environments Article A Review of Radioactive Wastes Production and Potential Environmental Releases at Experimental Nuclear Fusion Facilities Sandro Sandri 1,* , Gian Marco Contessa 1, Marco D’Arienzo 2, Manuela Guardati 1, Maurizio Guarracino 1, Claudio Poggi 1 and Rosaria Villari 3 1 ENEA IRP-FUAC Institute of Radioprotection, 00044 Frascati, Italy;
[email protected] (G.M.C.);
[email protected] (M.G.);
[email protected] (M.G.);
[email protected] (C.P.) 2 ENEA FSN-INMRI Institute of Metrology, 00123 Rome, Italy;
[email protected] 3 ENEA FSN-FUSTEC-TEN, 00044 Frascati, Italy;
[email protected] * Correspondence:
[email protected] Received: 24 October 2019; Accepted: 6 January 2020; Published: 9 January 2020 Abstract: The development of experimental nuclear fusion facilities and the systems connected to them currently involves the operation (or advanced design) of some large plants in the national territory. Devices such as neutron generators and plasma focus systems are also included. The machines developed to test the main components of these systems such as neutral beam generators (Neutral Beam Injector) and the experimental plants for thermonuclear fusion, mainly in the Tokamak configuration (toroidal geometry), are in the list. These applications are characterized by high neutron fluxes of high energy (typically 2.5 and 14 MeV from deuterium-deuterium and deuterium-tritium fusion reactions, respectively). They involve the production of radionuclides in the components of the machines and in the fluids used for targets’ cooling and in the primary containments. In many cases, the atmosphere of the rooms containing these structures is activated and may be affected by the dispersion of powders that are more or less radioactive.