Stationary Parts of an EIT and Moreton Wave: a Topological Model

Total Page:16

File Type:pdf, Size:1020Kb

Stationary Parts of an EIT and Moreton Wave: a Topological Model A&A 465, 603–612 (2007) Astronomy DOI: 10.1051/0004-6361:20065845 & c ESO 2007 Astrophysics Stationary parts of an EIT and Moreton wave: a topological model C. Delannée1, J.-F. Hochedez1, and G. Aulanier2 1 Royal Observatory of Belgium, Brussels, Belgium e-mail: [email protected] 2 LESIA, Meudon observatory, Meudon, France Received 16 June 2006 / Accepted 30 August 2006 ABSTRACT Context. EIT and Moreton waves came into focus in 1997, when a propagating disturbance on a large area of the solar disc was discovered. The process generating the EIT and Moreton waves has been frequently discussed. Aims. On May 2, 1998, a halo CME was observed related to an EIT wave, a Moreton wave, a X1 flare, radio emission sources, and dimmings. We studied this event to find the relation between all these structures. Methods. We use and co-align multi-wavelength observations and the online potential field source surface (pfss) package. Results. The observed EIT and Moreton waves present some brightenings that remain at the same location. We relate the connectivity of the coronal potential magnetic field to the stationary brightenings. We find that the areas where the magnetic field lines have drastic jumps of connectivity are cospatial to the stationary brightenings of the waves. Conclusions. We conclude that the EIT and Moreton waves may be due to Joule heating resulting from the generation of electric currents in the neighboring area of the drastic jumps of magnetic connectivity, while the magnetic field lines are opening during a CME. Key words. Sun: coronal mass ejections (CMEs) – Sun: magnetic fields – Sun: activity – Sun: flares – Sun: chromosphere – Sun: corona 1. Introduction to reproduce certain properties of the observed wave-like struc- tures. In this context, EIT waves could be used as proxies for Three wave-like structures with the length scale of the solar coronal seismology, so as to derive the coronal physical parame- radius can be observed in three different spectral band passes. ters, which are important in terms of space weather applications First, the Moreton waves are large arch-shaped brightenings (Ballai et al. 2005). α propagating through the sun observed in H (Dodson 1949). However, to our knowledge only four observed waves are They originate close to a flare that occurred few tens of seconds almost full circles (the ones reported in Thompson 1998, 1999, earlier (Warmuth et al. 2004a). 2000a). The circles of these four events are not complete: they Second, the EIT waves are mainly observed with the present gaps of brightness. Apart from these rare cases, the Extreme ultra-violet Imaging Telescope (EIT, Delaboudinière waves are always observed with a quite narrow width: from 50 to et al. 1995) with the filter centered on 195 Å and comprising 150 degrees in all studied spectral wavelengths (Warmuth et al. the Fe XII emission line. Thompson et al. (1998) first reported 2004a). A magnetosonic wave should almost always be a full an arch-shaped bright structure traveling across the sun that was circle even if the observed circle is dotted and deformed by the named EIT wave. The morphologies and kinematics of this wave irregular medium in which it is propagating, as presented in the made the author suggest that it was very likely the Moreton simulations (Wu et al. 2001, 2005; Wang et al. 2000). Moreover wave. Thomspon et al. (1999) showed that the EIT and Moreton Delannée (2000) showed in four cases that some parts of the waves are quite cospatial when the two waves are observed in a bright front of EIT waves can remain at the same location for 1 h, same event. which does not seem in accordance with a propagating wave. Finally, X-ray waves were reported recently by Warmuth Delannée & Aulanier (1999) and Cliver et al. (2005) showed et al. (2005). X-ray waves also seem to originate from a flare, and that nearly 100% of EIT waves are related to a CME. On the are rather cospatial with EIT and Moreton waves. The fact that contrary, only 6% of flares are related to an EIT wave (Delannée so many coronal and chromospheric waves are cospatial leads & Aulanier 1999), 1% of B-class flares are related to EIT waves the authors to conclude that they are part of the same “decelerat- (Cliver et al. 2005). Recently Chen (2006) claimed that none of ing disturbance”. 14 non-CME associated energetic flares are related to an EIT All the waves reported in the articles mentioned above are wave. Moreover the EIT waves are systematically associated in each related to a flare, and seem to originate from them. So, precise configuration with dimmed regions of the solar surface in the waves are interpreted as a magnetosonic wave initiated in 195 Å (Delannée 2000). Harra & Sterling (2001) showed that the a pressure pulse associated with the flare. Uchida (1968), Wu dimmings occurring during a CME are due to density decrease et al. (2001, 2005), and Wang et al. (2000) performed numerical and matter ejection. So, the EIT waves seem more related to simulations of magnetosonic waves initiated by a pressure pulse CMEs than to flares. Therefore, EIT waves cannot be blast waves Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20065845 604 C. Delannée et al.: Stationary EIT and Moreton wave driven by a pressure pulse (Warmuth 2006). The Moreton waves Since the physical nature of EIT waves is still strongly de- are observed in red shift followed by blue shift in the wings of bated, the objective of this paper was to test the relative strengths the Hα line (Warmuth et al. 2004b). The blue shift has a long and weaknesses of each interpretation through the revisiting of a lifetime so that it seems more related to matter ejection than to well documented event, already analyzed by several groups. We the oscillation of the matter in the wave. Thus, the Moreton wave thus chose an event that occurred on May 2, 1998 and that com- is also closely associated with a CME. Since CMEs are strong prised a X1 flare, an EIT wave, a Moreton wave, radio sources, drivers of space weather and since EIT waves appear to be an and a halo CME. To our knowledge, 6 articles have already been observational signature of their early development in the corona, published analyzing the relations of the different structures ap- understanding their physical properties has strong implications pearing during the event. Their results are summarized in Sect. 2. in terms of space weather predictions. In the present study we re-analyze the same data, but using so- called “derotated base difference images” (DBDI). In these im- CMEs are believed to result from the fast expansion of previ- ages, we then took special care to identify and study stationary ously stressed magnetic fields, driven by ideal or resistive MHD brightenings that appear along the path of the EIT and Moreton instabilities (see, e.g., the models of Amari et al. 1996; and waves. We overlaid the DBDI images on coronal field lines in- Antiochos et al. 1999). When CMEs are launched, their expan- tegrated from a potential field extrapolation. We found that the sion velocities quickly reach a significant fraction of the Alfvén stationary brightenings are located in a region of drastic jumps speed. So CMEs lead to strong magnetic perturbations in the in the magnetic field lines connectivity. This study first leads us corona. The latter must naturally result in large-amplitude fast- to address the following question: observationally, are the sta- mode magnetosonic waves. While they propagate, such strong tionary parts of the front of EIT waves a rare and peculiar class MHD waves can produce significant mass flows and pressure among all EIT wave related events (as advocated by Warmuth variations. These processes are clearly presented in 2.5D MHD et al. 2004a) or are they generic and typical, so that the EIT calculations where the magnetic perturbation that is applied is waves really moving, that are detected with the EIT time cadence modeled in the form of strong field line shearing motions (Wu of image, are rather exceptional instead? We argue for the latter et al. 1983). In the same context of CME related waves, Warmuth case. In this context, we suggest that the succession of station- (2006) suggested a second possible process: EIT waves could be ary brightenings must result from the formation and dissipation piston-driven waves as well as the CME shock fronts observed of current sheets, progressively generated in large-scale quasi- ahead of the CME as type II emission in radio wavelengths. In separatrix layers, as the magnetic flux expands above the flare such cases, the expanding magnetic field would compress the site and pushes up the overlaying transequatorial field lines. plasma in the legs of the CME producing the bright EIT wave front. Based on the morphological properties of these waves ob- served in EUV in the low corona, Delannée & Aulanier (1999) 2. Summary of past studies also conjectured that EIT waves could be due to the opening of magnetic field lines. However, it was shown that the EIT wave Among the six papers that studied the May 2, 1998 event, five brightenings were stationary, and co-spatial with the footpoints analyzed the observed waves. They all interpreted them as mag- of a separatrix surface, which is by definition a discontinuity in netosonic waves. The sixth paper addressed the issue of the the field line connectivity. This first led to conjecture that the large-scale dimmings developing in the corona during the whole fast expansion of magnetic field lines, which should naturally event.
Recommended publications
  • Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
    Space Sci Rev (2018) 214:45 https://doi.org/10.1007/s11214-018-0478-5 Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares J.A. McLaughlin1 · V. M . N a k a r i a ko v 2,3,4 · M. Dominique5 · P. Jelínek6 · S. Takasao7 Received: 19 May 2017 / Accepted: 24 January 2018 / Published online: 6 February 2018 © The Author(s) 2018. This article is published with open access at Springerlink.com Abstract Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsa- tions (QPPs), to emphasise that they often contain apparent amplitude and period modu- lation. We review the current understanding of quasi-periodic pulsations in solar and stel- lar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physi- cal mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory recon- nection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow B J.A. McLaughlin [email protected] V.M. Nakariakov [email protected] M. Dominique [email protected] P. Jelínek [email protected] S. Takasao [email protected] 1 Northumbria University, Newcastle upon Tyne, NE1 8ST, UK 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK 3 School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea 4 St.
    [Show full text]
  • Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data
    Solar Phys (2020) 295:124 https://doi.org/10.1007/s11207-020-01686-0 Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data Federica Frassati1 · Salvatore Mancuso1 · Alessandro Bemporad1 Received: 9 March 2020 / Accepted: 6 August 2020 / Published online: 8 September 2020 © The Author(s) 2020 Abstract In this work, we analyze the evolution of an EUV wave front associated with a solar eruption that occurred on 30 October 2014, with the aim of investigating, through differential emission measure (DEM) analysis, the physical properties of the plasma com- pressed and heated by the accompanying shock wave. The EUV wave was observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and was accompanied by the detection of a metric Type II burst observed by ground-based radio spectrographs. The EUV signature of the shock wave was also detected in two of the AIA channels centered at 193 Å and 211 Å as an EUV intensity enhancement propagating ahead of the associated CME. The density compression ratio X of the shock as inferred from the analysis of the EUV data is X ≈ 1.23, in agreement with independent estimates obtained from the analysis of the Type II band-splitting of the radio data and inferred by adopting the upstream–downstream interpretation. By applying the Rankine–Hugoniot jump conditions under the hypothesis of a perpendicular shock, we also estimate the temperature ratio as TD/TU ≈ 1.55 and the post-shock temperature as TD ≈ 2.75 MK. The modest compression ratio and temperature jump derived from the EUV analysis at the shock passage are typical of weak coronal shocks.
    [Show full text]
  • Comprehensive Characterization of Solar Eruptions with Remote and In-Situ Observations, and Modeling: the Major Solar Events on 4 November 2015
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Comprehensive Characterization of Solar Eruptions With Remote and In-Situ Observations, and Modeling: The Major Solar Events on 4 November 2015 Iver H. Cairns?1 · Kamen A. Kozarev2 · Nariaki V. Nitta3 · Neus Agueda4 · Markus Battarbee5,6 · Eoin P. Carley7 · Nina Dresing8 · Ra´ulG´omez-Herrero9 · Karl-Ludwig Klein10 · David Lario11,12 · Jens Pomoell13 · Carolina Salas-Matamoros10,14 · Astrid M. Veronig15 · Bo Li1 · Patrick McCauley1 B Iver H. Cairns? [email protected],+61 2 9351 3961 Kamen A. Kozarev [email protected] Nariaki V. Nitta [email protected] Neus Agueda [email protected] Markus Battarbee [email protected] Eoin P. Carley [email protected] Nina Dresing [email protected] Ra´ulG´omez-Herrero [email protected] Karl-Ludwig Klein [email protected] David Lario [email protected] Jens Pomoell jens.pomoell@helsinki.fi Carolina Salas-Matamoros [email protected] Astrid M. Veronig arXiv:1910.03319v1 [astro-ph.SR] 8 Oct 2019 [email protected] Bo Li [email protected] SOLA: overview_51_8Oct19.tex; 9 October 2019; 0:35; p. 1 ISSI team: I.H. Cairns et al. c Springer •••• Abstract Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X- ray bursts. These phenomena are major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields.
    [Show full text]
  • A Small-Scale Filament Eruption Inducing Moreton Wave, Euv Wave and Coronal Mass Ejection
    Draft version April 17, 2020 Preprint typeset using LATEX style AASTeX6 v. 1.0 A SMALL-SCALE FILAMENT ERUPTION INDUCING MORETON WAVE, EUV WAVE AND CORONAL MASS EJECTION Jincheng Wang1,2,3, Xiaoli Yan1,2, Defang Kong1,2, Zhike Xue1,2, Liheng Yang1,2, Qiaoling Li1,4 1Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, People.s Republic of China. 2Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, People.s Republic of China 3CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012, China 4University of Chinese Academy of Sciences, Yuquan Road, Shijingshan Block Beijing 100049, People.s Republic of China ABSTRACT With the launch of SDO, many EUV waves were observed during solar eruptions. However, the joint observations of Moreton and EUV waves are still relatively rare. We present an event that a small-scale filament eruption simultaneously results in a Moreton wave, an EUV wave and a Coronal Mass Ejection in active region NOAA 12740. Firstly, we find that some dark elongate lanes or fila- mentary structures in the photosphere existed under the small-scale filament and drifted downward, which manifests that the small-scale filament was emerging and lifting from subsurface. Secondly, combining the simultaneous observations in different Extreme UltraViolet (EUV) and Hα passbands, we study the kinematic characteristics of the Moreton and EUV waves. The comparable propagat- ing velocities and the similar morphology of Moreton and different passbands EUV wavefronts were obtained. We deduce that Moreton and different passbands EUV waves were the perturbations in dif- ferent temperature-associated layers induced by the coronal magneto-hydrodynamic shock wave.
    [Show full text]
  • Solar Activity and Its Evolution Across the Corona: Recent Advances
    J. Space Weather Space Clim. 3 (2013) A18 DOI: 10.1051/swsc/2013039 Ó F. Zuccarello et al., Published by EDP Sciences 2013 RESEARCH ARTICLE OPEN ACCESS Solar activity and its evolution across the corona: recent advances Francesca Zuccarello1,*, Laura Balmaceda2, Gael Cessateur3, Hebe Cremades4, Salvatore L. Guglielmino5, Jean Lilensten6, Thierry Dudok de Wit7, Matthieu Kretzschmar7, Fernando M. Lopez2, Marilena Mierla8,9,10, Susanna Parenti8, Jens Pomoell11, Paolo Romano5, Luciano Rodriguez8, Nandita Srivastava12, Rami Vainio11, Matt West8, and Francesco P. Zuccarello13 1 Dipartimento di Fisica e Astronomia, Sez. Astrofisica, Universita` di Catania, Via S. Sofia 78, 95123 Catania, Italy *Corresponding author: [email protected] 2 Instituto de Ciencias Astrono´micas, de la Tierra y el Espacio, ICATE-CONICET, Av. Espan˜a Sur 1512, J5402DSP, San Juan, Argentina 3 Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland 4 Universidad Tecnolo´gica Nacional – Facultad Regional Mendoza/CONICET, Rodrı´guez 273, M5502AJE, Mendoza, Argentina 5 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123, Catania, Italy 6 UJF-Grenoble 1/CNRS-INSU, Institut de Plane´tologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France 7 LPC2E/CNRS (UMR 7328) and University of Orle´ans, 3A avenue de la Recherche Scientifique, 45071 Orle´ans Cedex 2, France 8 Solar – Terrestrial Center of Excellence – SIDC, Royal Observatory of Belgium, Av. Circulaire 3, 1180 Brussels, Belgium 9 Institute of Geodynamics
    [Show full text]
  • Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event V.V. Grechnev1 · A.M. Uralov1 · V.A. Slemzin2 · I.M. Chertok3 · I.V. Kuzmenko4 · K. Shibasaki5 Received ; accepted c Springer •••• Abstract We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are absorption phenomena observed in the SOHO/EIT 304 A˚ channel; they were also visible in the EIT 195 A˚ channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multi-spectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of the coronal blast shock. The CME did not resemble a classical three-component structure, probably, because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ∼ 3 · 1015 g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 A.˚ By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures.
    [Show full text]
  • A Unified View of Solar Flares and Coronal Mass Ejections
    2001.6.18 at Longmont, Colorado A Unified View of Solar Flares and Coronal Mass Ejections K. Shibata Kyoto University, Kwasan Observatory Contents 1. Introduction 2. Recent Space Observations of Solar Flares and Coronal Mass Ejections - Yohkoh, SOHO, TRACE increasing evidence of magnetic reconnection and plasmoid ejections 3. A Unified Model of Solar Flares/CMEs - plasmoid-induced-reconnection model - Numerical Simulations 4. Summary and Remaining Questions 1. Introduction Solar flares H alpha discovered by Carrington and Hodgson (~1860) Energy source = Magnetic energy Size ~109 –1010 cm Total energy 1029 –1032 erg Hα (Kyoto/Hida) Electro- magnetic waves emitted from solar flares (Svestka 1976) Solar flares are often associated with prominence eruptions (1945年6月28日、HAO) Reconnection model (CSHKP model=Carmichael 1964, Sturrock 1966, Hirayama 1974, Kopp-Pneuman 1976) Basic puzzles of solar flares before Yohkoh (1991) • Reconnection theory has not yet been established • Many authorities doubted reconnection model (e.g., Alfven, Akasofu, Uchida, Melrose, ….) current disruption vs reconnection • There are many flares which are NOT associated with prominence eruptions • There was no direct observational evidence of reconnection in flares Coronal Mass Ejections (CMEs) • discovered in 1970s with space coronagraph • cause geomagnetic storm • many CMEs are not associated with flares, but with filament eruptions Basic questions about coronal mass ejections (CMEs) • Are CMEs more important than flares ? (Gosling 1993) • What is the relation between CMEs and flares ? Are CMEs different from flares ? • Is reconnection important in CMEs ? 2. Recent Space Observations of Solar Flares and CMEs • Yohkoh (陽光) Aug. 30, 1991 ー present • Japan-US-UK collaboration • soft X-ray telescope (SXT~1keV) hard X-ray telescope (HXT~10-100keV) Solar corona observed with soft X-ray telescope (SXT) aboard Yohkoh Soft X-ray (~1 keV) 2MK-20MK Note numerous microflares 2D view of reconnection (CSHKP) model ⇒should be observed in Soft-Xrays LDE (long duration event) flare (SXT, ~1keV、 Tsuneta et al.
    [Show full text]
  • Solar Type II Radio Bursts Associated with CME Expansions As Shown by EUV Waves
    A&A 578, A38 (2015) Astronomy DOI: 10.1051/0004-6361/201425388 & c ESO 2015 Astrophysics Solar type II radio bursts associated with CME expansions as shown by EUV waves R. D. Cunha-Silva, F. C. R. Fernandes, and C. L. Selhorst IP&D – Universidade do Vale do Paraíba – UNIVAP, Av. Shishima Hifumi, 2911 Urbanova, São José dos Campos, SP, Brazil e-mail: [email protected] Received 21 November 2014 / Accepted 9 April 2015 ABSTRACT Aims. We investigate the physical conditions of the sources of two metric type II bursts associated with coronal mass ejection (CME) expansions with the aim of verifying the relationship between the shocks and the CMEs by comparing the heights of the radio sources and of the extreme-ultraviolet (EUV) waves associated with the CMEs. Methods. The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the type II emissions and compared with the heights of the EUV waves. For the event on 13 June 2010 that included band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower frequency branches of the harmonic lane, taking into account the H/F frequency ratio fH/ fF = 2. Exponential fits on the intensity maxima of the frequency branches were more consistent with the morphology of the spectrum of this event. For the event on 6 June 2012 that did not include band-splitting and showed a clear fundamental lane on the spectrum, the shock speed was directly estimated from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane.
    [Show full text]
  • Moreton Waves Related to the Solar Eruption
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 057 ∼ 058, 2015 September eISSN: 2287-6936 ⃝c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.057 MORETON WAVES RELATED TO THE SOLAR ERUPTION OCCURRED ON 3 JUNE 2012 AND 6 JULY 2012 Agustinus Gunawan admiranto1 & Rhorom Priyatikanto1,2 1National Institute of Aeronautics and Space, Indonesia 2Astronomy Program, Institut Teknologi Bandung, Indonesia E-mail: gun [email protected] & [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT In this study, we present geometrical and kinematical analysis of Moreton wave observed in 2012 June 3rd and July 6th, recorded in H-α images of Global Oscillation Network Group (GONG) archive. These large-scale waves exhibit different features compared to each other. The observed wave of June 3rd has angular span of about 70◦ with a diffuse wave front associated to NOAA active region 11496. It was found that the propagating speed of the wave at 17:53 UT is about 931 80 km/s. The broadness nature of this Moreton wave can be interpreted as the vertical extension of the wave over the chromosphere. On the other hand, the wave of July 6th associated with X1.1 class flare that occurred at 23:01 UT in AR NOAA11515. From the kinematical analysis, the wave propagated with the initial velocity of about 994 70 km/s which is in agreement with the speed of coronal shock derived from type II radio burst, v ∼ 1100 km/s.
    [Show full text]
  • The Sun and Heliosphere in Three Dimensions
    The Sun and Heliosphere In Three Dimensions Report of the NASA Science Definition Team for the STEREO Mission Table of Contents Executive Summary ........................................................................................................... 1 1. Introduction ..................................................................................................................3 2. Scientific Objectives ..................................................................................................... 4 Coronal Mass Ejections ....................................................................................................................... 4 CME Onset ..................................................................................................................................... 4 CME Geometry and Onset Signatures............................................................................................ 5 Reconnection .................................................................................................................................. 6 Surface Evolution ........................................................................................................................... 6 The Heliosphere Between the Sun and Earth ...................................................................................... 7 CMEs in the Heliosphere ..................................................................................................................... 9 Tracking Disturbances from the Sun to Earth ..................................................................................
    [Show full text]
  • Magnetohydrodynamic Oscillations in the Solar Corona and Earth’S Magnetosphere: Towards Consolidated Understanding
    Noname manuscript No. (will be inserted by the editor) Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding V. M. Nakariakov · V. Pilipenko · B. Heilig · P. Jel´ınek · M. Karlick´y · D.Y. Klimushkin · D.Y. Kolotkov · D.-H. Lee · G. Nistic`o · T. Van Doorsselaere · G. Verth · I.V. Zimovets Received: date / Accepted: date V. M. Nakariakov Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK, School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea, Central Astronomical Observatory at Pulkovo, St Petersburg 196140, Russia, E-mail: [email protected] V.A. Pilipenko Space Research Institute, Moscow 117997, Russia B. Heilig Tihany Geophysical Observatory, Geological and Geophysical Institute of Hungary, Tihany, Hungary P. Jel´ınek Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, CZ - 370 05 Cesk´eBudˇejovice,ˇ Czech Republic M. Karlick´y Astronomical Institute of the Academy of Sciences of the Czech Republic, 25165, Ondˇrejov, Czech Republic D.Y. Klimushkin Institute of Solar-Terrestrial Physics, Lermontov St. 126A, Irkutsk 664033, Russia D.Y. Kolotkov Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK, D.-H. Lee School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea G. Nistic`o Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK T. Van Doorsselaere Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B- 3001 Leuven, Belgium G. Verth Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Sheffield S3 7RH, UK I.V.
    [Show full text]
  • Seismology of the Corona of The
    Coronal seismology n Sunday 1 November 1755 a strong earthquake accompanied by a tsunami Odevastated the city of Lisbon and left 70 000 inhabitants dead. This dramatic event Seismology of the triggered a new approach in understanding the forces of the Earth: seismology. In more general terms, seismology is the remote diagnostics of media by means of waves. Seismology has corona of the Sun become a well-developed technique in various applications; as well as seismology of the Earth’s interior, there are ultrasound scans of V M Nakariakov and E Verwichte put seismology to work in the study the human body and marine acoustics (sonars), of the solar corona, the hot atmosphere of the Sun. and a less familiar but important application in laboratory plasma spectroscopy. The first Abstract implementation of this technique in solar flare epicentre physics – helioseismology – is connected with Seismology now includes study of the kink oscillations solar surface oscillations, discovered by Robert Sun’s corona, a promising research target loop Leighton in the early 1960s. These oscillations both in its own right and for its role in were interpreted in terms of acoustic-gravita- the relationship between the Sun and the tional waves and now provide unique informa- Earth and its links to the solar magnetic tion about the solar interior, its structure and blast wave footpoint field. In addition, the corona, as a natural (fast magnetoacoustic) differential rotation – and even about the far plasma, is itself an objective for footpoint side of the Sun (see discussion by Thompson, fundamental physics. Observations using this issue p4.21–4.25).
    [Show full text]