Seismology of the Corona of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Space Sci Rev (2018) 214:45 https://doi.org/10.1007/s11214-018-0478-5 Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares J.A. McLaughlin1 · V. M . N a k a r i a ko v 2,3,4 · M. Dominique5 · P. Jelínek6 · S. Takasao7 Received: 19 May 2017 / Accepted: 24 January 2018 / Published online: 6 February 2018 © The Author(s) 2018. This article is published with open access at Springerlink.com Abstract Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsa- tions (QPPs), to emphasise that they often contain apparent amplitude and period modu- lation. We review the current understanding of quasi-periodic pulsations in solar and stel- lar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physi- cal mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory recon- nection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow B J.A. McLaughlin [email protected] V.M. Nakariakov [email protected] M. Dominique [email protected] P. Jelínek [email protected] S. Takasao [email protected] 1 Northumbria University, Newcastle upon Tyne, NE1 8ST, UK 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK 3 School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea 4 St. -
Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data
Solar Phys (2020) 295:124 https://doi.org/10.1007/s11207-020-01686-0 Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data Federica Frassati1 · Salvatore Mancuso1 · Alessandro Bemporad1 Received: 9 March 2020 / Accepted: 6 August 2020 / Published online: 8 September 2020 © The Author(s) 2020 Abstract In this work, we analyze the evolution of an EUV wave front associated with a solar eruption that occurred on 30 October 2014, with the aim of investigating, through differential emission measure (DEM) analysis, the physical properties of the plasma com- pressed and heated by the accompanying shock wave. The EUV wave was observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and was accompanied by the detection of a metric Type II burst observed by ground-based radio spectrographs. The EUV signature of the shock wave was also detected in two of the AIA channels centered at 193 Å and 211 Å as an EUV intensity enhancement propagating ahead of the associated CME. The density compression ratio X of the shock as inferred from the analysis of the EUV data is X ≈ 1.23, in agreement with independent estimates obtained from the analysis of the Type II band-splitting of the radio data and inferred by adopting the upstream–downstream interpretation. By applying the Rankine–Hugoniot jump conditions under the hypothesis of a perpendicular shock, we also estimate the temperature ratio as TD/TU ≈ 1.55 and the post-shock temperature as TD ≈ 2.75 MK. The modest compression ratio and temperature jump derived from the EUV analysis at the shock passage are typical of weak coronal shocks. -
Comprehensive Characterization of Solar Eruptions with Remote and In-Situ Observations, and Modeling: the Major Solar Events on 4 November 2015
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Comprehensive Characterization of Solar Eruptions With Remote and In-Situ Observations, and Modeling: The Major Solar Events on 4 November 2015 Iver H. Cairns?1 · Kamen A. Kozarev2 · Nariaki V. Nitta3 · Neus Agueda4 · Markus Battarbee5,6 · Eoin P. Carley7 · Nina Dresing8 · Ra´ulG´omez-Herrero9 · Karl-Ludwig Klein10 · David Lario11,12 · Jens Pomoell13 · Carolina Salas-Matamoros10,14 · Astrid M. Veronig15 · Bo Li1 · Patrick McCauley1 B Iver H. Cairns? [email protected],+61 2 9351 3961 Kamen A. Kozarev [email protected] Nariaki V. Nitta [email protected] Neus Agueda [email protected] Markus Battarbee [email protected] Eoin P. Carley [email protected] Nina Dresing [email protected] Ra´ulG´omez-Herrero [email protected] Karl-Ludwig Klein [email protected] David Lario [email protected] Jens Pomoell jens.pomoell@helsinki.fi Carolina Salas-Matamoros [email protected] Astrid M. Veronig arXiv:1910.03319v1 [astro-ph.SR] 8 Oct 2019 [email protected] Bo Li [email protected] SOLA: overview_51_8Oct19.tex; 9 October 2019; 0:35; p. 1 ISSI team: I.H. Cairns et al. c Springer •••• Abstract Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X- ray bursts. These phenomena are major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields. -
1 Introduction
1 1 Introduction Uchida [1], who suggested the idea of plasma and magnetic field diagnostics in the solar corona on the basis of waves and oscillations in 1970, and Rosenberg [2], who first explained the pulsations in type IV solar radio bursts in terms of the loop magnetohydrodynamic (MHD) oscillations, can be considered to be pioneers of coronal seismology. Various approaches have been used to describe physical processes in stellar coronal structures: kinetic, MHD, and electric circuit models are among them. Two main models are presently very popular in coronal seismology. The first considers magnetic flux tubes and loops as wave guides and resonators for MHD waves and oscillations, whereas the second describes a loop in terms of an equivalent electric (RLC) circuit. Several detailed reviews are devoted to problems of coronal seismology (see, i.e., [3–7]). Recent achievements in the solar coronal seismology are also referred in Space Sci. Rev. vol. 149, No. 1–4 (2009). Nevertheless, some important issues related to diagnostics of physical processes and plasma parameters in solar and stellar flares are still insufficiently presented in the literature. The main goal of the book is the successive description and analysis of the main achievements and problems of coronal seismology. There is much in common between flares on the Sun and on late-type stars, especially red dwarfs [8]. Indeed, the timescales, the Neupert effect, the fine structure of the optical, radio, and X-ray emission, and the pulsations are similar for both solar and stellar flares. Studies of many hundreds of stellar flares have indicated that the latter display a power–law radiation energy distribution, similar to that found for solar flares. -
“Oscillatory Processes in Solar and Stellar Coronae”
www.issibj.ac.cn ISSI-BJ WORKSHOP “OSCILLATORY PROCESSES IN SOLAR AND STELLAR CORONAE” Topics I. Sergey Anfinogentov, et al. "Novel techniques in coronal seismology data analysis" II. Valery Nakariakov, et al. "Kink oscillations and waves in the corona" III. Tongjiang Wang, et al. "Slow waves in coronal loops" IV. Dipankar Banerjee, et al. "MHD waves in open coronal structures" V. Ivan Zimovets, et al. "Quasi-periodic pulsations in solar and stellar flares" VI. Bo Li, et al. "Sausage oscillations and waves in the corona" VII. Tom Van Doorsselaere, et al. "Coronal heating by MHD waves” VIII. Other I. Sergey Anfinogentov, et al. "Novel techniques in coronal seismology data analysis" David Pascoe High-resolution Diagnostic Techniques for the Solar Corona The high spatial and temporal resolution provided by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory has inspired the development of advanced observational techniques to probe the solar atmosphere. For example, forward modelling of the EUV intensity of coronal structures and the seismological analysis of kink oscillations provide powerful diagnostics to constrain properties such as the plasma density and magnetic field strength. We also increasingly employ Bayesian analysis and Markov chain Monte Carlo sampling in our analysis to increase the robustness and accuracy of our modelling. These techniques are now also being applied to study quasi-periodic pulsations associated with solar and stellar flares. [email protected] www.issibj.ac.cn Inigo Arregui Recent results in Bayesian coronal and prominence seismology We report on recent results from the application of Bayesian analysis techniques to seismology of coronal loops and prominence fine structures. -
A Small-Scale Filament Eruption Inducing Moreton Wave, Euv Wave and Coronal Mass Ejection
Draft version April 17, 2020 Preprint typeset using LATEX style AASTeX6 v. 1.0 A SMALL-SCALE FILAMENT ERUPTION INDUCING MORETON WAVE, EUV WAVE AND CORONAL MASS EJECTION Jincheng Wang1,2,3, Xiaoli Yan1,2, Defang Kong1,2, Zhike Xue1,2, Liheng Yang1,2, Qiaoling Li1,4 1Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, People.s Republic of China. 2Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, People.s Republic of China 3CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012, China 4University of Chinese Academy of Sciences, Yuquan Road, Shijingshan Block Beijing 100049, People.s Republic of China ABSTRACT With the launch of SDO, many EUV waves were observed during solar eruptions. However, the joint observations of Moreton and EUV waves are still relatively rare. We present an event that a small-scale filament eruption simultaneously results in a Moreton wave, an EUV wave and a Coronal Mass Ejection in active region NOAA 12740. Firstly, we find that some dark elongate lanes or fila- mentary structures in the photosphere existed under the small-scale filament and drifted downward, which manifests that the small-scale filament was emerging and lifting from subsurface. Secondly, combining the simultaneous observations in different Extreme UltraViolet (EUV) and Hα passbands, we study the kinematic characteristics of the Moreton and EUV waves. The comparable propagat- ing velocities and the similar morphology of Moreton and different passbands EUV wavefronts were obtained. We deduce that Moreton and different passbands EUV waves were the perturbations in dif- ferent temperature-associated layers induced by the coronal magneto-hydrodynamic shock wave. -
Solar Activity and Its Evolution Across the Corona: Recent Advances
J. Space Weather Space Clim. 3 (2013) A18 DOI: 10.1051/swsc/2013039 Ó F. Zuccarello et al., Published by EDP Sciences 2013 RESEARCH ARTICLE OPEN ACCESS Solar activity and its evolution across the corona: recent advances Francesca Zuccarello1,*, Laura Balmaceda2, Gael Cessateur3, Hebe Cremades4, Salvatore L. Guglielmino5, Jean Lilensten6, Thierry Dudok de Wit7, Matthieu Kretzschmar7, Fernando M. Lopez2, Marilena Mierla8,9,10, Susanna Parenti8, Jens Pomoell11, Paolo Romano5, Luciano Rodriguez8, Nandita Srivastava12, Rami Vainio11, Matt West8, and Francesco P. Zuccarello13 1 Dipartimento di Fisica e Astronomia, Sez. Astrofisica, Universita` di Catania, Via S. Sofia 78, 95123 Catania, Italy *Corresponding author: [email protected] 2 Instituto de Ciencias Astrono´micas, de la Tierra y el Espacio, ICATE-CONICET, Av. Espan˜a Sur 1512, J5402DSP, San Juan, Argentina 3 Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland 4 Universidad Tecnolo´gica Nacional – Facultad Regional Mendoza/CONICET, Rodrı´guez 273, M5502AJE, Mendoza, Argentina 5 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123, Catania, Italy 6 UJF-Grenoble 1/CNRS-INSU, Institut de Plane´tologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France 7 LPC2E/CNRS (UMR 7328) and University of Orle´ans, 3A avenue de la Recherche Scientifique, 45071 Orle´ans Cedex 2, France 8 Solar – Terrestrial Center of Excellence – SIDC, Royal Observatory of Belgium, Av. Circulaire 3, 1180 Brussels, Belgium 9 Institute of Geodynamics -
Temporal Evolution of Mhd Waves in Solar Coronal Arcades
DOCTORAL THESIS 2019 TEMPORAL EVOLUTION OF MHD WAVES IN SOLAR CORONAL ARCADES Samuel Rial Lesaga palabra DOCTORAL THESIS 2019 Doctoral Programe of Physics TEMPORAL EVOLUTION OF MHD WAVES IN SOLAR CORONAL ARCADES. Samuel Rial Lesaga Thesis supervisor: I~nigoArregui Uribe-Echevarria Thesis supervisor: Ram´onOliver Herrero Thesis Tutor: Alicia Sintes Olives Doctor by the university of the Balearic islands Supervisor letter Supervisor letter v Supervisor letter Supervisor letter Dr. I˜nigo Arregui Uribe-Echebarria of the Instituto de Astrof´ısica de Canarias. DECLARE: That the thesis entitled “Temporal evolution of magnetohydrodynamic waves in solar coronal arcades”, presented by Samuel Rial Lesaga to obtain the PhD degree, has been completed under my supervision. For all intents and purposes, I hereby sign this document. Signature Firmado por ARREGUI URIBE- ECHEVARRIA IÑIGO - 15392542E el día 20/05/2019 con un certificado emitido por AC FNMT Usuarios Dr. I˜nigo Arregui Uribe-Echebarria La Laguna, 17 May 2019 vi Acknowledgments En primer lugar me gustar´ıaagradecer al Dr. Ramon Oliver la amistad, la con- fianza y el apoyo incondicional que me siempre me ha ofrecido. El siempre ha sabido animarme y motivarme en los m´ultiplesmomentos dif´ıcilesque ha tenido esta tesis y estoy plenamente convencido de que si no hubiera sido por ´elesta tesis no existir´ıa. Gracias Al Dr. I~nigoArregui por su paciencia y su confianza en mi trabajo y en mi. Gracias motivarme cuando no lo estaba y por hacerme ver que este esfuerzo merece la pena. Al Dr. Jos´eLuis Ballester y a todo el grupo de personas que forman o han formado parte el grupo de f´ısicasolar de la Universitat de les Illes Balears y con los que he compartido alg´uncongreso, desayuno o cena. -
Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event V.V. Grechnev1 · A.M. Uralov1 · V.A. Slemzin2 · I.M. Chertok3 · I.V. Kuzmenko4 · K. Shibasaki5 Received ; accepted c Springer •••• Abstract We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are absorption phenomena observed in the SOHO/EIT 304 A˚ channel; they were also visible in the EIT 195 A˚ channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multi-spectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of the coronal blast shock. The CME did not resemble a classical three-component structure, probably, because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ∼ 3 · 1015 g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 A.˚ By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures. -
Coronal Seismology Through Wavelet Analysis
A&A 381, 311–323 (2002) Astronomy DOI: 10.1051/0004-6361:20011659 & c ESO 2002 Astrophysics Coronal seismology through wavelet analysis I. De Moortel1,A.W.Hood1, and J. Ireland2 1 School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK 2 Osservatorio Astronomica de Capodimonte, via Moiariello 16, 80131 Napoli, Italy Received 10 September 2001 / Accepted 18 October 2001 Abstract. This paper expands on the suggestion of De Moortel & Hood (2000) that it will be possible to infer coronal plasma properties by making a detailed study of the wavelet transform of observed oscillations. TRACE observations, taken on 14 July 1998, of a flare-excited, decaying coronal loop oscillation are used to illustrate the possible applications of wavelet analysis. It is found that a decay exponent n ≈ 2 gives the best fit to the 2 double logarithm of the wavelet power, thus suggesting an e−εt damping profile for the observed oscillation. Additional examples of transversal loop oscillations, observed by TRACE on 25 October 1999 and 21 March 2001, n are analysed and a damping profile of the form e−εt ,withn ≈ 0.5andn ≈ 3 respectively, is suggested. It is n demonstrated that an e−εt damping profile of a decaying oscillation survives the wavelet transform, and that the value of both the decay coefficient ε and the exponent n can be extracted by taking a double logarithm of the normalised wavelet power at a given scale. By calculating the wavelet power analytically, it is shown that a sufficient number of oscillations have to be present in the analysed time series to be able to extract the period of the time series and to determine correct values for both the damping coefficient and the decay exponent from the wavelet transform. -
Coronal Magnetic Field Measurement Using Loop Oscillations Observed by Hinode/EIS
A&A 487, L17–L20 (2008) Astronomy DOI: 10.1051/0004-6361:200810186 & c ESO 2008 Astrophysics Letter to the Editor Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS T. Van Doorsselaere1,V.M.Nakariakov1, P. R. Young2, and E. Verwichte1 1 Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL, UK e-mail: [t.van-doorsselaere;v.nakariakov;erwin.verwichte]@warwick.ac.uk 2 STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK e-mail: [email protected] Received 13 May 2008 / Accepted 12 June 2008 ABSTRACT We report the first spectroscopic detection of a kink MHD oscillation of a solar coronal structure by the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode satellite. The detected oscillation has an amplitude of 1 km s−1 in the Doppler shift of the FeXII 195 Å spectral line (1.3 MK), and a period of 296 s. The unique combination of EIS’s spectroscopic and imaging abilities enables us to measure simultaneously the mass density and length of the oscillating loop. This enables us to measure directly the magnitude of the local magnetic field, the fundamental coronal plasma parameter, as 39 ± 8 G, with unprecedented accuracy. This proof of concept makes EIS an exclusive instrument for the full scale implementation of the MHD coronal seismological technique. Key words. instrumentation: spectrographs – Sun: corona – Sun: oscillations – Sun: magnetic fields 1. Introduction oscillating structure. In the case of standing waves, the phase speed can be estimated by the period of the observed oscilla- Coronal seismology utilises observed waves and oscillations in tions and the wavelength given by the size of the resonator. -
A Unified View of Solar Flares and Coronal Mass Ejections
2001.6.18 at Longmont, Colorado A Unified View of Solar Flares and Coronal Mass Ejections K. Shibata Kyoto University, Kwasan Observatory Contents 1. Introduction 2. Recent Space Observations of Solar Flares and Coronal Mass Ejections - Yohkoh, SOHO, TRACE increasing evidence of magnetic reconnection and plasmoid ejections 3. A Unified Model of Solar Flares/CMEs - plasmoid-induced-reconnection model - Numerical Simulations 4. Summary and Remaining Questions 1. Introduction Solar flares H alpha discovered by Carrington and Hodgson (~1860) Energy source = Magnetic energy Size ~109 –1010 cm Total energy 1029 –1032 erg Hα (Kyoto/Hida) Electro- magnetic waves emitted from solar flares (Svestka 1976) Solar flares are often associated with prominence eruptions (1945年6月28日、HAO) Reconnection model (CSHKP model=Carmichael 1964, Sturrock 1966, Hirayama 1974, Kopp-Pneuman 1976) Basic puzzles of solar flares before Yohkoh (1991) • Reconnection theory has not yet been established • Many authorities doubted reconnection model (e.g., Alfven, Akasofu, Uchida, Melrose, ….) current disruption vs reconnection • There are many flares which are NOT associated with prominence eruptions • There was no direct observational evidence of reconnection in flares Coronal Mass Ejections (CMEs) • discovered in 1970s with space coronagraph • cause geomagnetic storm • many CMEs are not associated with flares, but with filament eruptions Basic questions about coronal mass ejections (CMEs) • Are CMEs more important than flares ? (Gosling 1993) • What is the relation between CMEs and flares ? Are CMEs different from flares ? • Is reconnection important in CMEs ? 2. Recent Space Observations of Solar Flares and CMEs • Yohkoh (陽光) Aug. 30, 1991 ー present • Japan-US-UK collaboration • soft X-ray telescope (SXT~1keV) hard X-ray telescope (HXT~10-100keV) Solar corona observed with soft X-ray telescope (SXT) aboard Yohkoh Soft X-ray (~1 keV) 2MK-20MK Note numerous microflares 2D view of reconnection (CSHKP) model ⇒should be observed in Soft-Xrays LDE (long duration event) flare (SXT, ~1keV、 Tsuneta et al.