Temporal Evolution of Mhd Waves in Solar Coronal Arcades

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Evolution of Mhd Waves in Solar Coronal Arcades DOCTORAL THESIS 2019 TEMPORAL EVOLUTION OF MHD WAVES IN SOLAR CORONAL ARCADES Samuel Rial Lesaga palabra DOCTORAL THESIS 2019 Doctoral Programe of Physics TEMPORAL EVOLUTION OF MHD WAVES IN SOLAR CORONAL ARCADES. Samuel Rial Lesaga Thesis supervisor: I~nigoArregui Uribe-Echevarria Thesis supervisor: Ram´onOliver Herrero Thesis Tutor: Alicia Sintes Olives Doctor by the university of the Balearic islands Supervisor letter Supervisor letter v Supervisor letter Supervisor letter Dr. I˜nigo Arregui Uribe-Echebarria of the Instituto de Astrof´ısica de Canarias. DECLARE: That the thesis entitled “Temporal evolution of magnetohydrodynamic waves in solar coronal arcades”, presented by Samuel Rial Lesaga to obtain the PhD degree, has been completed under my supervision. For all intents and purposes, I hereby sign this document. Signature Firmado por ARREGUI URIBE- ECHEVARRIA IÑIGO - 15392542E el día 20/05/2019 con un certificado emitido por AC FNMT Usuarios Dr. I˜nigo Arregui Uribe-Echebarria La Laguna, 17 May 2019 vi Acknowledgments En primer lugar me gustar´ıaagradecer al Dr. Ramon Oliver la amistad, la con- fianza y el apoyo incondicional que me siempre me ha ofrecido. El siempre ha sabido animarme y motivarme en los m´ultiplesmomentos dif´ıcilesque ha tenido esta tesis y estoy plenamente convencido de que si no hubiera sido por ´elesta tesis no existir´ıa. Gracias Al Dr. I~nigoArregui por su paciencia y su confianza en mi trabajo y en mi. Gracias motivarme cuando no lo estaba y por hacerme ver que este esfuerzo merece la pena. Al Dr. Jos´eLuis Ballester y a todo el grupo de personas que forman o han formado parte el grupo de f´ısicasolar de la Universitat de les Illes Balears y con los que he compartido alg´uncongreso, desayuno o cena. Un buen ambiente de trabajo siempre es una gran ayuda a la hora de realizar cualquier trabajo y en este caso ha sido genial. A mis padres, Rub´eny Clarisa, porque siempre me han apoyado durante este pro- ceso que parec´ıano tener fin, por la formaci´ony valores que me han dado y por muchas otras cosas que es imposible enumerar aqu´ı. A mi pareja Diana por apoyarme y estar siempre a mi lado sin importarle el camino que elija por muy extra~noque este sea. Finalmente agradezco al Ministerio de Educaci´ony Ciencia la concesi´onde la beca asociada al proyecto BES-2007-16670 gracias a la cual este trabajo ha sido posible. vii List of publications The format of this thesis is compendium of articles. In the following list appear the published articles from which the present thesis is made. • Rial, S., Arregui, I., Oliver, R. and Terradas, J.: 2019, Determining nor- mal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab, ApJ 876(1), 86, doi: 10.3847/1538-4357/ab1417 • Rial, S., Arregui, I., Terradas, J., Oliver, R. and Ballester, J. L.: 2010, Three- dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades, ApJ 713, 651661, doi:10.1088/0004-637X/713/1/651. • Rial, S., Arregui, I., Terradas, J., Oliver, R. and Ballester, J. L.: 2013, Wave Leakage and Resonant Absorption in a Loop Embedded in a Coronal Arcade, ApJ 763, 16, doi:10.1088/0004-637X/763/1/16. ix Aim of the thesis The aim of this thesis is to go a step further in the theoretical modeling of coro- nal loops. Following that direction, our main goal is to be able to theoretically reproduce part of the observed complexity that these structures display when a sudden release of energy occurs in the solar corona. Since not too much time ago, the theoretical models of these features have been rather simple. In order to have simple solutions, these models use big approximations, such as, straight instead of curved structures, one-dimensional/two-dimensional structures, etc. In order to go beyond that simple models, our aim is to increase the complexity of the theoretical models by adding what we think can be some key ingredients just like the curvature or three-dimensionality. In this work we will adopt the approach of increase the complexity of the model step by step to create a solid base of knowledge that helps us understand the underlying physics. Therefore we will begin with a well known two-dimensional problem and then we will allow perturbations propagate in the third direction as a first step towards three-dimensionality. These are known as 2:5 dimensional models. Afterwards, we will add more ingredients such as a sharp model of coronal loop, different density profiles, curvature, etc. The study of coronal loop oscillations can be done from several points of view but in this thesis we will focus in two of them. The first one is to solve the time- dependent MHD equations by means of a temporal code. In the first two papers Rial et al.(2010) and Rial et al.(2013) we use this approach. The second approach consists in solve the normal modes of the system. The standard method to do so can be in general a difficult task because an specially designed numerical code is needed. For that reason another goal of this thesis is to develop a technique that allow us to find an alternative way to find the normal modes of any system. In Rial et al.(2019) we explain how this technique works as well as its advantages and disadvantages. xi Abstract of the thesis 0.1 Abstract In this thesis we will study vertical oscillations in a potential arcade under the approximation of a zero-β plasma, when different density profiles are considered. On one hand we will focus on the time-dependent problem to analyze the other side of the magnetohydrodynamic oscillations coin which traditionally is given by the normal mode analysis. We are going to study the propagation, energy transformation and damping of the impulsively generated waves as well as its relevant spatial and temporal scales in order to complete the picture. In order to study the wave damping, we examine two physical mechanisms that may be involved in the fast attenuation of the observed vertical coronal loop oscillations, namely wave leakage through wave tunneling and resonant absorption. In this wok whenever is possible, the time-dependent results are going to be compared with known normal mode properties to gain knowledge of how both sides are related as well as to test them. On the other hand, we also will investigate the use of a new technique of obtaining the system normal modes when the standard normal mode analysis is difficult to be carried out. We will apply it to a straight coronal loop model and we will obtain them with the desired degree of accuracy thanks to several criteria based on the convergence of the method. 0.2 Resumen En esta tesis estudiaremos las oscilaciones verticales de una arcada potencial en la aproximaci´on β ∼ 0 de un plasma, cuando diferentes perfiles de densidad son considerados. Por un lado nos vamos a centrar en la evoluci´ontemporal de este problema para as´ıanalizar la otra cara de la moneda de las oscilaciones magnetohidrodin´amicas, la cual tradicionalmente se ha estudiado mediante el an´alisisde modos normales. Vamos a estudiar la propagaci´on,la conversi´onenerg´eticay la atenuaci´onde ondas generadas mediante un impulso inicial, as´ıcomo las escalas espaciales y temporales generadas, para de esta manera obtener una imagen lo m´ascompleta posible. Para el estudio de la atenuaci´on, vamos a examinar dos mecanismos f´ısicosque podr´ıan estar involucrados en la r´apida atenuaci´onde la oscilaciones verticales observadas en bucles coronales, que son la emisi´onde energ´ıamediante \wave tunneling" y absorci´onresonante. En este trabajo, siempre que sea posible, se van a comparar los resultados de las simulaciones temporales con las propiedades conocidas que han de poseer los modos normales. Esto nos va a servir como un m´etodo de comprobaci´on de nuestros resultados adem´asde ayudarnos a entender como ambas visiones est´an relacionadas entre si. xiii 0.3. RESUM Abstract of the thesis Por otro lado lado vamos a investigar el uso de una nueva t´ecnicapara obtener los modos normales de un sistema cuando el m´etodo est´andardes dif´ıcilde llevar a cabo. Este m´etodo lo vamos aplicar a un modelo de bucle coronal recto y vamos a obtener los modos normales del sistema con el grado de precisi´onque deseemos mediante el uso de un criterio de convergencia. 0.3 Resum En aquesta tesi estudiarem les oscil·lacions verticals d'una arcada potencial en l'aproximaci´o β ∼ 0 d'un plasma quan diferents perfils de densitat s´onconsiderats. Per un costat ens centrarem en l'evoluci´otemporal d'aquest problema per tal d'analitzar l'altra cara de la moneda de les oscil·lacions magnetohidrodin`amiques, la qual tradicionalment s'ha estudiat mitjan¸cant l’an`aliside modes normals. Es- tudiarem la propagaci´o,la conversi´oenerg`eticai l'atenuaci´ode les ones generades mitjan¸cant un pols inicial, aix´ıcom les escales espacials i temporals generades, per tal de ser capa¸cosd'obtenir una imatge el m´escompleta possible. Per a l'estudi de l'atenuaci´o,examinarem dos mecanismes f´ısicsque podrien estar involucrats en la r`apida atenuaci´ode les oscil·lacions verticals observades en els bucles coronals, que s´onl’emissi´od'energia mitjan¸cant \Wave tunneling" i l’absorci´oressonant. En aquest treball, sempre que sigui possible, compararem els resultats de les nostres simulacions temporals amb les propietats conegudes que han de tenir els modes normals.
Recommended publications
  • Coronal Loops in a Box: 3D Models of Their Internal Structure, Dynamics and Heating
    EGU21-13091 https://doi.org/10.5194/egusphere-egu21-13091 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Coronal loops in a box: 3D models of their internal structure, dynamics and heating Cosima Breu, Hardi Peter, Robert Cameron, Sami Solanki, Pradeep Chitta, and Damien Przybylski Max Planck Institute for Solar System Research, Sun and Heliosphere, Germany ([email protected]) The corona of the Sun, and probably also of other stars, is built up by loops defined through the magnetic field. They vividly appear in solar observations in the extreme UV and X-rays. High- resolution observations show individual strands with diameters down to a few 100 km, and so far it remains open what defines these strands, in particular their width, and where the energy to heat them is generated. The aim of our study is to understand how the magnetic field couples the different layers of the solar atmosphere, how the energy generated by magnetoconvection is transported into the upper atmosphere and dissipated, and how this process determines the scales of observed bright strands in the loop. To this end, we conduct 3D resistive MHD simulations with the MURaM code. We include the effects of heat conduction, radiative transfer and optically thin radiative losses. We study an isolated coronal loop that is rooted with both footpoints in a shallow convection zone layer. To properly resolve the internal structure of the loop while limiting the size of the computational box, the coronal loop is modelled as a straightened magnetic flux tube.
    [Show full text]
  • Multi-Spacecraft Analysis of the Solar Coronal Plasma
    Multi-spacecraft analysis of the solar coronal plasma Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Iulia Ana Maria Chifu aus Bukarest, Rumänien eingereicht am: 11.02.2015 Disputation am: 07.05.2015 1. Referent: Prof. Dr. Sami K. Solanki 2. Referent: Prof. Dr. Karl-Heinz Glassmeier Druckjahr: 2016 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Dissertation an der Technischen Universität Braunschweig, Fakultät für Elektrotechnik, Informationstechnik, Physik ISBN uni-edition GmbH 2016 http://www.uni-edition.de © Iulia Ana Maria Chifu This work is distributed under a Creative Commons Attribution 3.0 License Printed in Germany Vorveröffentlichung der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Elektrotech- nik, Informationstechnik, Physik, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen • Mierla, M., Chifu, I., Inhester, B., Rodriguez, L., Zhukov, A., 2011, Low polarised emission from the core of coronal mass ejections, Astronomy and Astrophysics, 530, L1 • Chifu, I., Inhester, B., Mierla, M., Chifu, V., Wiegelmann, T., 2012, First 4D Recon- struction of an Eruptive Prominence
    [Show full text]
  • 1 Introduction
    1 1 Introduction Uchida [1], who suggested the idea of plasma and magnetic field diagnostics in the solar corona on the basis of waves and oscillations in 1970, and Rosenberg [2], who first explained the pulsations in type IV solar radio bursts in terms of the loop magnetohydrodynamic (MHD) oscillations, can be considered to be pioneers of coronal seismology. Various approaches have been used to describe physical processes in stellar coronal structures: kinetic, MHD, and electric circuit models are among them. Two main models are presently very popular in coronal seismology. The first considers magnetic flux tubes and loops as wave guides and resonators for MHD waves and oscillations, whereas the second describes a loop in terms of an equivalent electric (RLC) circuit. Several detailed reviews are devoted to problems of coronal seismology (see, i.e., [3–7]). Recent achievements in the solar coronal seismology are also referred in Space Sci. Rev. vol. 149, No. 1–4 (2009). Nevertheless, some important issues related to diagnostics of physical processes and plasma parameters in solar and stellar flares are still insufficiently presented in the literature. The main goal of the book is the successive description and analysis of the main achievements and problems of coronal seismology. There is much in common between flares on the Sun and on late-type stars, especially red dwarfs [8]. Indeed, the timescales, the Neupert effect, the fine structure of the optical, radio, and X-ray emission, and the pulsations are similar for both solar and stellar flares. Studies of many hundreds of stellar flares have indicated that the latter display a power–law radiation energy distribution, similar to that found for solar flares.
    [Show full text]
  • GSFC Heliophysics Science Division 2009 Science Highlights
    NASA/TM–2010–215854 GSFC Heliophysics Science Division 2009 Science Highlights Holly R. Gilbert, Keith T. Strong, Julia L.R. Saba, and Yvonne M. Strong, Editors December 2009 Front Cover Caption: Heliophysics image highlights from 2009. For details of these images, see the key on Page v. The NASA STI Program Offi ce … in Profi le Since its founding, NASA has been ded i cated to the • CONFERENCE PUBLICATION. Collected ad vancement of aeronautics and space science. The pa pers from scientifi c and technical conferences, NASA Sci en tifi c and Technical Information (STI) symposia, sem i nars, or other meetings spon sored Pro gram Offi ce plays a key part in helping NASA or co spon sored by NASA. maintain this impor tant role. • SPECIAL PUBLICATION. Scientifi c, techni cal, The NASA STI Program Offi ce is operated by or historical information from NASA pro grams, Langley Research Center, the lead center for projects, and mission, often concerned with sub- NASAʼs scientifi c and technical infor ma tion. The jects having substan tial public interest. NASA STI Program Offi ce pro vides ac cess to the NASA STI Database, the largest collec tion of • TECHNICAL TRANSLATION. En glish-language aero nau ti cal and space science STI in the world. trans la tions of foreign scien tifi c and techni cal ma- The Pro gram Offi ce is also NASAʼs in sti tu tion al terial pertinent to NASAʼs mis sion. mecha nism for dis sem i nat ing the results of its research and devel op ment activ i ties.
    [Show full text]
  • Why Is the Sun's Corona So Hot? Why Are Prominences So Cool?
    Why is the Sun’s corona so hot? Why are prominences so cool? Jack B. Zirker and Oddbjørn Engvold Citation: Physics Today 70, 8, 36 (2017); doi: 10.1063/PT.3.3659 View online: http://dx.doi.org/10.1063/PT.3.3659 View Table of Contents: http://physicstoday.scitation.org/toc/pto/70/8 Published by the American Institute of Physics Why is the Sun’s corona so hot? Why are prominences so cool? Jack B. Zirker and Oddbjørn Engvold Over the past several decades, solar physicists have made steady progress in answering the COURTESY OF SHADIA HABBAL two long-standing questions, but puzzles remain. Jack Zirker is an astronomer emeritus at the National Solar Observatory’s facilities on Sacramento Peak in Sunspot, New Mexico. Oddbjørn Engvold is an emeritus professor at the University of Oslo’s Institute of Theoretical Astrophysics in Oslo, Norway. n the 21st of this month, millions of enthusiasts found between the x-ray brightness of active regions—hot plasma-filled in the US will be treated to a total eclipse of the aggregations of looped magnetic field Sun. During two minutes of darkness, they lines—and the strength of their surface will see—weather permitting—the extremely magnetic fields. That important clue O suggested that magnetic fields must faint outer atmosphere of the Sun, the corona. play an important role in heating the They may also see red feathery sheets of gas called prominences corona. In a parallel development, Eugene immersed in the corona. Parker predicted in 1958 that a hot co- rona must expand into space as a solar Since the 1940s astronomers have known that the corona is wind.
    [Show full text]
  • 10 Years of SOHO and Beyond Sunday, 7 May 2006, AM Monday
    SOHO 17: 10 Years of SOHO and Beyond 7-12 May 2006, Giardini Naxos, Sicily Sunday, 7 May 2006, AM 16:00-18:00 Early Bird Check-In at Naxos Beach Resort 19:00 Welcome Reception at Naxos Beach Resort Monday, 8 May 2006, AM Chairs: Thompson, Mike; Di Mauro, Maria Pia 08:00 Registration at Palanaxos 09:00 Welcome Address Flamini, Fabrizio Agenzia Spaziale Italiana Session 1: Solar Interior: From Exploration to Experimentation Time: 09:05 - 12:30 09:05 Helioseismological Determination of the State of the Solar p.1 Interior Gough, Douglas University of Cambridge 09:35 Interpreting Solar Frequencies: Methods and Techniques p.2 Basu, Sarbani Yale University 10:05 Recent Progresses on g-mode Search p.3 Appourchaux, Thierry et al. Institut d'Astrophysique Spatiale 10:20 Looking for Asymptotic G Modes using GOLF Aboard SoHO p.4 Garcia, Rafael A. et al. Service d'Astrophysique CEA/Saclay 10:35 – 11:15 Coffee Break and Posters at the Palanaxos 11:15 Helioseismic Determination of Subsurface Fluid Dynamics p.5 Corbard, Thierry Observatoire de la Cτte d'Azur, FRANCE 11:45 SOHO and Time-Distance Helioseismology p.6 Duvall, Thomas1 et al. NASA/Goddard Space Flight Center 12:00 Subsurface Flows and the Evolution of Solar Filaments p.7 Hindman, Bradley1 et al. University of Colorado 12:15 Resonant Oscillation Modes and Background in Realistic p.8 Hydrodynamical Simulations of Solar Surface Convection Straus, T.1 et al. INAF - Osservatorio Astronomico di Capodimonte 12:30 – 14:30 Luncheon at the Naxos Beach Hotel SOHO 17 Provisional Programme (subject to change) ii Monday, 8 May 2006, PM Chairs: Vial, Jean-Claude; Gregory, Sara Session 2: Magnetic Variability: From the Tachocline to the Heliosphere Time: 14:30 - 17:30 14:30 Probing Solar Activity and Convection with Local p.9 Helioseismology Gizon, Laurent Max-Planck-Institut fuer Sonnensystemforschung, 15:00 The Solar Dynamo: What we know, what we think we know p.10 and what progress can we make.
    [Show full text]
  • Waves and Magnetism in the Solar Atmosphere (WAMIS)
    METHODS published: 16 February 2016 doi: 10.3389/fspas.2016.00001 Waves and Magnetism in the Solar Atmosphere (WAMIS) Yuan-Kuen Ko 1*, John D. Moses 2, John M. Laming 1, Leonard Strachan 1, Samuel Tun Beltran 1, Steven Tomczyk 3, Sarah E. Gibson 3, Frédéric Auchère 4, Roberto Casini 3, Silvano Fineschi 5, Michael Knoelker 3, Clarence Korendyke 1, Scott W. McIntosh 3, Marco Romoli 6, Jan Rybak 7, Dennis G. Socker 1, Angelos Vourlidas 8 and Qian Wu 3 1 Space Science Division, Naval Research Laboratory, Washington, DC, USA, 2 Heliophysics Division, Science Mission Directorate, NASA, Washington, DC, USA, 3 High Altitude Observatory, Boulder, CO, USA, 4 Institut d’Astrophysique Spatiale, CNRS Université Paris-Sud, Orsay, France, 5 INAF - National Institute for Astrophysics, Astrophysical Observatory of Torino, Pino Torinese, Italy, 6 Department of Physics and Astronomy, University of Florence, Florence, Italy, 7 Astronomical Institute, Slovak Academy of Sciences, Tatranska Lomnica, Slovakia, 8 Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA Edited by: Mario J. P. F. G. Monteiro, Comprehensive measurements of magnetic fields in the solar corona have a long Institute of Astrophysics and Space Sciences, Portugal history as an important scientific goal. Besides being crucial to understanding coronal Reviewed by: structures and the Sun’s generation of space weather, direct measurements of their Gordon James Duncan Petrie, strength and direction are also crucial steps in understanding observed wave motions. National Solar Observatory, USA Robertus Erdelyi, In this regard, the remote sensing instrumentation used to make coronal magnetic field University of Sheffield, UK measurements is well suited to measuring the Doppler signature of waves in the solar João José Graça Lima, structures.
    [Show full text]
  • “Oscillatory Processes in Solar and Stellar Coronae”
    www.issibj.ac.cn ISSI-BJ WORKSHOP “OSCILLATORY PROCESSES IN SOLAR AND STELLAR CORONAE” Topics I. Sergey Anfinogentov, et al. "Novel techniques in coronal seismology data analysis" II. Valery Nakariakov, et al. "Kink oscillations and waves in the corona" III. Tongjiang Wang, et al. "Slow waves in coronal loops" IV. Dipankar Banerjee, et al. "MHD waves in open coronal structures" V. Ivan Zimovets, et al. "Quasi-periodic pulsations in solar and stellar flares" VI. Bo Li, et al. "Sausage oscillations and waves in the corona" VII. Tom Van Doorsselaere, et al. "Coronal heating by MHD waves” VIII. Other I. Sergey Anfinogentov, et al. "Novel techniques in coronal seismology data analysis" David Pascoe High-resolution Diagnostic Techniques for the Solar Corona The high spatial and temporal resolution provided by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory has inspired the development of advanced observational techniques to probe the solar atmosphere. For example, forward modelling of the EUV intensity of coronal structures and the seismological analysis of kink oscillations provide powerful diagnostics to constrain properties such as the plasma density and magnetic field strength. We also increasingly employ Bayesian analysis and Markov chain Monte Carlo sampling in our analysis to increase the robustness and accuracy of our modelling. These techniques are now also being applied to study quasi-periodic pulsations associated with solar and stellar flares. [email protected] www.issibj.ac.cn Inigo Arregui Recent results in Bayesian coronal and prominence seismology We report on recent results from the application of Bayesian analysis techniques to seismology of coronal loops and prominence fine structures.
    [Show full text]
  • Imaging Coronal Magnetic-Field Reconnection in a Solar Flare
    LETTERS PUBLISHED ONLINE: 14 JULY 2013 | DOI: 10.1038/NPHYS2675 Imaging coronal magnetic-field reconnection in a solar flare Yang Su1*, Astrid M. Veronig1, Gordon D. Holman2, Brian R. Dennis2, Tongjiang Wang2,3, Manuela Temmer1 and Weiqun Gan4 Magnetic-field reconnection is believed to play a fundamental plasmoid ejection20. However, most evidence has been indirect and role in magnetized plasma systems throughout the Universe1, fragmented. Detailed observations of the complete picture are still including planetary magnetospheres, magnetars and accretion missing owing to the highly dynamic flare/CME process and limited disks around black holes. This letter presents extreme ultravi- observational capabilities. olet and X-ray observations of a solar flare showing magnetic The launch of the Solar Dynamic Observatory21 (SDO) in 2010 reconnection with a level of clarity not previously achieved. significantly improved this situation. In particular, the Atmospheric The multi-wavelength extreme ultraviolet observations from Imaging Assembly22 (AIA) has enabled continuous imaging of SDO/AIA show inflowing cool loops and newly formed, out- the full Sun in ten extreme ultraviolet (EUV), ultraviolet and flowing hot loops, as predicted. RHESSI X-ray spectra and visible channels, with a spatial resolution of ∼0.6 arcsec and a images simultaneously show the appearance of plasma heated cadence of 12 s. Simultaneously, the Ramaty High Energy Solar to >10 MK at the expected locations. These two data sets Spectroscopic Imager23 (RHESSI) is continuing to provide X-ray provide solid visual evidence of magnetic reconnection pro- imaging and spectroscopic diagnostics of the heated plasma and ducing a solar flare, validating the basic physical mechanism accelerated electrons.
    [Show full text]
  • The Role of Radiative Losses in the Late Evolution of Pulse-Heated Coronal
    Astronomy & Astrophysics manuscript no. ms.rev2 c ESO 2021 June 3, 2021 The role of radiative losses in the late evolution of pulse-heated coronal loops/strands F. Reale12 and E. Landi3 1 Dipartimento di Fisica, Universit`adi Palermo, Piazza del Parlamento 1, 90134, Italy 2 INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 3 Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 Preprint online version: June 3, 2021 ABSTRACT Context. Radiative losses from optically thin plasma are an important ingredient for modeling plasma confined in the solar corona. Spectral models are continuously up- dated to include the emission from more spectral lines, with significant effects on ra- diative losses, especially around 1 MK. Aims. We investigate the effect of changing the radiative losses temperature dependence due to upgrading of spectral codes on predictions obtained from modeling plasma con- fined in the solar corona. Methods. The hydrodynamic simulation of a pulse-heated loop strand is revisited com- paring results using an old and a recent radiative losses function. Results. We find significant changes in the plasma evolution during the late phases of plasma cooling: when the recent radiative loss curve is used, the plasma cooling rate in- arXiv:1205.4553v1 [astro-ph.SR] 21 May 2012 creases significantly when temperatures reach 1-2 MK. Such more rapid cooling occurs when the plasma density is larger than a threshold value, and therefore in impulsive heating models that cause the loop plasma to become overdense. The fast cooling has the effect of steepening the slope of the emission measure distribution of coronal plas- mas with temperature at temperatures lower than ∼ 2 MK.
    [Show full text]
  • Coronal Seismology Through Wavelet Analysis
    A&A 381, 311–323 (2002) Astronomy DOI: 10.1051/0004-6361:20011659 & c ESO 2002 Astrophysics Coronal seismology through wavelet analysis I. De Moortel1,A.W.Hood1, and J. Ireland2 1 School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK 2 Osservatorio Astronomica de Capodimonte, via Moiariello 16, 80131 Napoli, Italy Received 10 September 2001 / Accepted 18 October 2001 Abstract. This paper expands on the suggestion of De Moortel & Hood (2000) that it will be possible to infer coronal plasma properties by making a detailed study of the wavelet transform of observed oscillations. TRACE observations, taken on 14 July 1998, of a flare-excited, decaying coronal loop oscillation are used to illustrate the possible applications of wavelet analysis. It is found that a decay exponent n ≈ 2 gives the best fit to the 2 double logarithm of the wavelet power, thus suggesting an e−εt damping profile for the observed oscillation. Additional examples of transversal loop oscillations, observed by TRACE on 25 October 1999 and 21 March 2001, n are analysed and a damping profile of the form e−εt ,withn ≈ 0.5andn ≈ 3 respectively, is suggested. It is n demonstrated that an e−εt damping profile of a decaying oscillation survives the wavelet transform, and that the value of both the decay coefficient ε and the exponent n can be extracted by taking a double logarithm of the normalised wavelet power at a given scale. By calculating the wavelet power analytically, it is shown that a sufficient number of oscillations have to be present in the analysed time series to be able to extract the period of the time series and to determine correct values for both the damping coefficient and the decay exponent from the wavelet transform.
    [Show full text]
  • Coronal Magnetic Field Measurement Using Loop Oscillations Observed by Hinode/EIS
    A&A 487, L17–L20 (2008) Astronomy DOI: 10.1051/0004-6361:200810186 & c ESO 2008 Astrophysics Letter to the Editor Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS T. Van Doorsselaere1,V.M.Nakariakov1, P. R. Young2, and E. Verwichte1 1 Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL, UK e-mail: [t.van-doorsselaere;v.nakariakov;erwin.verwichte]@warwick.ac.uk 2 STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK e-mail: [email protected] Received 13 May 2008 / Accepted 12 June 2008 ABSTRACT We report the first spectroscopic detection of a kink MHD oscillation of a solar coronal structure by the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode satellite. The detected oscillation has an amplitude of 1 km s−1 in the Doppler shift of the FeXII 195 Å spectral line (1.3 MK), and a period of 296 s. The unique combination of EIS’s spectroscopic and imaging abilities enables us to measure simultaneously the mass density and length of the oscillating loop. This enables us to measure directly the magnitude of the local magnetic field, the fundamental coronal plasma parameter, as 39 ± 8 G, with unprecedented accuracy. This proof of concept makes EIS an exclusive instrument for the full scale implementation of the MHD coronal seismological technique. Key words. instrumentation: spectrographs – Sun: corona – Sun: oscillations – Sun: magnetic fields 1. Introduction oscillating structure. In the case of standing waves, the phase speed can be estimated by the period of the observed oscilla- Coronal seismology utilises observed waves and oscillations in tions and the wavelength given by the size of the resonator.
    [Show full text]