From Fibonacci to Foxtrot: Investigating Recursion Relations with Geometric Sequences

Total Page:16

File Type:pdf, Size:1020Kb

From Fibonacci to Foxtrot: Investigating Recursion Relations with Geometric Sequences 1 From Fibonacci to Foxtrot: 2 Investigating Recursion Relations with Geometric Sequences 3 4 5 The Algebra Standard from the Principles and Standards for School Mathematics 6 (NCTM, 2000) states that all students should “Understand patterns, relations, and 7 functions.” In particular, to meet the grades 9 – 12 expectations, students should 8 “generalize patterns using explicitly defined and recursively defined functions.” The 9 Foxtrot comic strip shown below (Amend) provides a wonderful starting point to create 10 lessons that address the algebra standard. 11 12 In the first three panels of the cartoon, we see that Marcus has scored a 13 touchdown by identifying Jason’s sequence 0, 1, 1, 2, 3, 5, 8, 13… as the “Fibonacci 14 series” (though it would be preferable to replace “series” with “sequence,” since in 15 mathematics terminology a series designates the sum of the terms in a sequence). The 16 Fibonacci sequence is one of the most widely known in all of mathematics, recursively =+ 17 defined by the recurrence relation FFFnnn++21. Thus, many readers of Foxtrot could 2 18 have emulated Marcus’ scoring success. However, there are at least two lingering 19 questions: 20 • Why did Jason begin his count with zero? It is more common to start the == == 21 Fibonacci sequence with FF121, 1 instead of FF010, 1. 22 • How can Jason score a touchdown? In the last panel of the comic strip, 23 Marcus has challenged Jason with the sequence 3, 0, 2, 3, 2, 5, … . What 24 is this sequence? 25 The key to our investigation of these questions is the geometric sequence 234 = n 26 aarar,, , arar , ,K, which is defined explicitly by xn ar , n = 0, 1, 2, … . = = 27 Alternatively, the sequence can be defined recursively by xnn+1 rx where x0 a . The x 28 constant r = n+1 is the common ratio of the sequence. xn 29 We begin by first investigating a connection between the Fibonacci sequence and 30 geometric sequences. The techniques we develop provide us with a method to investigate 31 the mysterious sequence 3, 0, 2, 3, 2, 5, … . 32 33 IS THE FIBONACCI SEQUENCE A GEOMETRIC SEQUENCE? 34 The short answer to the question just raised is no. After all, FF10/ is not defined, and == == 35 FF21/1/11 and FF32/2/12 are different ratios. Rather than being discouraged, 36 let’s examine several more ratios of successive Fibonacci numbers, as shown in the 37 following table. n 0123 45678 F F/nF 0112 3 5 8 1321 38 n+1 n - 1.0 2.0 1.5 1.667 1.600 1.625 1.615 1.619 3 39 As n becomes larger, the Fibonacci sequence increasingly resembles a geometric 40 sequence with a common ratio of about 1.6. Since the early integer values of the 41 Fibonacci sequence seem to cause difficulty, suppose we not worry yet about the initial = n 42 values of the sequence. Instead, we simply seek a geometric sequence xn ar that =+ 43 satisfies the Fibonacci recurrence xnnn++21xx. That is, we want to determine values of 44 r for which arnnn++21=+ ar ar , since it is clear that an arbitrary value of the constant a is 45 allowed. Thus, we want values of r ≠ 0 for which rrrnnn++21=+. The terms in this 46 equation can be divided by the common factor r n , giving us the quadratic equation 47 rr2 =+1. Using the quadratic formula, we discover there are two roots r of the quadratic 15+ 15− 48 equation: p = and q = . As a decimal, p is about 1.618, and we suspect we 2 2 49 have identified the value we encountered in the numerical table above. For arbitrary 50 choices of the constants a and b, both of the geometric sequences apn and bqn solve the =+ nnn++21=+ 51 Fibonacci recursion xnnn++21xx. Moreover, since ap ap ap and 52 bqnnn++21=+ bq bq , we can add these two equations to see that 53 ()()()apnn++22+=+++ bq ap nn ++ 11 bq ap nn bq . =+nn 54 That is, for any choices of the constants a and b, xn ap bq solves the Fibonacci =+ 55 recurrence relation xnnn++21xx. 56 To summarize our progress, we have proved the following result: =+ =+nn 57 Theorem. The Fibonacci recursion formula xnnn++21xx, is solved by xn ap bq 15+ 15− 58 where p = , q = , and a and b are arbitrary constants. 2 2 4 15+ 59 The constant p ==1.6180 is the famous Golden Ratio. It was known 2 K 60 (though not by that name*) in ancient Greek mathematics, since it solved this question: 61 determine the point C on line segment AB so that AB/AC = AC/BC. 15− 62 The second solution q ==−0.6180 of the quadratic equation 2 K 63 rr2 −−=10 can be investigated by factoring the quadratic polynomial. That is, since 64 rr22−−=1( rprqr − )() − = −() pqrpq + + , 65 then equating coefficients shows us that p +=q 1 and pq = –1. It’s interesting to see how 66 these relationships can be found without requiring the explicit formulas for p and q that 67 involve √5. 68 69 THE LUCAS AND FIBONACCI SEQUENCES =+nn 70 A simple choice of constants for xn ap bq in the theorem above is a = 1 and nn ⎛⎞⎛⎞15+− 15 71 b = 1. This gives us the solution Lpq=+=nn + . For example, n ⎜⎟⎜⎟ ⎝⎠⎝⎠22 =+=+=00 =+= 72 Lpq0 11 2 and Lpq1 1, and we are delighted that no 5 term appears. =+ == 73 Moreover, since LLLnnn++21and LL012 and 1, the terms of the sequence are all 74 positive integers. We have rediscovered the Fibonacci-like sequence 2, 1, 3, 4, 7, 11, 18, 75 29, … named for Edouard Lucas (1842-1891). Though this sequence is less well known * The entry for “Golden Ratio” in the MathWorld encylopedia (Weisstein) informs us that “The term "golden section" (in German, goldener Schnitt or der goldene Schnitt) seems to first have been used by Martin Ohm in the 1835 2nd edition of his textbook Die Reine Elementar-Mathematik (Livio 2002, p. 6). The first known use of this term in English is in James Sulley's 1875 article on aesthetics in the 9th edition of the Encyclopedia Britannica.” 5 76 than the Fibonacci sequence, the Lucas sequence also has many properties of interest (see 77 the concluding section of this article.) 78 To obtain the Fibonacci numbers, we need to see if it possible to choose the =+nn 00+=+ 79 constants a and b so that Fapbqn . Since F0 = 0 and ap bq a b , we will ⎛⎞1515+− 80 want b = – a. Also, since F =1 and ap11+= bq a() p −= q a − = a 5 , 1 ⎜⎟ ⎝⎠22 1 81 we must choose a = . Thus, the nth Fibonacci number is given by the explicit formula 5 nn nn−+−⎡⎛⎞⎛⎞⎤ ==pq 115 − 15 82 Fn ⎢⎜⎟⎜⎟⎥ . 55⎢⎜⎟⎜⎟22⎥ ⎣⎝⎠⎝⎠⎦ 83 This formula is known as Binet’s formula for the Fibonacci numbers, named after 84 Jacques Binet (1786-1865) who discovered it in 1843. However, the formula was 85 discovered first in 1718 by Abraham DeMoivre (1667-1754). 86 Since Binet’s formula gives F0 = 0, we now know why Jason started his list of 87 Fibonacci numbers with 0. The formula also explains why the Fibonacci sequence, 88 though not geometric, is increasingly close to one. Since q =−()1 5 / 2 ≈− 0.618 we see 89 that |qn| is increasingly small as n becomes large. Therefore, we have the approximate 1 90 equality Fp≈ n . This explains why the Fibonacci sequence is nearly a geometric n 5 91 series, as we noticed in the table of values computed earlier. If we let {x} denote the n = ⎧⎫p ≥ 92 “round to the integer nearest to x” function, it is easy to check that Fn ⎨⎬ for all n ⎩⎭5 = n ≥ 93 0. Similarly, the Lucas numbers can be written as Lpn { } when n 1. 6 94 INVESTIGATING MARCUS’ SEQUENCE 3, 0, 2, 3, 2, 5, … 95 It seems reasonable to guess that the new sequence is related to the Fibonacci sequence. 96 Therefore, suppose that we add consecutive pairs of the sequence 3, 0, 2, 3, 2, 5. The first 97 three sums are 3 + 0 = 3, 0 + 2 = 2, and 2 + 3 = 5 We seem to be on the right track, since 98 we get the next three terms 3, 2, and 5 of the sequence. This suggests that the term xn+ 3 is 99 the sum of the two consecutive terms xn and xn + 1. That is, Marcus’ sequence is defined 100 by the recursion formula =+ 101 xnnn++31xx. = n 102 As before, we can search for a geometric sequence of the form xn ar that 103 solves the recurrence relation. As before, the constant a is arbitrary, but now we want r to 104 satisfy the equation rrrnnn++31=+. Dividing each term by the common factor r n , we get 105 the cubic equation rr3 =+1. We could turn to a computer algebra system or a graphing 106 calculator to solve this cubic and discover there is one real root u =1.32472 … and a pair 107 of complex conjugate roots v = –0.662359+0.56228 i and w = – 0.662359 – 0.56228 i. 108 However, let us just suppose we factor the cubic polynomial to get 109 rr3 −−=1( rurvrw − )()() − − . 110 By expanding the product of the three binomials on the right side, we get the equation 111 rr33−−=1 r −()() uvwruvvwuwruvw ++ 2 + + + − . 112 Since these two polynomials in the variable r are equal if and only if their coefficients are 113 equal, we obtain the equations 114 u + v + w = 0, uv + vw + uw = –1, and uvw = 1.
Recommended publications
  • Prime Divisors in the Rationality Condition for Odd Perfect Numbers
    Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied.
    [Show full text]
  • Arxiv:1206.0407V3 [Math.NT] 22 Mar 2013 N Egto Utpehroi U.B Ovnin Eput We Convention, by Sum
    NEW PROPERTIES OF MULTIPLE HARMONIC SUMS MODULO p AND p-ANALOGUES OF LESHCHINER’S SERIES KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, AND R. TAURASO Abstract. In this paper we present some new binomial identities for multiple harmonic sums whose indices are the sequences ({1}a, c, {1}b), ({2}a, c, {2}b) and prove a number of congruences for these sums modulo a prime p. The congruences obtained allow us to find nice p-analogues of Leshchiner’s series for zeta values and to refine a result due to M. Hoffman and J. Zhao about the set of generators of the multiple harmonic sums of weight 7 and 9 modulo p. ∗ As a further application we provide a new proof of Zagier’s formula for ζ ({2}a, 3, {2}b) based on a finite identity for partial sums of the zeta-star series. 1. Introduction In the last few years there has been a growing attention in the study of p-adic analogues of various binomial series related to multiple zeta values, which are nested generalizations of s s the classical Riemann zeta function ζ(s) = n=1 1/n . The main reason of interest of such p-analogues is that they are related to divisibility properties of multiple harmonic sums which can be considered as elementary “bricks” forP expressing complicated congruences. Before discussing this further we recall the precise definitions of such objects. ∗ r For r ∈ N, s = (s1,s2,...,sr) ∈ (Z ) , and a non-negative integer n, the alternating multiple harmonic sum is defined by r ki sgn (si) Hn(s1,s2,...,sr)= k|si| 1≤k1<kX2<...<kr≤n Yi=1 i and the “odd” alternating multiple harmonic sum is given by r sgn (s )ki H (s ,s ,...,s )= i .
    [Show full text]
  • And Its Properties on the Sequence Related to Lucas Numbers
    Mathematica Aeterna, Vol. 2, 2012, no. 1, 63 - 75 On the sequence related to Lucas numbers and its properties Cennet Bolat Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Ahmet I˙pek Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Hasan Köse Department of Mathematics, Science Faculty, Selcuk University 42031, Konya,Turkey Abstract The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recur- rence relation. In this article, we study a new generalization {Lk,n}, with initial conditions Lk,0 = 2 and Lk,1 = 1, which is generated by the recurrence relation Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2, where k is integer number. Some well-known sequence are special case of this generalization. The Lucas sequence is a special case of {Lk,n} with k = 1. Modified Pell-Lucas sequence is {Lk,n} with k = 2. We produce an extended Binet’s formula for {Lk,n} and, thereby, identities such as Cassini’s, Catalan’s, d’Ocagne’s, etc. using matrix algebra. Moreover, we present sum formulas concerning this new generalization. Mathematics Subject Classi…cation: 11B39, 15A23. Keywords: Classic Fibonacci numbers; Classic Lucas numbers; k-Fibonacci numbers; k-Lucas numbers, Matrix algebra. 64 C. Bolat, A. Ipek and H. Kose 1 Introduction In recent years, many interesting properties of classic Fibonacci numbers, clas- sic Lucas numbers and their generalizations have been shown by researchers and applied to almost every …eld of science and art.
    [Show full text]
  • Arxiv:1606.08690V5 [Math.NT] 27 Apr 2021 on Prime Factors of Mersenne
    On prime factors of Mersenne numbers Ady Cambraia Jr,∗ Michael P. Knapp,† Ab´ılio Lemos∗, B. K. Moriya∗ and Paulo H. A. Rodrigues‡ [email protected] [email protected] [email protected] [email protected] paulo [email protected] April 29, 2021 Abstract n Let (Mn)n≥0 be the Mersenne sequence defined by Mn = 2 − 1. Let ω(n) be the number of distinct prime divisors of n. In this short note, we present a description of the Mersenne numbers satisfying ω(Mn) ≤ 3. Moreover, we prove that the inequality, (1−ǫ) log log n given ǫ> 0, ω(Mn) > 2 − 3 holds for almost all positive integers n. Besides, a we present the integer solutions (m, n, a) of the equation Mm+Mn = 2p with m,n ≥ 2, p an odd prime number and a a positive integer. 2010 Mathematics Subject Classification: 11A99, 11K65, 11A41. Keywords: Mersenne numbers, arithmetic functions, prime divisors. 1 Introduction arXiv:1606.08690v5 [math.NT] 27 Apr 2021 n Let (Mn)n≥0 be the Mersenne sequence defined by Mn = 2 − 1, for n ≥ 0. A simple argument shows that if Mn is a prime number, then n is a prime number. When Mn is a prime number, it is called a Mersenne prime. Throughout history, many researchers sought to find Mersenne primes. Some tools are very important for the search for Mersenne primes, mainly the Lucas-Lehmer test. There are papers (see for example [1, 5, 21]) that seek to describe the prime factors of Mn, where Mn is a composite number and n is a prime number.
    [Show full text]
  • Repdigits As Sums of Two Lucas Numbers∗
    Applied Mathematics E-Notes, 20(2020), 33-38 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Repdigits As Sums Of Two Lucas Numbers Zafer ¸Siary, Refik Keskinz Received 11 Feburary 2019 Abstract Let (Ln) be the Lucas sequence defined by Ln = Ln 1 +Ln 2 for n 2 with initial conditions L0 = 2 ≥ and L1 = 1. A repdigit is a nonnegative integer whose digits are all equal. In this paper, we show that if Ln + Lm is a repdigit, then Ln + Lm = 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 77, 333. 1 Introduction Let (Fn)n 0 be the Fibonacci sequence satisfying the recurrence relation Fn+2 = Fn+1 + Fn with initial ≥ conditions F0 = 0 and F1 = 1. Let (Ln)n 0 be the Lucas sequence following the same recursive pattern as ≥ th the Fibonacci sequence, but with initial conditions L0 = 2 and L1 = 1.Fn and Ln are called n Fibonacci number and nth Lucas number, respectively. It is well known that n n F = and L = n + n, (1) n n where 1 + p5 1 p5 = and = , 2 2 which are the roots of the characteristic equation x2 x 1 = 0. Also, the following relation between nth Lucas number Ln and is well known: n 1 n Ln 2 (2) ≤ ≤ for n 0. The inequality (2) can be proved by induction. A≥ repdigit is a nonnegative integer whose digits are all equal. Recently, some mathematicians have investigated the repdigits which are sums or products of any number of Fibonacci numbers, Lucas numbers, and Pell numbers.
    [Show full text]
  • Fermat Padovan and Perrin Numbers
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.6.2 47 6 23 11 Fermat Padovan And Perrin Numbers Salah Eddine Rihane Department of Mathematics Institute of Science and Technology University Center of Mila Algeria [email protected] Ch`efiath Awero Adegbindin Institut de Math´ematiques et de Sciences Physiques Dangbo B´enin [email protected] Alain Togb´e Department of Mathematics, Statistics, and Computer Science Purdue University Northwest 1401 S., U.S. 421 Westville, IN 46391 USA [email protected] Abstract In this paper, we determine all the Padovan and Perrin numbers that are also Fermat numbers. 1 1 Introduction The Padovan sequence Pm m 0 is defined by { } ≥ Pm+3 = Pm+1 + Pm, (1) for m 0, where P0 = P1 = P2 = 1. This is the sequence A000931 in the On-Line Encyclopedia≥ of Integer Sequences (OEIS). A few terms of this sequence are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, ··· Let Em m 0 be the Perrin sequence given by { } ≥ Em+3 = Em+1 + Em, (2) for m 0, where E = 3, E = 0, and E = 2. Its first few terms are ≥ 0 1 2 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, ··· It is the sequence A001608 in the OEIS. Let us also recall that a Fermat number is a number of the form m =22 +1, Fm where m is a nonnegative integer.
    [Show full text]
  • Repdigits As Sums of Two Generalized Lucas Numbers
    Turkish Journal of Mathematics Turk J Math (2021) 45: 1166 – 1179 http://journals.tubitak.gov.tr/math/ © TÜBİTAK Research Article doi:10.3906/mat-2011-59 Repdigits as sums of two generalized Lucas numbers Sai Gopal RAYAGURU1;∗, Jhon Jairo BRAVO2 1Department of Mathematics, National Institute of Technology Rourkela, Odisha, India 2Department of Mathematics, University of Cauca, Popayán, Colombia Received: 18.11.2020 • Accepted/Published Online: 20.03.2021 • Final Version: 20.05.2021 Abstract: A generalization of the well–known Lucas sequence is the k -Lucas sequence with some fixed integer k ≥ 2. The first k terms of this sequence are 0;:::; 0; 2; 1, and each term afterwards is the sum of the preceding k terms. In this paper, we determine all repdigits, which are expressible as sums of two k -Lucas numbers. This work generalizes a prior result of Şiar and Keskin who dealt with the above problem for the particular case of Lucas numbers and a result of Bravo and Luca who searched for repdigits that are k -Lucas numbers. Key words: Generalized Lucas number, repdigit, linear form in logarithms, reduction method 1. Introduction For an integer k ≥ 2, let the k -generalized Fibonacci sequence (or simply, the k -Fibonacci sequence) F (k) := (k) (Fn )n≥2−k be defined by the linear recurrence sequence of order k (k) (k) (k) ··· (k) ≥ Fn = Fn−1 + Fn−2 + + Fn−k for all n 2; (k) (k) ··· (k) (k) with initial conditions F−(k−2) = F−(k−3) = = F0 = 0 and F1 = 1. The above sequence is one among the several generalizations of the Fibonacci sequence (Fn)n≥0 .
    [Show full text]
  • Arxiv:2001.11839V1 [Math.CO] 30 Jan 2020 Ihiiilvalues Initial with Ubr Aebcm N Ftems Oua Eune Ostudy by to Denoted Sequences Numbers, Combinatorics
    SOME RESULTS ON AVERAGE OF FIBONACCI AND LUCAS SEQUENCES DANIEL YAQUBI AND AMIRALI FATEHIZADEH Abstract. The numerical sequence in which the n-th term is the average (that is, arithmetic mean) of the of the first n Fibonacci numbers may be found in the OEIS (see A111035 ). An interesting question one might pose is which terms of the sequences n ∞ n ∞ 1 1 Fi and Li (0.1) n i=1 n=1 n i=1 n=1 X X are integers? The average of the first three Fibonacci sequence, (1 + 1 + 3)/3=4/3, is not whereas the 24 Pi=1 Fi average of the first 24 Fibonacci sequence, 24 = 5058 is. In this paper, we address this question and also present some properties of average Fibonacci and Lucas numbers using the Wall-Sun-Sun prime conjecture. 1. Introduction Fibonacci numbers originally arose in a problem in Liber Abaci, published in 1202, which was one of the first texts to describe the Hindu-Arabic numeral system. Since then Fibonacci numbers have become one of the most popular sequences to study, appearing in a wealth of problems not only in enumerative combinatorics. The Fibonacci numbers, denoted by F ∞ , are defined by the following recurrence relation { n}n=0 Fn+1 = Fn + Fn 1, (1.1) − with initial values F0 = 0 and F1 = 1 . The first elements of this sequence are given in (A000045 ), as 0 1 1 2 3 5 8 13 21 .... arXiv:2001.11839v1 [math.CO] 30 Jan 2020 The Fibonacci numbers are closely related to binomial coefficients; it is a well-known fact that they are given by the sums of the rising diagonal lines of Pascal’s triangle (see [1]) n ⌊ 2 ⌋ n i F = − .
    [Show full text]
  • K Sequences of Generalized Van Der Laan and Generalized Perrin
    k sequences of Generalized Van der Laan and Generalized Perrin Polynomials Kenan Kaygisiza,∗, Adem S¸ahina aDepartment of Mathematics, Faculty of Arts and Sciences, Gaziosmanpa¸sa University, 60250 Tokat, Turkey Abstract In this paper, we present k sequences of Generalized Van der Laan Polynomials and Generalized Perrin Polynomials using Genaralized Fibonacci and Lucas Polynomials. We give some properties of these polynomials. We also obtain generalized order-k Van der Laan Numbers, k sequences of generalized order-k Van der Laan Numbers, generalized order-k Perrin Numbers and k sequences of generalized order-k Perrin Numbers. In addition, we examine the relationship between them. Keywords: Padovan Numbers, Cordonnier Numbers, Generalized Van der Laan Polynomials, Generalized Perrin Polynomials, k sequences of the generalized Van der Laan and Perrin Polynomials. 1. Introduction Fibonacci, Lucas, Pell and Perrin numbers are known for a long time. There are a lot of studies, relations, and applications of them. Generalization of this numbers has been studied by many researchers. Miles [11] defined generalized order-k Fibonacci numbers(GOkF) in 1960. Er [1] defined k sequences of generalized order-k Fibonacci Numbers(kSOkF) and gave matrix representation for this sequences in 1984. Kalman [2] obtained a Binet formula for these sequences in 1982. Karaduman [3], Ta¸s¸cı and Kılı¸c[13] studied on these sequences. Kılı¸cand Ta¸s¸cı [7] defined k sequences of generalized arXiv:1111.4065v1 [math.NT] 17 Nov 2011 order-k Pell Numbers(kSOkP) and obtained sums properties by using matrix method. Kaygisiz and Bozkurt [5] studied on generalization of Perrin numbers.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • ^Ssffln^L the OFFICIAL JOURNAL of the FIBONACCI ASSOCIATION
    ^SSffln^l THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION VOLUME 20 FEBRUARY NUMBER 1 1982 CONTENTS On the Use of Fibonacci Recurrence Relations in the Design of Long Wavelength Filters and Interferometers . L.G. Batten 1 On the Convergence of Iterated Exponentiation—III Michael Creutz & R.M. Sternheimer 7 Generalized Fermat and Mersenne Numbers Steve high & Pat Jones 12 Fibonacci Numbers of Graphs Helmut Prodinger & Robert F. Tichy 16 Some Identities and Divisibility Properties of Linear Second-Order Recursion Sequences .............. Neville Rohhins 21 Polygonal Products of Polygonal Numbers and the Pell Equation ...... L.C. Bggan, Peter C. Eggan & J.L. Self ridge 24 Waiting for the Kth Consecutive Success and The Fibonacci Sequence of Order K A.N. Philippou & A. A. Muwafi 28 The Length of the Four-Number Game ...... William A. Webb 33 Sums of Consecutive Intergers . Robert Guy 36 Concerning a Paper by L.G. Wilson A.G. Shannon & A.F. Horadam 38 A Generalization of the Dirichlet Product . K. Joseph Davis 41 Combinatorial Aspects of an Infinite Pattern of Integers .. A.F. Horadam & A.G. Shannon 44 One-Pile Time and Size Dependent Take-Away Games Jim Flanigan 51 Fibonacci-Cayley Numbers . P.V. Satyanarayana Murthy 59 Generalizations of Some Problems on Fibonacci Numbers . P.V. Satyanarayana Murthy 65 A Variant of the Fibonacci Polynomials Which Arises in the Gambler's Ruin Problem . Mark E. Kidwell '& Clifford M. Hurvich 66 Generalized Fibonacci Numbers by Matrix Methods .. Dan Kalman 73 Explicit Descriptions of Some Continued Fractions J.O. Shallit 77 The Nonexistence of Quasiperfect Numbers of Certain Forms ......
    [Show full text]
  • Is 547 a Prime Number
    Is 547 a prime number Continue Vers'o em portug's Definition of a simple number (or simply) is a natural number larger than one that has no positive divisions other than one and itself. Why such a page? Read here Lists of The First 168 Prime Numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227 , 229, 233, 239 , 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601 , 607, 613, 617 , 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941 947, 953, 967, 971, 977, 983, 991, 997 Big Lists Firt 10,000 prime numbers First 50 Milhon prime numbers First 2 billion prime prime numbers Prime numbers up to 100,000,000 Prime number from 100,000 000,000 to 200,000,000,000 Prime numbers from 200,000,000,000 to 300,000,000 from 0.000 to 400,000,000,000,000 0 Premier numbers from 400,000,000,000 to 500,000,000 Prime numbers from 500,000,000,000 to 600,000,000,000 Prime numbers from 600,000,000 to 600,000 ,000,000,000 to 700,000,000,000,000 Prime numbers from 700,000,000,000 to 800,000,000,000 Prime numbers from 800,000 0,000,000 to 900,000,000,000 Prime numbers from 900,000,000,000 to 1,000,000,000,000 Deutsche Version - Prime Numbers Calculator - Is it a simple number? There is a limit to how big a number you can check, depending on your browser and operating system.
    [Show full text]