University, Evanston, IL, and accepted by the Editorial Board January 8, 2014 (received for review October 8, 2013) Tripartite motif (TRIM) proteins make up a large family of coiled- to be defined. Here, we report biochemical and crystallographic coil-containing RING E3 ligases that function in many cellular characterization of a coiled-coil-containing fragment of TRIM25. processes, particularly innate antiviral response pathways. Both The crystallized construct forms a stable dimer in solution, and the dimerization and higher-order assembly are important elements of structure reveals an elongated dimer composed of interdigitating TRIM protein function, but the atomic details of TRIM tertiary and hairpin-shaped subunits. We also present evidence that this dimer quaternary structure have not been fully understood. Here, we architecture is conserved across other TRIM family members, present crystallographic and biochemical analyses of the TRIM including TRIM5α. Finally, our studies allow us to assign the do- coiled-coil and show that TRIM proteins dimerize by forming main organization in the low-resolution EM reconstruction of the interdigitating antiparallel helical hairpins that position the N- TRIM5α lattice (18) and thereby gain new insights into the terminal catalytic RING domains at opposite ends of the dimer and mechanism of retroviral capsid pattern recognition. the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, sym- Results metric pattern of flanking heptad and central hendecad repeats TRIM25189–379 Forms an Elongated, Antiparallel Dimer. We chose that appear to be conserved across the entire TRIM family. Our human TRIM25 for analysis because it lacks the propensity of studies reveal how the coiled-coil organizes TRIM25 to polyubi- TRIM5α to form high-order assemblies and is therefore more quitylate the RIG-I/viral RNA recognition complex and how dimers tractable biochemically. In initial experiments, we found that of the TRIM5α protein are arranged within hexagonal arrays that a series of coiled-coil-containing TRIM25 constructs, including recognize the HIV-1 capsid lattice and restrict retroviral replication. the full tripartite motif and the full-length protein, behaved as single species during purification. All of these constructs eluted antiparallel dimer | disulfide crosslinking | X-ray crystallography rapidly on gel filtration chromatographs, indicating they had elongated shapes and/or were oligomers. The shortest well- ripartite motif (TRIM) proteins make up the largest super- behaved construct spanned residues 189–379, which includes the Tfamily of RING E3 ubiquitin ligases, with more than 100 entire coiled-coil region as well as the N-terminal half of the L2 members in the human proteome (1, 2). TRIM proteins function linker region that connects the coiled-coil to the B30.2/SPRY in a variety of cellular pathways, and many regulate innate im- domain (Fig. 1A). Analytical ultracentrifugation experiments re- munity and/or mediate antiviral responses. Antiviral TRIMs in- vealed that this construct is a stable dimer (Fig. 1C; Fig. S1 A–C), clude TRIM25, which regulates the IFN response to RNA viruses implying that the full-length protein is also probably dimeric. (3, 4), and TRIM5α, which senses and inhibits early stages of re- troviral replication (5, 6). Significance TRIM proteins share a common N-terminal domain organiza- tion, termed the tripartite or RBCC (RING, B-box, coiled-coil) Tripartite motif or TRIM proteins make up the largest super- motif, followed by variable C-terminal protein recognition domains family of RING-domain E3 ubiquitin ligases. These enzymes (Fig. 1 A and B). “Linker” segments of unknown structure typically function in a wide variety of important cellular processes, separate both the RING and B-box domains (L1) and the coiled- particularly innate antiviral response mechanisms. Dimerization coil and terminal effector domains (L2). The coiled-coil region is critical for the function of many TRIM proteins. Here we show mediates oligomerization, and both homooligomeric and hetero- how TRIM25 dimerizes and demonstrate that this dimerization oligomeric TRIMs have been described (7–13). Furthermore, many mode is apparently conserved across the entire TRIM protein TRIM proteins form higher-order assemblies in vitro and form family. Our results reveal how the dimerization domain positions punctate or fibrous structures in cells (14–16). For example, TRIM5α the other TRIM effector domains to recognize and ubiquitylate assembly allows the protein to function as a cytosolic pattern- substrates and how the TRIM5 family can form higher-order recognition receptor that can intercept the incoming capsids of hexagonal assemblies that increase the avidity of substrate diverse retroviruses, including HIV-1 (6). This results in recognition. species-specific “restriction” of viral replication (5), capsid dis- sociation (5, 6), and induction of innate immune responses (17). Author contributions: W.I.S. and O.P. designed research; J.G.S., K.O., V.C., J.M.W., and O.P. performed research; J.G.S., K.O., V.C., J.M.W., W.I.S., and O.P. analyzed data; and J.G.S., Retroviral capsids are recognized through a remarkable mecha- K.O., V.C., W.I.S., and O.P. wrote the paper. α nism of multivalent pattern recognition. TRIM5 forms a homo- The authors declare no conflict of interest. dimer (10, 11, 18), which can further assemble into a 2D lattice of This article is a PNAS Direct Submission. A.M. is a guest editor invited by the linked hexagons (18). The hexagonal TRIM5α net matches the Editorial Board. symmetry and spacing of the retroviral capsid surface lattice, Data deposition: The atomic coordinates and structure factors have been deposited in the thereby positioning multiple C-terminal B30.2/SPRY domains to Protein Data Bank, www.pdb.org (PDB ID code 4LTB). interact with their repeating binding epitopes on the capsid. 1J.G.S. and K.O. contributed equally to this work. Structures of isolated RING, B-box, and C-terminal domains of 2To whom correspondence should be addressed. E-mail: [email protected]. several TRIM proteins have been described, but the molecular This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. details of TRIM oligomerization and high-order assembly have yet 1073/pnas.1318962111/-/DCSupplemental. 2494–2499 | PNAS | February 18, 2014 | vol. 111 | no. 7 www.pnas.org/cgi/doi/10.1073/pnas.1318962111 Downloaded by guest on September 29, 2021 length (Fig. 2). Each subunit in the symmetrical dimer folds back into a hairpin configuration with long and short arms. The ele- ments annotated as the coiled-coil and L2 linker are structurally distinct, with the coiled-coil residues forming the long arm of each subunit (helix H1, colored green in Fig. 2A) and the L2 residues forming the short arm that folds back and packs against H1 (helices H2, H3, and an irregular but well-ordered inter- vening segment, colored gray). The two subunits dimerize inti- mately in an antiparallel orientation, similar to two interdigitated bobby pins (Fig. 2B). Almost all hydrophobic side-chains are involved in packing interactions, which occur along the entire length of each hairpin and bury a total surface area of 5,102 Å2. Polar and charged side-chains also form numerous hydrogen bonding and salt bridge interactions. TRIM proteins have been predicted to contain two distinct coiled-coil segments separated by a helical, but noncoil, segment (19, 20). The TRIM25 structure reveals that these segments actually make up a single contiguous coil, helix H1, which forms the long arm of each subunit. The dimeric H1–H1′ interaction is mediated by classic “knobs-into-holes” packing of both heptad repeats (wherein amino acid residue positions in each repeat are denoted by the letters abcdefg) and hendecad repeats (abcdefghijk) (Fig. 3; Fig. S2 C and D). Residues in the h positions of the hen- decads also form “knobs-to-knobs” interactions (21). The repeats are arranged in a symmetric 7-7-7-7-11-11-11-11-7-7-7-7 pattern, which produces a supercoil that is canonically left-handed at the ends but is underwound and slightly right-handed in the middle. Fig. 1. Domain organization and dimerization of TRIM proteins. (A) Sche- This unusual configuration likely explains why sequence analysis matic of the domain structure of TRIM25. The principal domains and linker regions are RING (red), L1 (gray), B-box 1 (yellow), B-box 2 (orange), coiled- programs failed to predict H1 as a single, contiguous coil. The hendecads mediate interactions at the center of the coiled-coil, and coil (green), L2 (gray), and B30.2/SPRY (blue). The TRIM25189–379 construct used in this study is shown beneath (black), with the secondary structure superhelical underwinding allows H1 and H1′ to sit side by side and derived from the crystal structure (rectangles represent helices). (B) Analo- form an amphipathic platform. Here, the terminal H3 helices from gous schematic of the domain structure of TRIM5α. TRIM5α does not contain the short arm of each hairpin pack against one side of the platform α a B-box 1 domain and has a shorter L2. The TRIM5 133–300 construct used in to form a 4-helix bundle. Thus, the structure indicates that both this study is shown beneath (black). The asterisk denotes a predicted helix ensuing C-terminal B30.2 domains will be centrally located on the (H3) that crosses from L2 into the B30.2 domain.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Exploration of the TRIM Fold of Murf1 Using EPR Reveals a Canonical Antiparallel Structure and Extended COS-Box
    Article Exploration of the TRIM Fold of MuRF1 Using EPR Reveals a Canonical Antiparallel Structure and Extended COS-Box Michael Stevens 1, Barbara Franke 2, Katarzyna A. Skorupka 3, David S. Cafiso 4, Owen Pornillos 3, Olga Mayans 2 and David G. Norman 1 1 - Nucleic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom 2 - Department of Biology, University of Konstanz, 78457 Konstanz, Germany 3 - Department of Molecular Physiology and Biological Physics, University of Virginia, 22908 Charlottesville, VA, USA 4 - Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA Correspondence to David G. Norman: [email protected]. https://doi.org/10.1016/j.jmb.2019.05.025 Abstract MuRF1 (TRIM63) is a RING-type E3 ubiquitin ligase with a predicted tripartite TRIM fold. TRIM proteins rely upon the correct placement of an N-terminal RING domain, with respect to C-terminal, specific substrate- binding domains. The TRIM domain organization is orchestrated by a central helical domain that forms an antiparallel coiled-coil motif and mediates the dimerization of the fold. MuRF1 has a reduced TRIM composition characterized by a lack of specific substrate binding domains, but contains in its helical domain a conserved sequence motif termed COS-box that has been speculated to fold independently into an α-hairpin. These characteristics had led to question whether MuRF1 adopts a canonical TRIM fold. Using a combination of electron paramagnetic resonance, on spin-labeled protein, and disulfide crosslinking, we show that TRIM63 follows the structural conservation of the TRIM dimerization domain, observed in other proteins. We also show that the COS-box motif folds back onto the dimerization coiled-coil motif, predictably forming a four-helical bundle at the center of the protein and emulating the architecture of canonical TRIMs.
    [Show full text]
  • Innate Immunity a Chain Reaction
    RESEARCH HIGHLIGHTS INNATE IMMUNITY A chain reaction New research published in Cell adds observed. However, when RIG-I was This involved the synthesis of free to the evidence indicating a crucial purified from infected cells lacking K63-linked polyubiquitin chains that role for protein ubiquitylation in the ubiquitin E3 ligase TRIM25 were shown to bind to the N-terminal regulating immune responses. But or when RIG-I from uninfected caspase-recruitment domains in this example, free polyubiquitin cells was incubated with ATP and (CARDs) of RIG-I but did not require chains in the cytoplasm — rather 5ʹ-triphosphate RNA in the absence ubiquitylation of RIG-I itself. K63- than the direct ubiquitylation of of ubiquitin ligases, IRF3 dimeriza- linked polyubiquitin chains contain- immune factors — are important tion did not occur. So in this cell-free ing more than two ubiquitin moieties, for activating innate antiviral system, as in vivo, ubiquitylation is but not ubiquitin monomers or K48- immunity. Chen and colleagues show required for RIG-I signalling. linked chains, could potently activate that free polyubiquitin chains are Activation of the RIG-I signalling the N-terminal portion of RIG-I an endogenous ligand of the innate pathway by RNA and ATP in vitro in vitro. Importantly, endogenous pattern recognition receptor for viral required TRIM25 and the E2 ligases unanchored K63-linked polyubiquitin RNA known as retinoic acid-inducible UBC5 and UBC13, which are known chains can be isolated from human gene I (RIG-I). to specifically synthesize lysine 63 cells and they potently stimulate RIG-I binds 5ʹ-triphosphate viral (K63)-linked polyubiquitin chains.
    [Show full text]
  • Degradation of IRF3 Recognition by Polyubiquitin-Mediated Production
    The E3 Ubiquitin Ligase Ro52 Negatively Regulates IFN- β Production Post-Pathogen Recognition by Polyubiquitin-Mediated Degradation of IRF3 This information is current as of September 25, 2021. Rowan Higgs, Joan Ní Gabhann, Nadia Ben Larbi, Eamon P. Breen, Katherine A. Fitzgerald and Caroline A. Jefferies J Immunol 2008; 181:1780-1786; ; doi: 10.4049/jimmunol.181.3.1780 http://www.jimmunol.org/content/181/3/1780 Downloaded from References This article cites 42 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/181/3/1780.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The E3 Ubiquitin Ligase Ro52 Negatively Regulates IFN-␤ Production Post-Pathogen Recognition by Polyubiquitin-Mediated Degradation of IRF31 Rowan Higgs,* Joan Nı´Gabhann,* Nadia Ben Larbi,* Eamon P.
    [Show full text]
  • Snapshot: Pathways of Antiviral Innate Immunity Lijun Sun, Siqi Liu, and Zhijian J
    SnapShot: Pathways of Antiviral Innate Immunity Lijun Sun, Siqi Liu, and Zhijian J. Chen Department of Molecular Biology, HHMI, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA 436 Cell 140, February 5, 2010 ©2010 Elsevier Inc. DOI 10.1016/j.cell.2010.01.041 See online version for legend and references. SnapShot: Pathways of Antiviral Innate Immunity Lijun Sun, Siqi Liu, and Zhijian J. Chen Department of Molecular Biology, HHMI, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA Viral diseases remain a challenging global health issue. Innate immunity is the first line of defense against viral infection. A hallmark of antiviral innate immune responses is the production of type 1 interferons and inflammatory cytokines. These molecules not only rapidly contain viral infection by inhibiting viral replication and assembly but also play a crucial role in activating the adaptive immune system to eradicate the virus. Recent research has unveiled multiple signaling pathways that detect viral infection, with several pathways detecting the presence of viral nucleic acids. This SnapShot focuses on innate signaling pathways triggered by viral nucleic acids that are delivered to the cytosol and endosomes of mammalian host cells. Cytosolic Pathways Many viral infections, especially those of RNA viruses, result in the delivery and replication of viral RNA in the cytosol of infected host cells. These viral RNAs often contain 5′-triphosphate (5′-ppp) and panhandle-like secondary structures composed of double-stranded segments. These features are recognized by members of the RIG-I-like Recep- tor (RLR) family, which includes RIG-I, MDA5, and LGP2 (Fujita, 2009; Yoneyama et al., 2004).
    [Show full text]
  • E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis
    cells Review E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis Santina Venuto 1,2 and Giuseppe Merla 1,* 1 Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013 San Giovanni Rotondo, Foggia, Italy; [email protected] 2 PhD Program, Experimental and Regenerative Medicine, University of Foggia, Via A. Gramsci, 89/91, 71122 Foggia, Italy * Correspondence: [email protected] Received: 3 May 2019; Accepted: 23 May 2019; Published: 27 May 2019 Abstract: The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
    [Show full text]
  • RIG-I-Like Receptors: Their Regulation and Roles in RNA Sensing
    REVIEWS RIG- I- like receptors: their regulation and roles in RNA sensing Jan Rehwinkel 1 ✉ and Michaela U. Gack 2 ✉ Abstract | Retinoic acid- inducible gene I (RIG- I)- like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host- derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review , we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post- translational modifications and non- coding RNAs. Finally , we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics. Toll- like receptors Type I interferons are highly potent cytokines that were Their expression is rapidly induced by several innate (TLRs). A family of initially identified for their essential role in antiviral immune signalling pathways. These signalling events are membrane- bound innate defence1,2. They shape both innate and adaptive immune typically initiated by proteins called nucleic acid sensors immune receptors that responses and induce the expression of restriction fac- that monitor cells for unusual nucleic acids. For example, recognize various bacterial or virus- derived pathogen- tors, which are proteins that directly interfere with a step it is an indispensable step in the life cycle of any virus 3 associated molecular patterns.
    [Show full text]
  • A Large New Subset of TRIM Genes Highly Diversified by Duplication and Positive Selection in Teleost Fish
    A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. Lieke M van der Aa, Jean-Pierre Levraud, Malika Yahmi, Emilie Lauret, Valérie Briolat, Philippe Herbomel, Abdenour Benmansour, Pierre Boudinot To cite this version: Lieke M van der Aa, Jean-Pierre Levraud, Malika Yahmi, Emilie Lauret, Valérie Briolat, et al.. A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish.. BMC Biology, BioMed Central, 2009, 7 (7), pp.7. 10.1186/1741-7007-7-7. pasteur-00400402 HAL Id: pasteur-00400402 https://hal-pasteur.archives-ouvertes.fr/pasteur-00400402 Submitted on 30 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Biology BioMed Central Research article Open Access A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish Lieke M van der Aa1,2, Jean-Pierre Levraud3, Malika Yahmi1, Emilie Lauret1, Valérie Briolat3, Philippe Herbomel3, Abdenour Benmansour1 and Pierre Boudinot*1 Address: 1Virologie et Immunologie
    [Show full text]
  • RNA-Binding Activity of TRIM25 Is Mediated by Its PRY/SPRY Domain
    Choudhury et al. BMC Biology (2017) 15:105 DOI 10.1186/s12915-017-0444-9 RESEARCHARTICLE Open Access RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination Nila Roy Choudhury1, Gregory Heikel1, Maryia Trubitsyna2, Peter Kubik1, Jakub Stanislaw Nowak1, Shaun Webb1, Sander Granneman3, Christos Spanos1, Juri Rappsilber1,4, Alfredo Castello5 and Gracjan Michlewski1* Abstract Background: TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA- related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. Results: Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25’s endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. Conclusions: Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity. Keywords: Novel RNA-binding proteins, TRIM25, ZAP, RNA-binding domain, PRY/SPRY Background The largest subfamily (C-IV) of 33 TRIM proteins is More than 300 novel RNA-binding proteins have been characterized by the PRY/SPRY domain at the C- identified in HeLa [1], HEK293 [2], and mouse ES cells terminal end.
    [Show full text]
  • SARS-Cov-2 N Protein Targets TRIM25-Mediated RIG-I Activation to Suppress Innate Immunity
    viruses Article SARS-CoV-2 N Protein Targets TRIM25-Mediated RIG-I Activation to Suppress Innate Immunity Gianni Gori Savellini 1,* , Gabriele Anichini 1 , Claudia Gandolfo 1 and Maria Grazia Cusi 1,2 1 Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; [email protected] (G.A.); [email protected] (C.G.); [email protected] (M.G.C.) 2 “S. Maria delle Scotte” Hospital, Viale Bracci, 1, 53100 Siena, Italy * Correspondence: [email protected] Abstract: A weak production of INF-β along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-β production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-β secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic Citation: Gori Savellini, G.; Anichini, activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA- G.; Gandolfo, C.; Cusi, M.G.
    [Show full text]
  • Type I IFN Augments IL-27-Dependent TRIM25 Expression to Inhibit HBV Replication
    Cellular & Molecular Immunology (2018) 15, 272–281 & 2018 CSI and USTC All rights reserved 2042-0226/18 $32.00 www.nature.com/cmi RESEARCH ARTICLE Type I IFN augments IL-27-dependent TRIM25 expression to inhibit HBV replication Guangyun Tan1,8, Qingfei Xiao2,8, Hongxiao Song1, Feng Ma3,4, Fengchao Xu1, Di Peng3,4,NaLi5, Xiaosong Wang1, Junqi Niu6, Pujun Gao6, F Xiao-Feng Qin1,3,4 and Genhong Cheng1,3,4,7 Hepatitis B virus (HBV) can cause chronic hepatitis B, which may lead to cirrhosis and liver cancer. Type I interferon (IFN) is an approved drug for the treatment of chronic hepatitis B. However, the fundamental mechanisms of antiviral action by type I IFN and the downstream signaling pathway are unclear. TRIM25 is an IFN-stimulated gene (ISG) that has an important role in RIG-I ubiquitination and activation. Whether TRIM25 is induced in liver cells by type I IFN to mediate anti-HBV function remains unclear. Here we report that interleukin-27 (IL-27) has a critical role in IFN-induced TRIM25 upregulation. TRIM25 induction requires both STAT1 and STAT3. In TRIM25 knockout HepG2 cells, type I IFN production was consistently attenuated and HBV replication was increased, whereas overexpression of TRIM25 in HepG2 cells resulted in elevated IFN production and reduced HBV replication. More interestingly, we found that TRIM25 expression was downregulated in HBV patients and the addition of serum samples from HBV patients could inhibit TRIM25 expression in HepG2 cells, suggesting that HBV might have involved a mechanism to inhibit antiviral ISG expression and induce IFN resistance.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]