Estimating Potential Reproductive Costs in the Survival of a Xenosaurid Lizard

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Potential Reproductive Costs in the Survival of a Xenosaurid Lizard HERPETOLOGICAL JOURNAL 21: 117–129, 2011 Estimating potential reproductive costs in the survival of a xenosaurid lizard J. Jaime Zúñiga-Vega Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México Both females and males may suffer from increased mortality risk as a result of the activities and physiological processes associated with reproduction. In this study I estimated sex-specific reproductive costs in the survival rates of a viviparous and territorial lizard (Xenosaurus grandis grandis), accounting for the potential effects of population density, population growth rate and the size of individuals. I used a multi-model inference framework to test the following hypotheses: 1) female survival rate should decrease when they experience the late phases of embryo development and immediately after births take place; and 2) male survival rate should decrease when they search and compete for potential mates. Capture–mark–recapture data supported the first hypothesis but not the second. Female survival appeared to decrease right before and after parturition events. In contrast, male survival did not decrease during the mating season. I discuss the potential causes and implications of this sex-specific trade-off between reproduction and survival. Key words: capture–mark–recapture, life-history, multi-model inference, trade-off, Xenosaurus grandis grandis INTRODUCTION for predators (Van Damme et al., 1989; Shaffer & For- manowicz, 1996; Webb, 2004). Furthermore, after the eproduction is costly. In all living organisms the production of live young, their physical condition may Rtime, resources and energy invested in reproductive be impoverished and female mortality rates might in- processes and activities impose several types of costs crease (Weeks, 1996; Lourdais et al., 2004; Hoffman et (Stearns, 1992; Roff, 2002; Harshman & Zera, 2007). al., 2008). On the other hand, territorial males exhibit One of the most documented adverse effects of repro- aggressive behaviour against conspecific males during ductive investment is a potential decrease in survival the reproductive season (Hyman & Hughes, 2006; Kemp, probability (e.g. Hadley et al., 2007; Jervis et al., 2007; 2006). Hence, male mortality could potentially increase Kitaysky et al., 2010). This life-history trade-off between during these periods because of diminished physical con- reproduction and survival is assumed to operate in both dition and (or) because they become easy prey during the sexes (Svensson, 1988; Dijkstra et al., 1990). On the one time period when they attempt to secure and defend their hand, females allocate vast amounts of resources to the mates (Neuhaus & Pelletier, 2001; Low, 2006; Briffa & production of offspring. These resources are depleted Sneddon, 2007). from ingested food and lipid reserves, negatively affect- Nevertheless, an increased risk of mortality as a re- ing their body condition and their chances of surviving to sult of reproductive investment may or may not occur future reproductive events (Golet et al., 2004; Persson, depending on a large set of extrinsic and intrinsic fac- 2005; Cox & Calsbeek, 2010). In addition, reproductive tors (Bell, 1980; Galimberti et al., 2007). For instance, females might be more susceptible to predation (Miles population density may determine whether a reproductive et al., 2000; Veasey et al., 2001; Hoogland et al., 2006). cost actually occurs. In crowed sites or years with lim- Males, on the other hand, allocate time and energy to ited resources both males and females may experience a searching for, securing and defending potential mates. higher cost in their survival when producing offspring in Such energy expenditure might similarly impoverish their comparison with sites or years where resources are abun- physical condition and decrease their survival probabili- dant and population density is lower (Festa-Bianchet et ties (Fleming & Nicolson, 2004; Schubert et al., 2009). al., 1998; Brouwer et al., 2009). Similarly, density-inde- Hence, males might be more susceptible to predation dur- pendent conditions such as temperature and moisture may ing the reproductive season (Koga et al., 2001; Pavlová also influence reproductive trade-offs. Under unfavoura- et al., 2010). ble environmental conditions, offspring production might In viviparous and territorial organisms reproductive be more costly in comparison with less harsh conditions costs in survival probabilities are usually noteworthy. (Orzack & Tuljapurkar, 2001; Barbraud & Weimerskirch, On the one hand, viviparous females experience a con- 2005). The size or age of individuals may also influence siderable increase in volume and weight during embryo the mortality risk associated with reproduction. Either development (Ghalambor et al., 2004; Shine, 2005). This young, small and inexperienced individuals or old, large size increase may represent a tough physical burden that and weakened ones might suffer higher costs during re- impairs their locomotor abilities, making them easy prey productive processes (Tatar et al., 1993; Moyes et al., Correspondence: J. Jaime Zúñiga-Vega, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Na- cional Autónoma de México, Ciudad Universitaria 04510, Distrito Federal, México. E-mail: [email protected] 117 J.J. Zúñiga-Vega 2006). Hence, the study of a trade-off between repro- MATERIALS AND METHODS duction and survival must explore the potential effects of these important factors as well. Study system and field methods In this study, I estimated potential reproductive costs Xenosaurus grandis grandis is a knob-scaled lizard that in the survival probabilities of a crevice-dwelling, vivipa- inhabits only a few mountains in eastern Mexico (Ball- rous and territorial lizard (Xenosaurus grandis grandis). inger et al., 2000a). It belongs to the family Xenosauridae, In particular, I tested two main predictions. 1) Female which is composed of strictly crevice-dwelling lizard spe- survival should be lower during the months in which cies whose females give birth to live young during spring they suffer the highest increase in size due to embryo de- and summer (Ballinger et al., 2000b; Zamora-Abrego et velopment (May and June) as well as immediately after al., 2007). In X. g. grandis, individuals are highly ter- parturition events (July and August), in comparison with ritorial and two individuals share a single crevice (a the months in which they are either non-pregnant or ex- male–female pair) only during the mating season (Octo- periencing early phases of embryo development (the rest ber–November). The rest of the year adult lizards (both of the year). 2) Male survival should be lower during the males and females) are found alone within a crevice. months in which they are searching and competing for Gestation lasts on average nine months (October through mates (October and November), in comparison with the June). Births occur in July and early August and the aver- months in which they are not involved in reproductive age litter size is 5.1 offspring (±0.2 SE). Sizes at maturity activities (the rest of the year). are 100 and 95 mm snout–vent length (SVL), for females Additionally, I addressed three supplementary ques- and males, respectively (Ballinger et al., 2000c; Smith et tions concerning some extrinsic and intrinsic factors that al., 2000; Zamora-Abrego et al., 2007). may influence this life-history trade-off. 1) Is this sort The study site is located in the vicinity of the town of of reproductive cost density-dependent? In other words, Cuautlapan, in the central portion of the Mexican state of does an increased risk of mortality associated with repro- Veracruz (18°52'N, 97°01'W). Vegetation corresponds ductive processes depend on the presence of a relatively to a semi-deciduous tropical forest (Rzedowski, 1978). large number of individuals in the population? 2) Does In a 5 ha plot I implemented a capture–mark–recapture the trade-off between reproduction and survival occur experiment from May 2000 through October 2004 (Zúñi- only under unfavourable conditions? More specifically, ga-Vega et al., 2007). During this period I visited the I examined whether this cost is higher or more evident in population approximately once every month for a total of years with negative population growth given the fact that 51 capture occasions. On each visit I surveyed all the rock population growth rate summarizes the effects that the crevices in the study plot (approximately 280), attempting environmental conditions had upon all the individuals in to collect as many individuals as possible. Once located, the population (Ebert, 1999). 3) Does the intensity of this lizards were extracted from their crevices, sexed (by the trade-off between reproduction and survival depend on presence or absence of hemipenes), measured and marked the age or size of individuals? My results demonstrate that individually by toe-clipping (only on first capture). After in the study population, reproduction entails a noteworthy data collection lizards were released in the same crevice cost in terms of survival probabilities. that they were occupying. Repeated visits to the study Table 1. Number of individuals of Xenosaurus grandis grandis captured per year, sampling occasion (month), sex, and stage (juveniles, small adults and large adults). The number of recaptures (previously marked individuals) on each sampling occasion is shown within parentheses. Estimates of total population
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • XENOSAURIDAE Xenosaurus Grandis
    REPTILIA: SQUAMATA: XENOSAURIDAE Catalogue of American Amphibians and Reptiles. Ballinger, R.E., J.A. Lemos-Espinal,and G.R. Smith. 2000. Xeno- saurus grandis. Xenosaurus grandis (Gray) Knob-scaled Lizard Cubina grandis Gray 1856:270. Type locality, "Mexico, near Cordova veracruz]." Syntypes, British Museum (Natural His- tory) (BMNH) 1946.8.30.21-23, adults of undetermined sex, purchased by M. SallC, accessioned 17 April 1856, collector and date of collection unknown (not examined by authors). Xenosaunrsfasciatus Peters 1861:453. Type locality, "Huanusco, in Mexico" (emended to Huatusco, Veracruz, by Smith and Taylor 1950a,b). Holotype, Zoologisches Museum, Museum fiir Naturkunde der Humboldt-Universitiit zu Berlin (ZMB) 3922, a subadult of undetermined sex, collected by L. Hille, date of collection unknown (Good et al. 1993) (not examined by authors). Xenosaum grandis: Cope 1866:322. Fit use of present combi- nation. CONTENT. Five subspecies are currently recognized: grandis, agrenon, orboreus, rackhami, and snnrnartinensis (see Com- ments). FIGURE. Adult Xenosaurw grandis from 1 km SL ,,;doba, Veracmz, .DEFINITION AM)DIAGNOSIS. xenosaurusgrandis is a MCxico; note the red iris characteristic of this species. medium sized lizard (to 120 mm SVL) with a canthus temporalis forming a longitudinal row of enlarged scales distinct from smaller DESCRIPTIONS. The review by King and Thompson (1968) rugose temporal scales, a longitudinal row of 3-5 enlarged hex- provided the only detailed descriptions beyond the originals. agonal supraoculars, one or more paravertebral rows of enlarged tubercles, a dorsal pattern of dark brown- or black-edged white ILLUSTRATIONS. Alvarez delToro (1982). Obst et al. (1988), crossbands on a brown ground color, a v-shaped nape blotch, Villa et al.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Redalyc.A New Species of Xenosaurus (Squamata: Xenosauridae) from the Sierra Gorda Biosphere Reserve of Querétaro, Mexico
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Nieto-Montes de Oca, Adrián; García-Vázquez, Uri O.; Zúñiga-Vega, J. Jaime; Schmidt-Ballardo, Walter A new species of Xenosaurus (Squamata: Xenosauridae) from the Sierra Gorda Biosphere Reserve of Querétaro, Mexico Revista Mexicana de Biodiversidad, vol. 84, núm. 2, junio, 2013, pp. 485-498 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42527032036 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 84: 485-498, 2013 Revista Mexicana de Biodiversidad 84: 485-498, 2013 DOI: 10.7550/rmb.35733 DOI: 10.7550/rmb.35733485 A new species of Xenosaurus (Squamata: Xenosauridae) from the Sierra Gorda Biosphere Reserve of Querétaro, Mexico Una nueva especie de Xenosaurus (Squamata: Xenosauridae) de la Reserva de la Biosfera Sierra Gorda de Querétaro, México Adrián Nieto-Montes de Oca1 , Uri O. García-Vázquez1, J. Jaime Zúñiga-Vega3 and Walter Schmidt-Ballardo2 1Laboratorio de Herpetología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F., México. 2Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F., México. 3Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México.
    [Show full text]
  • A New Species of Xenosaurus (Squamata: Xenosauridae) from the Sierra Gorda Biosphere Reserve of Querétaro, Mexico
    Revista Mexicana de Biodiversidad 84: 485-498, 2013 Revista Mexicana de Biodiversidad 84: 485-498, 2013 DOI: 10.7550/rmb.35733 DOI: 10.7550/rmb.35733485 A new species of Xenosaurus (Squamata: Xenosauridae) from the Sierra Gorda Biosphere Reserve of Querétaro, Mexico Una nueva especie de Xenosaurus (Squamata: Xenosauridae) de la Reserva de la Biosfera Sierra Gorda de Querétaro, México Adrián Nieto-Montes de Oca1 , Uri O. García-Vázquez1, J. Jaime Zúñiga-Vega3 and Walter Schmidt-Ballardo2 1Laboratorio de Herpetología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F., México. 2Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F., México. 3Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F., México. [email protected] Abstract. A new species of Xenosaurus from the Sierra Gorda Biosphere Reserve of northeastern Querétaro, Mexico, is described. The new species differs from all of the other described species of the genus by having usually 2 postrostral scales on each side of the midline (in 84.6% of the specimens, n= 26); largest supraoculars that are not, or only slightly, wider than long; postorbital and zygomatic ridges that are widely separated from each other by an intervening row of scales; labiomental rows that usually extend posteriorly_ from the second or third chinshield (in 92.3% of the specimens, n= 26); 23-26 lamellae under the fourth toe (x= 24.3, n= 25); a venter that is immaculate or with only diffuse, scattered dark specks on the sides, and a postorbital region rounded, lacking a canthus temporalis demarcated by enlarged or well-defined scales.
    [Show full text]
  • Evaluation of the Captive Breeding Potential of Selected Reptile Taxa Included in Appendices I and II at CITES Cop17
    Evaluation of the Captive Breeding Potential of selected Reptile Taxa included in Appendices I and II at CITES CoP17 Christian Langner Beate Pfau Ronny Bakowskie Clara Arranz Axel Kwet Title: Shinisaurus crocodilurus (Photo: Axel Kwet) Addresses of authors: Deutsche Gesellschaft für Herpetologie und Terrarienkunde e. V. (DGHT) Dr. Axel Kwet Haldenstraße 28 70736 Fellbach E-Mail: [email protected] Christian Langner Allwetterzoo Münster Altätte 23 48727 Billerbeck E-Mail: [email protected] Dr. Beate Pfau Rathenaustrasse 14 65326 Aarbergen E-Mail: [email protected] Ronny Bakowskie Täubchenweg 12 04317 Leipzig E-Mail: [email protected] Dr. Clara Arranz Heimatstrasse 5 79102 Freiburg E-Mail: [email protected] Supervision BfN: Dr. Mona van Schingen Fachgebiet II 1.1 „Wildlife Conservation“ Federal Agency for Nature Conservation, CITES Scientific Authority (BfN) 2 Contents Prefeace ………………………………………………………………………………………………………………………………………………………4 Aims of the project ……………………………………………………………………………………………………………….………….………… 5 Methods ………………………………………………………………………………………………………………………………………………..…… 6 Target Species ……………………………………………………………………………………………………………………………………………. 7 Glossary …………………………………………………………………………………………………………………………………………….………. 8 Lizards Anguidae …………………………………………………………………………………………………………………………………..………… 13 Chamaeleonidae ………………………………………………………………………………………………….…………………….…..…… 99 Gekkonidae …………………………………………………………………………………………………………………………………..…… 152 Lanthanotidae …………………………………………………………………………………….….…………………………………….…… 162 Shinisauridae ……………………………………………………………………………………………………………………………..………
    [Show full text]
  • The Ecology of Lizard Reproductive Output
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.
    [Show full text]
  • Porthidium Dunni (Hartweg and Oliver, 1938)
    Porthidium dunni (Hartweg and Oliver, 1938). Dunn’s Hognosed Pitviper is a “priority two species” that has been assessed Environmental Vulnerability Score of 16 (see the following article). This pitviper is found primarily at low elevations along the foothills of the Sierra Madre del Sur physiographic region and the coastal plain of the Planicie Costera del Pacífico and Planicie Costera de Tehuantepec physiographic regions (Mata-Silva et al., 2015b) in southern Oaxaca and extreme western Chiapas, Mexico. This individual was found ca. 3.6 km NNW of La Soledad, Municipio de Villa de Tututepec de Melchor Ocampo, Oaxaca. ' © Vicente Mata-Silva 543 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The endemic herpetofauna of Mexico: organisms of global significance in severe peril JERRY D. JOHNSON1, LARRY DAVID WILSON2, VICENTE MATA-SILVA1, ELÍ GARCÍA-PADILLA3, AND DOMINIC L. DESANTIS1 1Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mail: [email protected], and [email protected], and [email protected] 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] 3Oaxaca de Juárez, Oaxaca 68023, Mexico. E-mail: [email protected] ABSTRACT: Life on Earth exists due to the interactions among the atmosphere, hydrosphere, and litho- sphere. Humans, however, have created and are faced with the consequences of an interrelated set of problems that impact all of these spheres, including the biosphere. The decline in the diversity of life is a problem of global dimensions resulting from a sixth mass extinction episode created by humans.
    [Show full text]
  • Thermal Ecology, Sexual Dimorphism, and Diet of Xenosaurus Tzacualtipantecus from Hidalgo, Mexico
    Western North American Naturalist Volume 75 Number 2 Article 8 8-21-2015 Thermal ecology, sexual dimorphism, and diet of Xenosaurus tzacualtipantecus from Hidalgo, Mexico Jenny García-Rico Universidad Nacional Autónoma de México, [email protected] Anibal Díaz de la Vega-Pérez Universidad Nacional Autónoma de México, [email protected] Geoffrey R. Smith Denison University, Granville, OH, [email protected] Julio A. Lemos-Espinal Universidad Nacional Autónoma de México, [email protected] Guillermo A. Woolrich-Piña Instituto Politécnico Nacional, México, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation García-Rico, Jenny; de la Vega-Pérez, Anibal Díaz; Smith, Geoffrey R.; Lemos-Espinal, Julio A.; and Woolrich-Piña, Guillermo A. (2015) "Thermal ecology, sexual dimorphism, and diet of Xenosaurus tzacualtipantecus from Hidalgo, Mexico," Western North American Naturalist: Vol. 75 : No. 2 , Article 8. Available at: https://scholarsarchive.byu.edu/wnan/vol75/iss2/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 75(2), © 2015, pp. 209–217 THERMAL ECOLOGY, SEXUAL DIMORPHISM, AND DIET OF XENOSAURUS TZACUALTIPANTECUS FROM HIDALGO, MEXICO Jenny García-Rico1, Anibal Díaz de la Vega-Pérez1, Geoffrey R. Smith2, Julio A. Lemos-Espinal1,5, and Guillermo A. Woolrich-Piña3,4 ABSTRACT.—Our knowledge of the biology of lizards in the genus Xenosaurus has increased over the past 20 years.
    [Show full text]
  • A Logical New Genus-Level Taxonomy for the Xenosauridae, Anniellidae, Diploglossidae and Anguidae (Squamata:Sauria)
    Australasian Journal of Herpetology Australasian20 Journal of Herpetology 24:20-64. ISSN 1836-5698 (Print) Published 30 August 2014. ISSN 1836-5779 (Online) A logical new genus-level taxonomy for the Xenosauridae, Anniellidae, Diploglossidae and Anguidae (Squamata:Sauria). RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3114, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 10 November 2013, Accepted 22 August 2014, Published 30 August 2014. ABSTRACT. A number of recent molecular studies have highlighted divergences between currently recognized genera of lizards within the four closely associated lizard families Xenosauridae, Anniellidae, Diploglossidae and Anguidae, which share the same clade as Heloderma, reviewed by Hoser (2013a) and more distantly Varanidae reviewed by Hoser (2013b) Combining the results of recent cited molecular and morphological studies the following genera as presently recognized by most herpetologists in 2014 are split: Xenosaurus Peters, 1861 is divided into two, with the erection of Eastmansaurus gen. nov. to accommodate four species found north of the Mexican transvolcanic belt. The remaining species are in turn divided into two subgenera, the new group being Rossnolansaurus subgen. nov.. Anniella Gray, 1852 is divided into two with the erection of Kendslider gen. nov. to accommodate one species. For the Diploglossidae, Celestus Gray, 1839 is divided three ways, using Celestus for the Hispaniolan group, Siderolamprus Cope, 1860 for the mainland species and the erection of a new genus Toscanosaurus gen. nov. for seven divergent species from Jamaica. Siderolamprus (from mainland middle America) is divided into four subgenera, including Garyallensaurus subgen. nov., Conningsaurus subgen.
    [Show full text]
  • Thermal Ecology, Sexual Dimorphism, and Diet of Xenosaurus Tzacualtipantecus from Hidalgo, Mexico
    Denison University Denison Digital Commons Denison Faculty Publications 2015 Thermal Ecology, Sexual Dimorphism, and Diet of Xenosaurus Tzacualtipantecus From Hidalgo, Mexico J. Garcia-Rico A. Diaz de la Vega-Pere Geoffrey R. Smith J. A. Lemos-Espinal G. A. Woolrich-Pina Follow this and additional works at: https://digitalcommons.denison.edu/facultypubs Part of the Biology Commons Recommended Citation Garcia-Rico, J., Diaz de la Vega-Perez, A., Smith, G. R., Lemos-Espinal, J. A., & Woolrich-Pina, G. A. (2015). THERMAL ECOLOGY, SEXUAL DIMORPHISM, AND DIET OF XENOSAURUS TZACUALTIPANTECUS FROM HIDALGO, MEXICO. Western North American Naturalist, 75(2), 209-217. doi:10.3398/064.075.0209 This Article is brought to you for free and open access by Denison Digital Commons. It has been accepted for inclusion in Denison Faculty Publications by an authorized administrator of Denison Digital Commons. Western North American Naturalist 75(2), © 2015, pp. 209–217 THERMAL ECOLOGY, SEXUAL DIMORPHISM, AND DIET OF XENOSAURUS TZACUALTIPANTECUS FROM HIDALGO, MEXICO Jenny García-Rico1, Anibal Díaz de la Vega-Pérez1, Geoffrey R. Smith2, Julio A. Lemos-Espinal1,5, and Guillermo A. Woolrich-Piña3,4 ABSTRACT.—Our knowledge of the biology of lizards in the genus Xenosaurus has increased over the past 20 years. Several generalities appear to hold for these lizards; however, some traits appear to vary among populations and species of Xenosaurus. Here we report on the thermal ecology, sexual dimorphism, and diet of a population of the recently described Xenosaurus tzacualtipantecus from Hidalgo, Mexico. The mean body temperature (Tb) of X. tzacualtipantecus in our population (18.1 °C) is the lowest mean Tb yet observed in Xenosaurus.
    [Show full text]