Interactions Among Cloud, Water Vapor, Radiation and Large-Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Appropriate They Are/Will Be Using Future Satellite Data Sources?
Different Convective Indices - - - How appropriate they are/will be using future satellite data sources? Ralph A. Petersen1 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, Madison, Wisconsin, USA Will additional input from Steve Weiss, NOAA/NWS/Storm Prediction Center ✓ Increasing the Utility / Value of real-time Satellite Sounder Products to fill gaps in their short-range forecasting processes Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work up. 1 – The greatest amount of radiation is emitted from the earth’s surface 4 - Remember, Stefan’s Law: Emission ~ σTSfc 2 – Molecules of various gases in the lowest layer of the atmosphere absorb some of the radiation and then reemit it upward to space and back downward to the earth’s surface - Major absorbers are CO2 and H2O 4 - Emission again ~ σT , but TAtmosphere<TSfc - Amount of radiation decreases with altitude Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work -
Effect of Deep Convection on the TTL Composition Over the Southwest Indian Ocean During Austral Summer
https://doi.org/10.5194/acp-2019-1072 Preprint. Discussion started: 22 January 2020 c Author(s) 2020. CC BY 4.0 License. Effect of deep convection on the TTL composition over the Southwest Indian Ocean during austral summer. Stephanie Evan1, Jerome Brioude1, Karen Rosenlof2, Sean. M. Davis2, Hölger Vömel3, Damien Héron1, Françoise Posny1, Jean-Marc Metzger4, Valentin Duflot1,4, Guillaume Payen4, Hélène Vérèmes1, 5 Philippe Keckhut5, and Jean-Pierre Cammas1,4 1LACy, Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, 80305, CO, USA 3National Center for Atmospheric Research, Boulder, 80301, CO, USA 10 4Observatoire des Sciences de l’Univers de La Réunion, UMS3365 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 5LATMOS, Laboratoire ATmosphères, Milieux, Observations Spatiales-IPSL UMR8190 (UVSQ Université Paris-Saclay, Sorbonne Université, CNRS), Guyancourt, 78280, France Correspondence to: Stephanie Evan ([email protected]) 15 Abstract. Balloon-borne measurements of CFH water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory at Réunion Island in the Southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on TTL composition. The balloon launches were specifically planned using a Lagrangian model and METEOSAT 7 infrared images to sample the convective outflow from Tropical Storm (TS) Corentin on 25 January 2016 and Tropical Cyclone (TC) Enawo on 3 March 2017. 20 Comparing CFH profile to MLS monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121hPa) originated from convectively active regions of TS Corentin and TC Enawo, one day before the planned balloon launches, according to the Lagrangian trajectories. -
Moist Static Energy Budget of MJO-Like Disturbances in The
1 Moist Static Energy Budget of MJO-like 2 disturbances in the atmosphere of a zonally 3 symmetric aquaplanet 4 5 6 Joseph Allan Andersen1 7 Department of Physics, Harvard University, Cambridge, Massachusetts 8 9 10 Zhiming Kuang 11 Department of Earth and Planetary Science and School of Engineering 12 and Applied Sciences, Harvard University, Cambridge, Massachusetts 13 14 15 16 17 18 19 20 21 22 1 Corresponding author address: Joseph Andersen, Department of Physics, Harvard University, Cambridge, MA 02138. E-mail: [email protected] 1 1 2 Abstract 3 A Madden-Julian Oscillation (MJO)-like spectral feature is observed in the time-space 4 spectra of precipitation and column integrated Moist Static Energy (MSE) for a zonally 5 symmetric aquaplanet simulated with Super-Parameterized Community Atmospheric 6 Model (SP-CAM). This disturbance possesses the basic structural and propagation 7 features of the observed MJO. 8 To explore the processes involved in propagation and maintenance of this disturbance, 9 we analyze the MSE budget of the disturbance. We observe that the disturbances 10 propagate both eastwards and polewards. The column integrated long-wave heating is the 11 only significant source of column integrated MSE acting to maintain the MJO-like 12 anomaly balanced against the combination of column integrated horizontal and vertical 13 advection of MSE and Latent Heat Flux. Eastward propagation of the MJO-like 14 disturbance is associated with MSE generated by both column integrated horizontal and 15 vertical advection of MSE, with the column long-wave heating generating MSE that 16 retards the propagation. 17 The contribution to the eastward propagation by the column integrated horizontal 18 advection of MSE is dominated by synoptic eddies. -
Basic Features on a Skew-T Chart
Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give -
DEPARTMENT of GEOSCIENCES Name______San Francisco State University May 7, 2013 Spring 2009
DEPARTMENT OF GEOSCIENCES Name_____________ San Francisco State University May 7, 2013 Spring 2009 Monteverdi Metr 201 Quiz #4 100 pts. A. Definitions. (3 points each for a total of 15 points in this section). (a) Convective Condensation Level --The elevation at which a lofted surface parcel heated to its Convective Temperature will be saturated and above which will be warmer than the surrounding air at the same elevation. (b) Convective Temperature --The surface temperature that must be met or exceeded in order to convert an absolutely stable sounding to an absolutely unstable sounding (because of elimination, usually, of the elevated inversion characteristic of the Loaded Gun Sounding). (c) Lifted Index -- the difference in temperature (in C or K) between the surrounding air and the parcel ascent curve at 500 mb. (d) wave cyclone -- a cyclone in which a frontal system is centered in a wave-like configuration, normally with a cold front on the west and a warm front on the east. (e) conditionally unstable sounding (conceptual definition) –a sounding for which the parcel ascent curve shows an LFC not at the ground, implying that the sounding is unstable only on the condition that a surface parcel is force lofted to the LFC. B. Units. (2 pts each for a total of 8 pts) Provide the units used conventionally for the following: θ ____ Ko * o o Td ______C ___or F ___________ PGA -2 ( )z ______m s _______________** w ____ m s-1_____________*** *θ = Theta = Potential Temperature **PGA = Pressure Gradient Acceleration *** At Equilibrium Level of Severe Thunderstorms € 1 C. Sounding (3 pts each for a total of 27 points in this section). -
ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr
ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr. DeCaria References: The Use of the Skew T, Log P Diagram in Analysis And Forecasting, AWS/TR-79/006, U.S. Air Force, Revised 1979 An Introduction to Theoretical Meteorology, Hess GENERAL Thermodynamic diagrams are used to display lines representing the major processes that air can undergo (adiabatic, isobaric, isothermal, pseudo- adiabatic). The simplest thermodynamic diagram would be to use pressure as the y-axis and temperature as the x-axis. The ideal thermodynamic diagram has three important properties The area enclosed by a cyclic process on the diagram is proportional to the work done in that process As many of the process lines as possible be straight (or nearly straight) A large angle (90 ideally) between adiabats and isotherms There are several different types of thermodynamic diagrams, all meeting the above criteria to a greater or lesser extent. They are the Stuve diagram, the emagram, the tephigram, and the skew-T/log p diagram The most commonly used diagram in the U.S. is the Skew-T/log p diagram. The Skew-T diagram is the diagram of choice among the National Weather Service and the military. The Stuve diagram is also sometimes used, though area on a Stuve diagram is not proportional to work. SKEW-T/LOG P DIAGRAM Uses natural log of pressure as the vertical coordinate Since pressure decreases exponentially with height, this means that the vertical coordinate roughly represents altitude. Isotherms, instead of being vertical, are slanted upward to the right. Adiabats are lines that are semi-straight, and slope upward to the left. -
Can the Convective Temperature from the 12UTC Sounding Be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D
Meteorology Senior Theses Undergraduate Theses and Capstone Projects 12-1-2017 Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D. Baalman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Baalman, Emily D., "Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months?" (2017). Meteorology Senior Theses. 19. https://lib.dr.iastate.edu/mteor_stheses/19 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Can the Convective Temperature from the 12UTC Sounding be a Good Predictor for the Maximum Temperature, During the Summer Months? Emily D. Baalman Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa Dr. William Gallus – Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa ABSTRACT Several forecasting techniques use soundings to get the value of the variable being forecasted. This study examines the validity of a using the convective temperature to forecast for the maximum temperature, while comparing it to other forecasting techniques that use soundings. These include adding 13 degrees to 850mb temperature and using the forecasted high that is included in the sounding analysis. This study also examined where the convective temperature matches the observed high temperature. -
Chapter 3 Moist Thermodynamics
Chapter 3 Moist thermodynamics In order to understand atmospheric convection, we need a deep understand- ing of the thermodynamics of mixtures of gases and of phase transitions. We begin with a review of some of the fundamental ideas of statistical mechanics as it applies to the atmosphere. We then derive the entropy and chemical potential of an ideal gas and a condensate. We use these results to calcu- late the saturation vapor pressure as a function of temperature. Next we derive a consistent expression for the entropy of a mixture of dry air, wa- ter vapor, and either liquid water or ice. The equation of state of a moist atmosphere is then considered, resulting in an expression for the density as a function of temperature and pressure. Finally the governing thermody- namic equations are derived and various alternative simplifications of the thermodynamic variables are presented. 3.1 Review of fundamentals In statistical mechanics, the entropy of a system is proportional to the loga- rithm of the number of available states: S(E; M) = kB ln(δN ); (3.1) where δN is the number of states available in the internal energy range [E; E + δE]. The quantity M = mN=NA is the mass of the system, which we relate to the number of molecules in the system N, the molecular weight of these molecules m, and Avogadro’s number NA. The quantity kB is Boltz- mann’s constant. 35 CHAPTER 3. MOIST THERMODYNAMICS 36 Consider two systems in thermal contact, so that they can exchange en- ergy. The total energy of the system E = E1 + E2 is fixed, so that if the energy of system 1 increases, the energy of system 2 decreases correspond- ingly. -
Chapter 3 Mesoscale Processes and Severe Convective Weather
CHAPTER 3 JOHNSON AND MAPES Chapter 3 Mesoscale Processes and Severe Convective Weather RICHARD H. JOHNSON Department of Atmospheric Science. Colorado State University, Fort Collins, Colorado BRIAN E. MAPES CIRESICDC, University of Colorado, Boulder, Colorado REVIEW PANEL: David B. Parsons (Chair), K. Emanuel, J. M. Fritsch, M. Weisman, D.-L. Zhang 3.1. Introduction tion, mesoscale phenomena occur on horizontal scales between ten and several hundred kilometers. This Severe convective weather events-tornadoes, hail range generally encompasses motions for which both storms, high winds, flash floods-are inherently mesoscale ageostrophic advections and Coriolis effects are im phenomena. While the large-scale flow establishes envi portant (Emanuel 1986). In general, we apply such a ronmental conditions favorable for severe weather, pro definition here; however, strict application is difficult cesses on the mesoscale initiate such storms, affect their since so many mesoscale phenomena are "multiscale." evolution, and influence their environment. A rich variety For example, a -100-km-Iong gust front can be less of mesocale processes are involved in severe weather, than -1 km across. The triggering of a storm by the ranging from environmental preconditioning to storm initi collision of gust fronts can actually occur on a ation to feedback of convection on the environment. In the -lOO-m scale (the microscale). Nevertheless, we will space available, it is not possible to treat all of these treat this overall process (and others similar to it) as processes in detail. Rather, we will introduce s~veral mesoscale since gust fronts are generally regarded as general classifications of mesoscale processes relatmg to mesoscale phenomena. -
Stability Analysis, Page 1 Synoptic Meteorology I
Synoptic Meteorology I: Stability Analysis For Further Reading Most information contained within these lecture notes is drawn from Chapters 4 and 5 of “The Use of the Skew T, Log P Diagram in Analysis and Forecasting” by the Air Force Weather Agency, a PDF copy of which is available from the course website. Chapter 5 of Weather Analysis by D. Djurić provides further details about how stability may be assessed utilizing skew-T/ln-p diagrams. Why Do We Care About Stability? Simply put, we care about stability because it exerts a strong control on vertical motion – namely, ascent – and thus cloud and precipitation formation on the synoptic-scale or otherwise. We care about stability because rarely is the atmosphere ever absolutely stable or absolutely unstable, and thus we need to understand under what conditions the atmosphere is stable or unstable. We care about stability because the purpose of instability is to restore stability; atmospheric processes such as latent heat release act to consume the energy provided in the presence of instability. Before we can assess stability, however, we must first introduce a few additional concepts that we will later find beneficial, particularly when evaluating stability using skew-T diagrams. Stability-Related Concepts Convection Condensation Level The convection condensation level, or CCL, is the height or isobaric level to which an air parcel, if sufficiently heated from below, will rise adiabatically until it becomes saturated. The attribute “if sufficiently heated from below” gives rise to the convection portion of the CCL. Sufficiently strong heating of the Earth’s surface results in dry convection, which generates localized thermals that act to vertically transport energy. -
References: Adiabatic Mixing of Air Parcels
ESCI 340 - Cloud Physics and Precipitation Processes Lesson 4 - Convection Dr. DeCaria References: Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 4 Adiabatic Mixing of Air Parcels • If two air parcels are adiabatically mixed together, many thermodynamics properties of the mixture are a mass-weighted mean of their properties before mixing. { A mass-weighted mean of some property s of two air parcels of masses m1 and m2 is given by the formula m1 m2 sm = s1 + s2: (1) m1 + m2 m1 + m2 • Formula (1) applies exactly if s is specific humidity q, and approximately for mixing ratio r and potential temperature θ. • If the air parcels being mixed are also at the same pressure (isobaric mixing), then temperature and vapor pressure also mix as mass-weighted means, and (1) also applies. • Adiabatic mixing of two initially unsaturated air parcels may actually result in a sat- urated air parcel. { This is why we can sometimes `see our breath' on cold days. • The concept of mass-weighted mean can be applied to a continuous layer of air as follows: { We imagine the layer consisting of a series of N very thin air parcels, each having a horizontal area A and thickness ∆zi. { The mass-weighted mean is given by the sum P misi i sm = P : (2) mi i { Each parcel has a mass given by ρiA∆zi, so that (2) becomes P P ρiA∆zisi ρi∆zisi i i sm = P = P : (3) ρiA∆zi ρi∆zi i i 1 { In the limit as the thicknesses of the air parcels go to zero the summation turns into an integral, and the formula for the mass-weighted mean of a layer becomes z2 R ρsdz s = z1 : (4) m z2 R ρdz z1 • Formula (4) applies only to those parameters s that do not change as the air parcel moves up or down. -
National Weather Service Training Center
National Weather Service Training Center Kansas City, MO 64153 July 31, 2000 Introduction 1 Objectives 2 I. Parcel Theory 3 II. Determination of Meteorological Quantities 4 Convective Condensation Level 4 Convective Temperature 5 Lifting Condensation Level 5 Level of Free Convection: 5 Equilibrium Level 6 Positive and Negative Areas 6 Convective Available Potential Energy (CAPE) 8 Convective Inhibition Energy 9 Maximum Parcel Level 10 Exercise 1 11 III. Determination of Instability 13 IV. Stability Indices 15 Showalter Index 15 Lifted Index 16 Most Unstable Lifted Index 17 “K” INDEX 17 Total Totals 18 Stability Indices Employed by the Storm Prediction Center (SPC) 18 Exercise 2 20 V. Temperature Inversions 21 Radiation Inversion 21 Subsidence Inversion 21 Frontal Inversion 22 VI. Dry Microburst Soundings 24 VII. Hodographs 26 Storm Motion and Storm-Relative Winds 29 Exercise 3 30 References 32 Appendix A: Skew-T Log P Description 34 Appendix B: Upper Air Code 36 Appendix C: Meteorological Quantities 44 Mixing Ratio 44 Saturation Mixing Ratio 44 Relative Humidity 44 Vapor Pressure 44 Saturation Vapor Pressure 45 Potential Temperature 46 Wet-bulb Temperature 47 Wet-bulb Potential Temperature 47 Equivalent Temperature 49 Equivalent Potential Temperature 49 Virtual Temperature 50 Appendix D: Stability Index Values 51 Appendix E: Answers to Exercises 53 Introduction Upper-air sounding evaluation is a key ingredient for understanding any weather event. An examination of individual soundings will allow forecasters to develop a four- dimensional picture of the meteorological situation, especially in the vertical. Such an examination can also help to evaluate and correct any erroneous data that may have crept into the constant level analyses.