Studies of Zinc Finger Proteins in Epigenetic Gene Regulation Nan Liu

Total Page:16

File Type:pdf, Size:1020Kb

Studies of Zinc Finger Proteins in Epigenetic Gene Regulation Nan Liu STUDIES OF ZINC FINGER PROTEINS IN EPIGENETIC GENE REGULATION NAN LIU MÜNCHEN 2014 STUDIES OF ZINC FINGER PROTEINS IN EPIGENETIC GENE REGULATION NAN LIU Dissertation an der Fakultät für Biologie der Ludwig‐Maximilians‐Universität München vorgelegt von Nan Liu aus Yushu, China München, den 2014 Erstgutachter: Prof. Dr. Heinrich Leonhardt Zweitgutachter: PD Dr. Anna Friedl Tag der mündlichen Prüfung: 04.12.2014 Contents Content Summary ...................................................................................................... i 1 Introduction .......................................................................................... 1 1.1 Epigenetic regulation ............................................................................ 2 1.1.1 DNA methylation ................................................................................................... 2 1.1.2 Histone modifications ............................................................................................ 4 1.2 Zinc finger proteins (ZFPs) and zinc finger motifs................................... 7 1.2.1 C2H2 type zinc fingers............................................................................................ 8 1.2.2 CXXC type zinc fingers .......................................................................................... 10 1.2.3 Treble clef type zinc fingers ................................................................................. 12 1.3 ZFPs act as modifiers in the epigenetic regulatory system .................... 17 1.3.1 Writers of DNA modifications .............................................................................. 17 1.3.2 Readers of DNA modifications ............................................................................. 20 1.3.3 Erasers of DNA modifications .............................................................................. 25 1.3.4 Histone modifiers ................................................................................................. 28 1.4 Applications of ZFPs ............................................................................. 30 1.4.1 Genome modification with engineered zinc finger nucleases ............................ 30 1.4.2 Manipulating gene expression with engineered zinc finger transcription factors32 1.4.3 Therapeutic applications of engineered ZFPs ...................................................... 34 1.5 Aims of this work ................................................................................. 36 2 Materials and Methods ....................................................................... 37 2.1 Materials ............................................................................................. 38 2.1.1 Technical devices ................................................................................................. 38 2.1.2 Consumables ........................................................................................................ 40 2.1.3 Reagents and kits ................................................................................................. 41 2.1.4 Cell lines ............................................................................................................... 45 ii Content 2.1.5 Plasmid constructs ............................................................................................... 46 2.1.6 Primer sequences ................................................................................................. 49 2.2 Methods .............................................................................................. 54 2.2.1 Expression constructs .......................................................................................... 54 2.2.2 Antibodies ............................................................................................................ 55 2.2.3 Cell culture and transfection ............................................................................... 55 2.2.4 Generation of stable cell lines and DNA methylation analyses ........................... 56 2.2.5 Cell inhibitor treatment ....................................................................................... 56 2.2.6 Coimmunoprecipitation (Co‐IP) and western blot .............................................. 56 2.2.7 Western blot quantification ................................................................................. 57 2.2.8 Immunofluorescence staining ............................................................................. 57 2.2.9 Protein production and purification .................................................................... 57 2.2.10 RNA isolation and Real‐time PCR ......................................................................... 58 2.2.11 Northern blot ....................................................................................................... 58 2.2.12 5’ RACE ................................................................................................................. 59 2.2.13 F3H assay ............................................................................................................. 59 2.2.14 Determination of global genomic 5hmC levels ................................................... 60 2.2.15 In vitro DNA binding assay ................................................................................... 61 2.2.16 Statistical analysis ................................................................................................ 61 3 Results................................................................................................. 63 3.1 Intrinsic and extrinsic connections of TET3 dioxygenase with CXXC modules............................................................................................... 64 3.1.1 Identification and expression pattern of mouse tet3 transcripts encoding a CXXC domain ................................................................................................................. 64 3.1.2 CXXC4 interacts with TET3 in vivo and is expressed in the adult brain .............. 70 3.1.3 The CXXC domains of TET1, TET3CXXC, CXXC4 and CXXC5 bind CpG containing DNA substrates .................................................................................................... 72 iii Content 3.1.4 TET3CXXC oxidizes genomic 5mC in vivo and shows slightly lower mobility than the TET3 isoform lacking the CXXC domain ........................................................ 75 3.1.5 Detection of TET3CXXC at the protein level ........................................................... 76 3.2 DNMT1 ubiquitin interacting motif UIM is required for maintenance of DNA methylation by binding to UHRF1‐dependent H3 ubiquitination .. 78 3.2.1 UHRF1 ubiquitinates histone H3 on K18 and K23 residues in mammalian cells . 78 3.2.2 The DNMT1 UIM mediated binding to ubiquitinated H3 is required for methylation activity in vivo ................................................................................. 79 3.3 UHRF1 and USP7 control stability of heterochromatin protein CBX1 by polyubiquitination ............................................................................... 82 3.3.1 UHRF1 associates and colocalizes with all three CBXs ........................................ 82 3.3.2 UHRF1 is the E3 ligase for ubiquitination of CBX1 ............................................... 83 3.3.3 Association between UHRF1 and CBX1 is independent of PxVxV motif ............. 86 3.3.4 USP7 stabilizes CBX1 by deubiquitination ........................................................... 88 4 Discussion ........................................................................................... 89 4.1 Regulation of TET enzymes via CXXC domains in cis and in trans .......... 90 4.1.1 Regulation of TET proteins via CXXC domains in cis ............................................ 90 4.1.2 Regulation of TET proteins via CXXC domains in trans ........................................ 93 4.2 Functions of UHRF1 in targeting DNMT1 to hemimethylated DNA substrates ............................................................................................ 96 4.2.1 Direct targeting mechanism mediated by the SRA domain ................................ 96 4.2.2 Indirect targeting mechanism coordinated by RING and PHD domains ............. 98 4.2.3 Chromatin association of DNMT1 is regulated by dynamic posttranslational modifications ..................................................................................................... 100 4.3 Potential roles of UHRF2 in epigenetics .............................................. 103 4.4 Regulatory role of UHRF1 in chromatin dynamics .............................. 106 iv Content 4.4.1 A novel approach to detect ubiquitination in vitro and in living cells ............... 106 4.4.2 Chromatin structure and heterochromatin protein HP1 .................................. 107 5 Annex ................................................................................................ 109 5.1 References ......................................................................................... 110 5.2 Abbreviations .................................................................................... 132 5.3 Declaration ........................................................................................ 137 5.4 Acknowledgements ........................................................................... 139 6 Curriculum Vitae................................................................................ 141 7 Publications ......................................................................................
Recommended publications
  • Extreme HOT Regions Are Cpg-Dense Promoters in C. Elegans and Humans
    Research Extreme HOT regions are CpG-dense promoters in C. elegans and humans Ron A.-J. Chen, Przemyslaw Stempor, Thomas A. Down, Eva Zeiser, Sky K. Feuer, and Julie Ahringer1 The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom Most vertebrate promoters lie in unmethylated CpG-dense islands, whereas methylation of the more sparsely distributed CpGs in the remainder of the genome is thought to contribute to transcriptional repression. Nonmethylated CG di- nucleotides are recognized by CXXC finger protein 1 (CXXC1, also known as CFP1), which recruits SETD1A (also known as Set1) methyltransferase for trimethylation of histone H3 lysine 4, an active promoter mark. Genomic regions enriched for CpGs are thought to be either absent or irrelevant in invertebrates that lack DNA methylation, such as C. elegans; however, a CXXC1 ortholog (CFP-1) is present. Here we demonstrate that C. elegans CFP-1 targets promoters with high CpG density, and these promoters are marked by high levels of H3K4me3. Furthermore, as for mammalian promoters, high CpG content is associated with nucleosome depletion irrespective of transcriptional activity. We further show that highly occupied target (HOT) regions identified by the binding of a large number of transcription factors are CpG-rich pro- moters in C. elegans and human genomes, suggesting that the unusually high factor association at HOT regions may be a consequence of CpG-linked chromatin accessibility. Our results indicate that nonmethylated CpG-dense sequence is a conserved genomic signal that promotes an open chromatin state, targeting by a CXXC1 ortholog, and H3K4me3 modification in both C.
    [Show full text]
  • The Structural Basis for Selective Binding of Non-Methylated Cpg Islands by the CFP1 CXXC Domain
    ARTICLE Received 13 Dec 2010 | Accepted 9 Feb 2011 | Published 8 Mar 2011 DOI: 10.1038/ncomms1237 The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain Chao Xu1,*, Chuanbing Bian1,*, Robert Lam1, Aiping Dong1 & Jinrong Min1,2 CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif. 1 Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada. 2 Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.M. (email: [email protected]). NATURE COMMUNICATIONS | 2:227 | DOI: 10.1038/ncomms1237 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1237 pG islands contain a high density of CpG content and embrace the promoters of most genes in vertebrate genomes1.
    [Show full text]
  • Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
    viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+).
    [Show full text]
  • Aiolos Overexpression in Systemic Lupus Erythematosus B Cell
    Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 This information is current as Modulation of Cereblon Activity of September 27, 2021. Yumi Nakayama, Jolanta Kosek, Lori Capone, Eun Mi Hur, Peter H. Schafer and Garth E. Ringheim J Immunol 2017; 199:2388-2407; Prepublished online 28 August 2017; Downloaded from doi: 10.4049/jimmunol.1601725 http://www.jimmunol.org/content/199/7/2388 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/08/26/jimmunol.160172 Material 5.DCSupplemental References This article cites 131 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/199/7/2388.full#ref-list-1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • XIAP's Profile in Human Cancer
    biomolecules Review XIAP’s Profile in Human Cancer Huailu Tu and Max Costa * Department of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA–XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA–XIAP interactions are discussed. Keywords: XIAP; apoptosis; cancer; therapeutics; non-coding RNA 1. Introduction X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3), baculoviral IAP repeat-containing protein 4 (BIRC4), and human IAPs like protein (hILP), belongs to IAP family which was discovered in insect baculovirus [1]. Eight different IAPs have been isolated from human tissues: NAIP (BIRC1), BIRC2 (cIAP1), BIRC3 (cIAP2), XIAP (BIRC4), BIRC5 (survivin), BIRC6 (apollon), BIRC7 (livin) and BIRC8 [2].
    [Show full text]
  • The Epigenetic Regulator Cfp1
    Article in press - uncorrected proof BioMol Concepts, Vol. 1 (2010), pp. 325–334 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2010.031 Review The epigenetic regulator Cfp1 David G. Skalnik concept is illustrated by a variety of phenomena, including Wells Center for Pediatric Research, Section of Pediatric X-chromosome inactivation, in which one X chromosome in Hematology/Oncology, Departments of Pediatrics and each cell of a developing female blastocyst becomes irre- Biochemistry and Molecular Biology, Indiana University versibly inactivated; genomic imprinting, in which mater- School of Medicine, 1044 W. Walnut St., Indianapolis, nally and paternally derived alleles of a gene are IN 46202, USA differentially expressed; and the observation that diverse tis- sues express distinct sets of genes to permit unique func- e-mail: [email protected] tional properties, yet each (with rare exceptions) carries identical genetic information (1–4). Epigenetic information is largely encoded within chro- matin structure. A major class of epigenetic modifications is Abstract post-translational modification of histones. Dozens of dis- Numerous epigenetic modifications have been identified and tinct covalent modifications at specific amino acid residues correlated with transcriptionally active euchromatin or have been identified, including acetylation, methylation, repressed heterochromatin and many enzymes responsible phosphorylation, and sumoylation (2, 5, 6). Many of these for the addition and removal of these marks have been char- modifications are tightly correlated with either transcription- acterized. However, less is known regarding how these ally active euchromatin or transcriptionally silenced hetero- enzymes are regulated and targeted to appropriate genomic chromatin. Relatively subtle changes of covalent modifica- locations.
    [Show full text]
  • Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell
    cancers Article Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell Lines and Acute Lymphoblastic Leukemia Samples: Identification of a Novel Truncated IKZF1 Transcript in SUP-B15 Weiqiang Zhao 1,*, Ying Li 2 , Chenjiao Yao 2 , Guojuan Zhang 1, Kevin Y. Zhao 1, Wei Chen 1, Peng Ru 1, Xiaokang Pan 1, Huolin Tu 1 and Daniel Jones 1 1 The James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; [email protected] (G.Z.); [email protected] (K.Y.Z.); [email protected] (W.C.); [email protected] (P.R.); [email protected] (X.P.); [email protected] (H.T.); [email protected] (D.J.) 2 The Department of Pediatrics and Department of Hematology, Xiang-Ya Third Hospital, Changsha 410013, China; [email protected] (Y.L.); [email protected] (C.Y.) * Correspondence: [email protected]; Tel.: +1-6142934210 Received: 27 August 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Abnormal RNA splicing plays a fundamental role in leukemogenesis in acute lymphoblastic leukemia (ALL). Many cases of high-risk B-cell ALL cases, including BCR-ABL1+ and BCR-ABL1-like ALL, share a common molecular mechanism of aberrant fusion transcripts involving tyrosine kinase genes combined with dysregulation of the transcription factor and lymphocyte differentiation factor IKZF1. Dysfunction of IKZF1 in ALL is caused by mutation and gene deletion but also alternative splicing resulting in exon skipping with production of aberrant IKZF1 proteins. We report here an assay to detect aberrantly spliced isoforms of IKZF1 in ALL to assist in diagnosis, outcome prediction, and therapy selection in ALL and the identification of a novel altered IKZF1 product in a model ALL cell line.
    [Show full text]
  • TRAF5, a Novel Tumor Necrosis Factor Receptor-Associated Factor Family
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9437-9442, September 1996 Biochemistry TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling (signal transduction/protein-protein interaction/yeast two-hybrid system) TAKAoMI ISHIDA*, TADASHI ToJo*, TSUTOMU AOKI*, NORIHIKO KOBAYASHI*, TSUKASA OHISHI*, TOSHIKI WATANABEt, TADASHI YAMAMOTO*, AND JUN-ICHIRO INOUE*t Departments of *Oncology and tPathology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan Communicated by David Baltimore, Massachusetts Institute of Technology, Cambridge, MA, May 22, 1996 (received for review March 8, 1996) ABSTRACT Signals emanating from CD40 play crucial called a death domain, suggesting that these receptors could roles in B-cell function. To identify molecules that transduce have either common or similar signaling mechanisms (13). CD40 signalings, we have used the yeast two-hybrid system to Biochemical purification of receptor-associated proteins or the clone cDNAs encoding proteins that bind the cytoplasmic tail recently developed cDNA cloning system that uses yeast of CD40. A cDNA encoding a putative signal transducer genetic selection led to the discovery of two groups of signal protein, designated TRAF5, has been molecularly cloned. transducer molecules. Members of the first group are proteins TRAF5 has a tumor necrosis factor receptor-associated factor with a TRAF domain for TNFR2 and CD40 such as TRAF1, (TRAF) domain in its carboxyl terminus and is most homol- TRAF2 (17), and TRAF3, also known as CD40bp, LAP-1, or ogous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, CRAF1 or CD40 receptor-associated factor (18-20).
    [Show full text]
  • RING-Type E3 Ligases: Master Manipulators of E2 Ubiquitin-Conjugating Enzymes and Ubiquitination☆
    Biochimica et Biophysica Acta 1843 (2014) 47–60 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination☆ Meredith B. Metzger a,1, Jonathan N. Pruneda b,1, Rachel E. Klevit b,⁎, Allan M. Weissman a,⁎⁎ a Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA b Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA article info abstract Article history: RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast Received 5 March 2013 majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to medi- Received in revised form 23 May 2013 ate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in Accepted 29 May 2013 human physiology and disease, these proteins and their cellular functions represent an intense area of study. Available online 6 June 2013 Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on im- Keywords: RING finger portant interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: U-box Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. Ubiquitin ligase (E3) Published by Elsevier B.V. Ubiquitin-conjugating enzyme (E2) Protein degradation Catalysis 1.
    [Show full text]
  • The Role of ND10 Nuclear Bodies in Herpesvirus Infection: a Frenemy for the Virus?
    viruses Review The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Behdokht Jan Fada, Eleazar Reward and Haidong Gu * Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; [email protected] (B.J.F.); [email protected] (E.R.) * Correspondence: [email protected]; Tel.: +1-313-577-6402 Abstract: Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discov- ered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]