The Phylogenetic Range of Bacterial and Viral Pathogens of Vertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antimicrobial Resistance in Mycobacterium Tuberculosis: the Odd One Out
1 Antimicrobial Resistance in Mycobacterium tuberculosis: the Odd One Out 2 3 Vegard Eldholm1 and François Balloux2 4 5 Correspondance: Vegard Eldholm [email protected] 6 François Balloux [email protected] 7 8 1. Division of Infectious Disease Control, Norwegian Institute of PuBlic Health, LovisenBerggata 9 8, Oslo 0456, Norway 10 2. Department of Genetics, Evolution and Environment, University College London, Darwin 11 Building, Gower Street, London WC1E 6BT, UK 12 13 Keywords 14 TuBerculosis, AntiBiotics, Evolution, Mutation, Transmission, Latency, Biofilms 15 1 16 Abstract 17 AntimicroBial resistance (AMR) threats are typically represented By Bacteria capable of 18 extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis 19 (Mtb). It is an oBligate human pathogen with limited genetic diversity and a low mutation rate 20 which further lacks any evidence for HGT. Such features should in principle reduce its ability to 21 rapidly evolve AMR. We identify key features in its Biology and epidemiology that allows it to 22 overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, 23 unusual life cycle including an often extensive latent phase and its ability to shelter from 24 exposure to antimicroBial drugs within cavities it induces in the lungs. 2 25 So Special 26 The rapid increase of antimicrobial resistance (AMR; see Glossary) in Bacteria is driven By the 27 widespread use, abuse and misuse of antiBiotics, and constitutes one of the most challenging 28 healthcare proBlems gloBally. With the notable exception of Mycobacterium tuberculosis (Mtb) 29 the agent of tuberculosis (TB), all other Bacterial species listed as current AMR threats By the 30 Centers for Disease Control http://www.cdc.gov/drugresistance/Biggest_threats.htmltrend 31 frequently exchange genetic material and frequently acquire novel mutations through gain of 32 new genes By horizontal gene transfer (HGT) rather than de novo mutations (Figure 1). -
Modeling Infectious Disease in Mice: Co-Adaptation and the Role of Host-Specific Ifnc Responses
Opinion Modeling Infectious Disease in Mice: Co-Adaptation and the Role of Host-Specific IFNc Responses Jo¨ rn Coers1*, Michael N. Starnbach1, Jonathan C. Howard2 1 Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Institute for Genetics, University of Cologne, Cologne, Germany The advantages of the mouse as a inability of a pathogen to colonize the and rodents, binds complement inhibitory model organism in biomedical research non-typical host effectively. Colonization molecules of either host species and evades are many. The molecular and genetic often relies on species-specific interactions both human and rodent serum-mediated toolbox developed for the mouse over the of microbial ligands with host cell recep- killing [4]. This example illustrates a last 100 years enables researchers to tors. For example, the bacterial effector general principle: a pathogen must be able manipulate and study gene function in internalin A expressed by Listeria monocyto- to endure or overcome innate immune vivo almost at will. Time and time again, genes binds to the host E-cadherin receptor responses that drastically interfere with its scientific findings obtained through the use to mediate bacterial internalization, an survival and/or transmission to another of mouse models have proven to be essential step for the microbe to breach the suitable host. Pathogens must, therefore, relevant to human health. The field of intestinal epithelial barrier after oral have evolved subversion strategies for all immunology in particular has profited ingestion [2]. A single amino acid change the innate immune mechanisms that, if tremendously from the powers of the in the mouse ortholog of E-cadherin unrestricted, would result in their demise. -
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection?
viruses Review Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Solène Grayo Institut Pasteur de Guinée, BP 4416 Conakry, Guinea; [email protected] or [email protected] Abstract: The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein–Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and Citation: Grayo, S. -
Improved Bacterial Recombineering by Parallelized Protein Discovery
Improved bacterial recombineering by parallelized protein discovery Timothy M. Wanniera,1, Akos Nyergesa,b, Helene M. Kuchwaraa, Márton Czikkelyb, Dávid Baloghb, Gabriel T. Filsingera, Nathaniel C. Bordersa, Christopher J. Gregga, Marc J. Lajoiea, Xavier Riosa, Csaba Pálb, and George M. Churcha,1 aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and bSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary Edited by Susan Gottesman, National Institutes of Health, Bethesda, MD, and approved April 17, 2020 (received for review January 30, 2020) Exploiting bacteriophage-derived homologous recombination pro- recombineering, is the molecular mechanism that drives MAGE cesses has enabled precise, multiplex editing of microbial genomes and DIvERGE (4, 32, 33). This method was first described in and the construction of billions of customized genetic variants in a E. coli, and is most commonly promoted by the expression of bet single day. The techniques that enable this, multiplex automated ge- (here referred to as Redβ) from the Red operon of Escherichia nome engineering (MAGE) and directed evolution with random ge- phage λ (5, 6, 34). Redβ is an ssDNA-annealing protein (SSAP) nomic mutations (DIvERGE), are however, currently limited to a whose role in recombineering is to anneal ssDNA to compli- handful of microorganisms for which single-stranded DNA-annealing mentary genomic DNA at the replication fork. Although im- proteins (SSAPs) that promote efficient recombineering have been provements to recombineering efficiency have been made (7–9), identified. Thus, to enable genome-scale engineering in new hosts, the core protein machinery has remained constant, with Redβ efficient SSAPs must first be found. -
Pathogen Genetics: S. Aureus Multi-Host Tropism
RESEARCH HIGHLIGHTS IN BRIEF GENETIC TESTING Genetic risk and statin preventative therapy Mega, Stitziel et al. test the clinical use of a multi-locus genetic risk score including a composite of 27 genetic variants associated with coronary heart disease. In community-based and primary or secondary prevention studies, they find that a higher genetic risk score is associated with increased risk of incident or recurrent coronary heart disease events, adjusted for clinical risk factors. Those in the highest genetic risk score categories derived greater benefits from statin preventative therapy, with greater relative and absolute disease risk reductions in randomized controlled trials for primary and secondary prevention. Although further testing in stratified prospective trials will be needed to directly test the clinical benefit of using a genetic risk score as the basis of selective statin therapy, the current study provides an indicator of how genetic screening may prove useful in identifying subpopulations that are more likely to benefit from preventative therapy. ORIGINAL RESEARCH PAPER Mega, J. L., Stitziel , N. O. et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. The Lancet http://dx.doi.org/10.1016/S0140- 6736(14)61730-X (2015) PATHOGEN GENETICS S. aureus multi-host tropism The Staphylococcus aureus clonal complex CC121 is a common cause of human skin and soft-tissue infections, as well as the source of a recent epidemic in rabbits. Viana et al. track the evolution of the multi-host tropism of this lineage. Phylogenetic analysis based on whole-genome sequences of a global collection of CC121 clinical strains showed a high level of diversity for the strains isolated from human cases, whereas the strains isolated from rabbits fell into a single clade. -
How Host Cells Defend Against Influenza a Virus Infection
viruses Review Host–Virus Interaction: How Host Cells Defend against Influenza A Virus Infection Yun Zhang 1 , Zhichao Xu and Yongchang Cao * State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; [email protected] (Y.Z.); [email protected] (Z.X.) * Correspondence: [email protected]; Tel.: +86-020-39332938 Received: 28 February 2020; Accepted: 25 March 2020; Published: 29 March 2020 Abstract: Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses. Keywords: influenza A virus; innate immunity; adaptive immunity 1. Introduction Influenza A virus (IAV) can infect a wide range of warm-blooded animals, including birds, pigs, horses, and humans. In humans, the viruses cause respiratory disease and be transmitted by inhalation of virus-containing dust particles or aerosols [1]. Severe IAV infection can cause lung inflammation and acute respiratory distress syndrome (ARDS), which may lead to mortality. Thus, causing many influenza epidemics and pandemics, IAV has been a threat to public health for decades [2]. -