SEXUAL CONFLICTOVER PARENTAL

CAREIN PENDULINE TITS

RenéErwinvanDijk AthesissubmittedforthedegreeofDoctorofPhilosophy UniversityofBath DepartmentofBiologyandBiochemistry June2009

COPYRIGHT Attentionisdrawntothefactthatcopyrightofthisthesisrestswithits author. A copy of this thesis has been supplied on condition that anyone who consultsitisunderstoodtorecognisethatitscopyrightrestswiththeauthorandthey must not copy it or use material from it except as permitted by law or with the consentoftheauthor. ThisthesismaybemadeavailableforconsultationwithintheUniversityLibraryand maybephotocopiedorlenttootherlibrariesforthepurposesofconsultation. Contents

Acknowledgements 4 Summary 8 INTRODUCTION Chapter1 Introduction–Sexualconflictandcooperation 9 Chapter2 Postfertilisationreproductivestrategies 15 PROCESSOFDESERTION Chapter3 Sexual conflict over parental care in penduline tits 28 pendulinus :theprocessofclutchdesertion Chapter4 Parents of the Eurasian penduline conceal their 37 intentiontodeserttheirmate Chapter5 Whatgamesdopendulinetitsplay? 51 Chapter6 Sexdifferencesinparentalcaredonotexplainfemale 68 biased uniparental care in Eurasian penduline tits Remizpendulinus ENVIRONMENTANDPARENTALCARE Chapter7 Theinfluenceofhabitatqualityonsexualconflictover 83 careinpendulinetits Chapter8 Parental care strategies in Eurasian penduline tit are 95 not related to breeding densities and mating opportunities THEEVOLUTIONARYRAMIFICATIONSOFSEXUALCONFLICT Chapter9 Sexualconflictpredictsmorphologyandbehaviourin 107 twoofpendulinetits

2 CONCLUSIONSANDFUTUREDIRECTIONS Chapter10 Conclusions and future directions – sexual conflict 123 overcareinpendulinetitsandbeyond References 138 AppendixI Offspring sex ratio in the sequentially polygamous 152 pendulinetit Remizpendulinus AppendixII Strategic differences – the battle of the sexes in 168 pendulinetits AppendixIII Practicalfieldguideforinvestigatingbreedingecology 173 ofpendulinetits Remizpendulinus AppendixIV FieldworkreportexpeditionKazakhstan2008 189 Affiliationsofcoauthors 203

3 Acknowledgements During my undergraduate studies biology at the University of Groningen, The Netherlands,IsometimeswonderedwhetheraPhDprojectwouldreallybesuitable forme.Likemany,Iwonderedifworkingononestudyspeciesforsomefouryears wouldperhaps notbe very exciting. Once I embarkedonmyPhDthough,itsoon turned out it would not be difficult to keep myself amused. Besides being lucky enough to be able to work on one of the most exciting species within research concerningsexualconflictandbreedingsystemsandtohavetheprivilegeoflivingin the world heritage city of Bath, a substantial contribution to keep me happy throughout the past four years came from the fantastic bunch of the people that surroundedme.Theyhaveallbeenverysupportiveandhavemadelifeforthepast fewyearsagreatdealmoreenjoyable. Firstandforemost,Ihaveverymuchenjoyedtheprivilegetoworkwithtwo experts in the fields of sexual conflict and cooperation in breeding systems, my supervisors TamásSzékely and JanKomdeur .IamverygratefultoTamás,firstof all for inviting me to apply for a PhD at Bath after my MSc research project on pendulinetits.Ihavelearnedanenormousamountfromhim.Hehasbeenextremely supportivethroughoutmyPhD.Hisenthusiasmfortheworkwewerecarryingout has stimulated me a lot and never left me short of ideas where to go next. The opportunitiesformetotravelandexplorenewsitesandpendulinetitpopulationsare also gratefully appreciated. When many attendants at one of the penduline tit meetings giggled at the idea of exploring penduline tits in Kazakhstan and China nextyear,Tamáswasconvinceditwouldbeaworthwhileexpeditionandpursued the idea. It turned out to be a fantastic basis for future comparative research on pendulinetits.IamalsoverygratefulforbeingsoaccessiblewhenhewasinBath (andnotchasingploversandstudentsinsomeremotecorneroftheplanet),despite thelargenumberofprojectshehadtocoordinate.Themanychatswehavehadinhis officehavebeenenjoyableandatthesametimeveryproductive.Itnevertooklong togetbackwithusefulandconstructivecommentsontheworkIputtogether,which Iknowissomethingnotalwayseasytoachieve,yetsomethingextremelyusefulto getfromasupervisor. WeallknowTamásdoeshavehisgrumpydays,butthisis generouslycompensatedforbyagoodandvibrantsenseofhumour. IamverygratefultoJanforaskingmetodomysecondMScresearchproject onpendulinetitsin2004.Ihavelearnedalotinthatprojectaboutthefieldworkand importantconceptsinbehaviouralecologyanditthusformedanexcellentbasisfrom

4 which to start my PhD. Throughout my PhD Jan has also always been very supportiveandeasilyaccessible.Themanycommentshehasprovidedonthevarious drafts of the chapters in my thesis, have helped enormously to improve the manuscripts. His and Tamás’ comments were often very different and, although sometimes contrasting, they usually complemented each other very well. Furthermore,ithasnevertakenJanmuchlongerthanadayorsotofindasuitable studentfromGroningentocarryoutaprojectonpendulinetitsandhelpustocollect thenecessaryfielddata.Jan’sgoodmoodandhasslefreeapproachtowardsanyissue we encountered made it a great pleasure to work with him. I appreciated that wheneverIcameovertovisitGroningentherehasalwaysbeenadeskreadyforme, andIcouldalwaysrestassuredthatIcouldleaveagainhavingachievedeverythingI came for. The very different approach between the Ecology Group in GroningenandTamás’ Biodiversity labin Bathtotackle research questions have stimulatedmetotryandfindtherightbalance. Specialthanksmustalsogoto ÁkosPogány .Ithasbeenagreatpleasureto workwithhiminthefield.Thelongtalkswehavehadaboutvariousissueshave definitely contributed to the success of our penduline tit project. His skills to organiseprojectsanddevelopfieldmethodshavebeencrucialtothesuccessofour fieldworkinSouthAfricaandAsia.Andalsothemoreinformalchatswehavehad invariouspubsinHungary,SouthAfricaandEnglandhavealsoalwaysbeenmost enjoyableandmayormaynothavecontributedtothesuccessofourproject. Iamthankfulto IstvánSzentirmai forbeingsuchagreatcompanyduring myfirstfieldseasononpendulinetitsinFehértóin2004andduringseveralmeetings lateron.Istvánalsodeservesthecreditsfordevelopingmostofthefieldmethods. LídiaMészáros alsomadesureourtimeinthefieldinHungaryhasalways beenveryenjoyable.Shehasbeenagreatpersontocollaboratewithand,likeÁkos andIstván,becameagoodfriend.Allthreeofthemwerealsoalwayskindenoughto offermetheopportunitytoletmestayattheirplaceatanytime.Lídiaalsodealtwith mostofthepracticalitiesinFehértó. Thehelpofallthestudentsandfieldassistantsthathaveparticipatedinour project, and of the people that have collaborated in or have facilitated to start up projectsatvariouslocalitiesisalsoacknowledgedwithgratitude: JorisvanAlphen, SanderBot,DušanBrinkhuizen,NatalinoCuti,JohanvanderDennen,Richard ffrenchConstant,PerEricson,ZsofiaGergely,RobGordijn,MartijnHammers, Péter Horváth, Martin Irestedt, Corinne Jeffs, Evelien Jongepier, Arno wa

5 Kangeri, Penn Lloyd, Bruno Massa, Emily Mockford, Arjen Pilon, Sergey Sklyarenko,RafaellaTurco,MachielValkenburg,MarcovanderVelde,Vera Voronova,ArendWassink,FranjoWeissing and XutongYang .Withoutthemwe wouldhavebeenabletocollectconsiderablylessdata,andsomepreliminaryresults, importantforthefurtherdevelopmentofprojects, would have been produced at a muchlaterstageornotatall.ThemembersofthebiodiversitylabinBath,agreat, internationalbunchofpeople,alsodeserveagreatexpressionofgratitude.Theynot only helped to create a stimulating working environment, but many of them also became good friends without whom life in academia would have been much less enjoyable: Araceli Argüelles Ticó, Monif AlRashidi, Fiona Burns, John Burnside, Richard James, Gabriel Garcia Peña, Freya Harrison, András Kosztolányi, Clemens Küpper, Peter Long, Mark O’Connell, Valérie Olson, AlejandroSerranoMeneses,JamesStClair and RichardYoung . I am gratefulto NickDaviesfortakingupthe externalexaminationof my thesisandto SteveDorus fordoingthesameasmyinternalexaminer. Ialsothanktheorganisationsandcommitteesthathavebeenresponsiblefor thefundingofthevariousprojects,inparticulartheUniversityofBathforproviding mewithaUniversityStudentship.Allotherfinancial support is recognised in the acknowledgements of the separate chapters in my thesis. I am grateful to the KiskunságNationalParkandSzegedfishLtd.forproviding permission to conduct fieldworkinHungaryandtoESKOMfordoinglikewiseinSouthAfrica. Iamalsogreatlyindebtedtomyparents, Peter and Tineke ,whohavealways generously supported, but never pushed, me towork at the limits of my abilities, evenifthismeantthat,aftermybrotherRonald movedtoIreland,IwouldleaveThe Netherlands too. Everything I have achieved and the privileged life I have been living over the past 28 years would not have been possible without their immeasurablesupportandunderstanding. Finally, special thanks go to the numerouspeople I forgot to or could not mentionhere.Therearefartoomany,buteachoneofthemhasmadeasignificant contributiontothesuccessofourproject,tomyunderstandingofthependulinetit’s naturalhistoryandbehaviouralecology,and/orhas helped me to enjoy my work, whereverontheplanetIwas.Iamverygratefultoallofthem.Idohopetobeable tostayintouchwithmostofthepeoplementioned aboveandhopetobeableto continuetosuccessfullycollaboratewithyouinthisexcitingproject.

6 After averyenjoyable PhD,asalwaysinscience,wehave generated more questionsthananswers.ButafterfouryearsIamstillincreasinglyenjoyingworking withpendulinetits.Andthepeoplethatareassociatedwiththisproject,whetherin thefield,inthelab,orathome,guaranteethataprojectlikeourswouldbeenjoyable foratleastanotherfortyyears.

7 Summary Sexualconflict,thedifferentinterestsofmalesandfemalesoverreproduction,isa potentevolutionaryforce.HereIinvestigatesexualconflictinthecontextofparental care by focussing on two questions: (i) which behavioural, morphological and environmentaltraitsinfluencetheparents’decisiontocareforthebroodordesert? (ii)Howdoessexualconflictinfluencetheevolutionofbehaviourandmorphology? Iinvestigatebothquestionsusingasmall,polygamous,theEurasian pendulinetitRemizpendulinus ,whichexhibitsintensesexualconflictoverparental care such that either the male, the female or both parents desert the clutch. Using detailedbehaviouralobservationsduringthecrucialfewdaysprecedingdesertion,I arguethatitmaybeintheparents’bestinteresttoconcealtheirintentiontocarefor (ordesert)theirbrood.Therapidresultingprocessthatleadstovariableparentalcare resemblesacoordinationgameinwhicheitherparentmaydesertfirst.Idevelopeda gametheoretical model that suggests that a key to resolving the conflict between parents is the sex difference in reproductive payoffs for given parental care strategies,ratherthandifferencesinparentalqualityperse.Environmentalvariables (e.g . food availability and mating opportunities) seem only subsidiary in the decisionmaking process of parents. My final chapter explores ramifications of sexualconflictatanevolutionarytimescale.Bycomparingthehighlypolygamous Eurasian penduline tit with the monogamous Cape penduline tit, I show that morphologicalandbehaviouraldifferencesbetweenthesetwospeciesareconsistent withpredictionsofsexualconflicttheory.DuringmyPhDIalsoidentifiedthatthere isconsiderablevariationinbreedingsystemswithin different species of penduline tits. I argue that by studying these systems new insights will emerge into (i) the driversofbreedingsystems,and(ii)neuralandgenomictraitsthatunderliebreeding systemevolution.

8 CHAPTERI INTRODUCTION SEXUALCONFLICTANDCOOPERATION RenéE.vanDijk

9 The life of is rife with strategic decisions. Perhaps the most important strategiestoadoptarethoseconcerningreproduction.Theconceptsofsexualconflict andcooperationareusedtodescribeandunderstandhowbreedingsystemsevolve, and what the evolutionary implications of reproductive strategies (for instance mating behaviour and parental decisions) are. Although the two concepts can be consideredasdescribingcontrastingstrategiesandareofteninvestigatedseparately, inrealitytheyshouldbeconsideredasoneframeworktounderstandthefullrangeof breedingsystemsfoundinnature. SEXUALCONFLICT Sexualconflict,i.e.aconflictbetweentheevolutionaryinterestsofindividualsofthe twosexes(Parker1979)isubiquitousinnature(Arnqvist&Rowe2005). Indeed, there are only two scenarios where sexual conflict can be expected to be absent, firstlyinthecaseoffullandlifelongmonogamy,andsecondlywhenananimalonly breedsonceinitsentirelifetime(‘semelparity’).Bothofthesescenariosarerarein nature(Lessells2006, ChapterII ).Althoughwidespread,theextenttowhichsexual conflict is exhibited varies widely. Intense sexual conflict can result in extreme evolutionary outcomes (Chapman et al. 2003; Arnqvist & Rowe 2005; Pizzari & Bonduriansky2009).Someofthestrikingexamplesstem from prezygotic sexual conflict(sexualconflictovermating).Inbedbugs Cimex lectularius , for instance, theconflictovermatingratesresultsintraumaticinseminationoffemales,whenthe maleinseminatesintothefemalebodycavity.Thisbehaviourleadstoanenhanced fertilizationsuccessforthemale,butitisharmfulforthefemaleanditimpairsher reproductive output (Stutt & SivaJothy 2001). Other striking examples are the varietyofsocalledcopulatoryplugs,whichoccur acrosstheanimalkingdomand preventthefemalefromsuccessfullymatingagainaftercopulatingwithamale(e.g . Fiumera et al. 2006; Moreira et al. 2006; Kuntner et al. 2009). These examples illustratethatreproductionisnotalwaysacooperativeventure. Itisnotonlythefrequencyofmatingoverwhichaconflictbetweenthesexes exists.Oncefertilisationhastakenplace,eachparentwilltrytominimisethecostsof reproduction whilst gaining a maximum benefit. Both parents will benefit from havingsuccessfullyraisedoffspring,yetitisinthebestinterestofbothtoshiftthe costs of parental care to their partner (‘postzygotic sexual conflict’ or ‘sexual conflictoverparentalcare’;Trivers1972;Davies1992;Balshineetal.2002;Royle etal.2002;Houstonetal.2005).Howparentsresolvethisconflictovercare and

10 whichvariablesmayinfluencethenegotiationsoverparental care, are the issues I addressinthisthesis.Ageneralintroductiontotheconceptofsexualconflictover parentalcareisoutlinedindetailin ChapterII . COOPERATION Adefinitionofcooperationiscontextdependent,althoughitshouldgenerallybein theformofindividualstrategiesdescribingthecooperation,cooperativeinvestment and the cooperative returns (Noë 2006; West et al.2007;Wenseleersetal.2009). Given the ubiquity of conflict as described above, the existence of cooperation between individuals seems evolutionarily counterintuitive (cf. ‘selfish genes’, Dawkins 1976).Nevertheless, cooperation canbe observedatvariouslevels,from genes to societies, in many different taxa, and interestingly also closely related speciesmayshowalargevariationinthelevelsofcooperationexhibited(Mank& Avise2006;Thomasetal.2007;Kroll&Shogren2008;Maclean&Brandon2008; vanDijk,RE,Pogány,Á,&Székely,T.unpubl.data). Cooperationreceivesanenormousattentionfromscientistsinaverydiverse research community spanning from neurobiology to political sciences (Pennisi 2005). However, the exact mechanisms (proximate causes) that confer direct or indirectfitnessbenefits(ultimatecauses)oncooperationstillneedtobeexplored,as does the structure of the cost and benefit functions (i.e . payoffs) of cooperation. Researchsofarreliedforalargepartongametheoreticalmodels,whichhavebeen criticised to be restrictive and somehow unrealistic (Noë 2006). One of the most influentialgametheoreticmodelsdescribinglevelsofcooperationisthePrisoner’s Dilemma (Axelrod & Hamilton 1981; Nowak & May 1992; Heinsohn & Packer 1995; McNamara et al. 2004; McNamara & Weissing 2009). In the Prisoner’s Dilemma the situation is described where the tendency of individuals to defect towardscooperatorsresultsinthebreakdownofcooperation.Todatefewempirical examples have been published providing support for this influential model (see Chapter V ). Therefore, it seems unlikely to find a general, realistic model that explainswhyanimalscooperate;theappropriatemodelslikelydependonwhichtype ofcooperationisbeinginvestigated. BREEDINGSYSTEMS In order to reproduce, the members of apair have to cooperate. However,beyond thisminimumlevelofrequiredcooperation,theselfishbenefitsforeachindividual

11 willbecomeparamount.Theextenttowhichthisisexhibitedislikelydeterminedby thesocialandnonsocialenvironment( ChapterII ).Foodavailability,forinstance,is often associated with the level of conflict or cooperation in the breeding system (Emlen & Oring 1977; Erckmann 1983; Davies & Lundberg 1984; Davies 1991; Davies1992;Wiklundetal.2001;Eldegard&Sonerud2009). Inamonophyletic groupofacrocephalinewarblers,forinstance,habitatswithabundantresourceswere associated with the occurrence of polygyny and male promiscuity, whereas poor habitatswerecharacterisedbymonogamyandtheoccurrenceofhelpersatthenest (Leisleretal.2002).Ithasbeenarguedthatthedifferent reproductivepayoffs for males and females in conjunction with the environment drive breeding system evolution(Davies&Lundberg1984;Davies1992;Székelyetal.2006;McGrawet al.2009; ChapterV).Iftheenvironmentpromotestheemergenceofsexualconflict, uniparentalcareandpolygamymaybetheresult,whereasifthereareenvironmental constraints, cooperation between the parents may be the most beneficial strategy. Subsequently,thevariouslevelsofpolygamythatareassociatedwiththedifferent breeding systems are related to the variance in reproductive success upon which sexualselectionmayact.Thisisthenonepossibleroutealongwhichsexualconflict andcooperationmaydrivetheevolutionofmorphologyandbehaviourofanimals (Wilson et al. 2001; Arnqvist & Rowe 2002a; Chapman et al. 2003; Pizzari & Bonduriansky 2009) and facilitate speciation (Arnqvist et al. 2000; Wilkinson & Birge2009). In this thesis I adopt the view that cooperation and conflict (in particular sexualconflict)aretwosidesofthesamecoin.Muchworkonanimalcooperation refers to single interactions between two individuals (or an individual and an experimentalapparatus)(Brosnan&deWaal2003;Westetal.2006;Jensenetal. 2007; Dreber et al. 2008; Antal et al. 2009; Helbing & Yu 2009). Jensen et al. (2007),forinstance,describehowtwochimpanzees, Pantroglodytes ,may ormay notcooperatewitheachothertoobtainfooditemsfromanexperimentalapparatus bypullingoneropeeach.Theyshow,inanultimatumgame,howchimpanzeesare insensitivetofairness,thusdistinguishingthemfromsocialorganisationsinhumans. Butalsotheinteractionsbetweenmembersofanextendedfamily (i.e. cooperative breeding,Komdeur1992;CluttonBrocketal.2002;Burkartetal.2007;Hatchwell 2007;Sharpetal.2008)receivesalargeamountofattentionfromresearchers.Inthis thesis my focus is on breeding systems, and I argue that sexual conflict and

12 cooperation are two key concepts, and both are needed to reveal the diversity of breedingsystems. SEXUALCONFLICTANDCOOPERATIONINPENDULINETITS Thesubfamilyofpendulinetits(Remizinae,smallpasserinewithabodymass of612g,thatbuildacharacteristiccomplex,domednest(Crampetal.1993;Harrap &Quinn1996;Madge2008))isanexcellentaviantaxontoinvestigatethepotential causes and implications of sexual conflict and cooperation. Penduline tits exhibit diverse breeding systems ranging from uniparental care by either sex with a substantial proportion of nests deserted by both parents (Eurasian penduline tit, Remiz pendulinus ), uniparental care by the female (Chinese penduline tit, Remiz consobrinus ), to biparental care and facultative cooperative breeding (Cape penduline tit, minutus , Harrap & Quinn 1996; Dean 2005; van Dijk, RE, Pogány, Á, & Székely, T. unpubl. data, see also Chapter X; Appendix IV ). Remizinae breed throughout Eurasia and Africa in various habitats from reed marshes with abundant resources through to relatively poor, arid semideserts (Harrap&Quinn1996;Madge2008; ChapterX ). OUTLINEOFTHETHESIS InthisthesisIfocusonthebeststudiedspecieswithinthesubfamily,theEurasian penduline tit, Remiz pendulinus . This species is characterised by intense sexual conflictoverparentalcare:bothparentsappeartobenefitfromdesertingratherthan caring for the offspring in terms of reproductive success (Szentirmai et al. 2007; ChapterV ).Onlyoneparent(eitherthemaleat520%ofnests,orthefemaleat45 70% of nests) incubates the eggs and rears the young. Interestingly, these percentagesdonotaddupto100%,sincesome3040%ofnestsisdesertedbyboth parents possibly due to the intense sexual conflict between parents (Arnqvist & Rowe2005;Szentirmaietal.2007;thisthesis).Afterdesertion,manyparentsremate sothatbothmalesandfemalesmayhaveuptosixmatesinagivenbreedingseason (Persson&Öhrström1989;Szentirmaietal.2007;thisthesis).Biparentalcarehas rarely been reported in Eurasian penduline tits (see Schönfeld 1994 and Chapter VIII ).Bycalculatingtheexpectedversusobservedfrequenciesofdifferentcaretypes inthepopulation,McNamaraetal.(2002)concludedthatthedecisionsofmalesand females(careordesert)areunlikelyindependent.

13 Chapters I – II introduce the main concepts and issues considered in the thesis, review postfertilisation reproductive strategies, and discuss how animals resolve sexual conflict over care, the implications thereof and the mechanisms of parentaldecisions. Chapters III – VI focus on the question of how male and female parents interactanddecidewhethertocarefortheoffspringortodesertthe clutch .Using behaviouralobservationsandtimelapsedphotosatthenest,Iinvestigatetheprocess of desertion during the crucial few days before desertion takes place, and analyse whetherparentssignaltheirintentiontodesert( ChaptersIII–IV ).Ithendevelopa gametheoretical model to understand the patterns of parental care in Eurasian pendulinetitandasktowhatextentthereproductivestrategiesarepredictedbythe payoffs from caring and deserting ( Chapter V ). I also investigate what causes the apparentsexdifferenceinreproductivepayoffsbytestingwhetherfemalesprovide bettercarethanthemales( ChapterVI ). Chapters VII and VIII show how the decision about parental care may be influencedbytheenvironment .Itesthowthestructureofthehabitat(aproxyforthe availability of food and nest material, Chapter VII ) and breeding density (likely associatedwithanumberofsocialvariablessuchas the availability of mates and competitiveinteractions, ChapterVIII ),predictpatternsofparentalcareindifferent populationsofpendulinetits. ChapterIX comparesthebreedingsystemsofEurasianpendulinetitandCape pendulinetits,asociallymonogamousspecies.Icomparethetwospeciestotesta priori predictionsofsexualconflicttheoryandinvestigatethepotentialimpactsexual conflictovercaremayhaveontheevolutionofmorphologicalandbehaviouraltraits . Additionally, I test whether females mated to attractive mates may incur a cost in termsofreproductiveoutput,aspredictedbysexualconflicttheory. ChapterX providesasynthesisofmymajorresultsanddiscussesthemina moregeneralframework.Potentialfutureavenuesarealsoproposedhere.

14 CHAPTERII POSTFERTILISATIONREPRODUCTIVE STRATEGIES RenéE.vanDijk&TamásSzékely EncyclopediaofLifeSciences(ELS) (2008) Authors’contributions REvD :studydesign,literaturereview,manuscriptpreparation TS :studydesign,literaturereview,manuscriptimprovement

15 ARTICLEDEFINITION Animals have diverse strategies that improve the success of their offspring after mating (i.e . postfertilisation reproductive strategies); the most common ones are parental care and offspring provisioning. The type, mode and duration of parental careexhibitedbymalesandfemalesdependonsocialandnonsocialenvironment, andongeneticandphylogeneticconstraints.Weoverview five rapidly developing areas of parental care research, and conclude that sexual conflict between parents, socialinteractionsandenvironmentalconditionsplayimportantrolesindetermining postfertilisationreproductivestrategies.

16 INTRODUCTION Postfertilisationreproductivestrategieshaveabroadremit,andmayincludeaspects of an individual’s behaviour toward its offspring, mate, and other members of its socialenvironment.Inthisreview,however,wefocusontheinteractionsbetween parents and their offspring, since this research is rapidly advancing and integrate results from various disciplines including genetics, behavioural ecology and phylogenetics. We focus on families, and view family life as rife with conflicts. Withinafamily,theremaybe(i)aconflictbetweenthemaleandthefemaleparents (sexualconflict)sincethebenefit,intermsoffitnessthroughtheoffspringisshared bybothparents,whereaseachparentpaysthecostofcareprovisioningitself(Trivers 1972;Balshineetal.2002),(ii)parentoffspringconflict since the offspring’sbest interestistotakeasmuchresourceastheycanget,whereastheparents’interestisto balancetheresourcesbetweentheircurrentoffspringandthosetheymayproducein future (Trivers 1974; Lessells & Parker 1999), and (iii) conflict between siblings, sinceeachindividualoffspringisexpectedtopromoteitsownexistenceoverthatof its brothers and sisters (Mock & Parker 1997). These conflicts may reduce the optimumreproductiveoutputofthefamilies(Parkeretal.2002).Theoutcomeof theseconflictswillbeinfluencedbythesocialandnonsocialenvironment(Kilner 2002). In this review we focus on the core family, and do not discuss extended familiessuchasincooperativebreedersandineusocialinsects(Keller&Chapuisat 2002). Inthisreviewwefocusonconflictsbetweenparentsovercare(Houstonetal. 2005), or, as frequently – and incorrectly – referred to as ‘parental investment’ (CluttonBrock1991).Theterm‘parentalinvestment’isoftenincorrect,sincemany studieshavereferredtoitastheenergy‘expended’ontheoffspringbytheparents. However,Trivers(1972)defineditasthecostintermsoffuturereproduction.The latterisextremelyhardtomeasureinnature.Aconflictbetweenparentsovercare seems inevitable, and likely to have a profound influence on postfertilization reproductivestrategies.Theoptimalamountofcarebyaparentisoftenlessthanthe carethatitwouldpreferfromitsmate,unlesstheanimalsonlybreedonceintheir lifetime (‘semelparity’), or there is full and lifelong monogamy between a pair, which rarely occurs in nature (Lessells 2006). Yet, a male and a female have to cooperate,atleasttosomeextent,inordertoreproduce.Theenvironmentislikelya majordeterminantofthemanifestationoftheconflict,sinceitinfluenceshowmuch anindividualparentmaygainbyreducingitsparentalcareandsavingresourcesfor

17 futurematings(i.e. effectsofsocialenvironment),andhowmuchtheparentsneedto careinordertosuccessfullyraisetheoffspringinagivennonsocialenvironment. Oneparentmaycompletelywithholdcare:leaveitspartnerandoffspring(‘offspring desertion’)andsaveitsresourcestobreedinfuture. Sexual conflict over care may be resolved over evolutionary time, or on a contemporary time scale. An evolutionary solution, e.g. ‘femaleonly care’, may emergeifonesexispreadaptedtoprovideparentalcare.Onlyfemalemammals,for instance,havemammaryglands,somalescannotsuckleyoung.Sincesucklingisan essentialpartofoffspringcare,femalemammalscannotshiftallcareprovisioningto themales.Incontemporarypopulations,however,conflictresolutionmaybeplastic, sothatthesplitofcareprovisioningbetweenmalesandfemalescanvarybetween individualsandpopulations. Parental care is femalebiased in many organisms, although various ecologicalconditionsunderlieasuiteofphylogenetictransitionsinparentalcareto malebiasedcareortobiparentalcareinawidevarietyofvertebrates(Reynoldsetal. 2002).Phylogeneticcomparativeanalyses,provideuniqueinsightsintotheevolution of parental care on an evolutionary timescale, whereas studies of contemporary populationsinthefieldorlaboratoryallowustotestwhichvariablesareimportantin moulding a species’ breeding system. For example, shorebirds and relatives (Charadriiformes)exhibitdifferentlevelsofmalecareandfemalecare,includingfull careprovisioningbybothparentsuntiltheyoungfledge.Amajorcomponentofthis interspecificvariationisoffspringdemand;speciesthathavedemandingyoung(i.e . semiprecocialchicksthatbegfoodfromtheirparents)invariablyexhibitbiparental care,whereasshorebirdswithlessdemandingyoung(i.e. precocialchicksthatfind foodforthemselves)mayhaveuniparentalcarebythemaleorthefemale.Within thisphylogeneticconstraintbroodcarebymalesandfemalescanbevariable:atlow population density female Kentish plovers desert the brood to seek a new mate, whereasathighpopulationdensitythefemalestayswiththebroodandhelpthemale todefendthechicksfromneighbours(Kosztolányietal.2006). WHICHSEXSHOULDPROVIDECARE? Biparental care is rare in animals, apart from cichlid fishes, birds, and primates (CluttonBrock1991;Reynoldsetal.2002).Inmany vertebrates there is a female bias in parental care (Queller 1997). Phenotypic plasticity, the ability to adopt variousstrategiesundervariableconditions,allowsindividualstoadoptthestrategy

18 thatoptimisestheirfitnessinvarioussocialandnonsocialenvironmentsleadingto diverse breeding systems within a population. For example, a high abundance of food,lowpredationrates,andarelativelymildclimate,mayallowoneparenttoraise offspringsuccessfully.Insuchascenario,oneparentdecreasesitsparentalcareand may ultimately desert, leaving the partner to care for the offspring. The deserting parentsavesthecostsofcareintermsoftimeandenergy,andtheseinturnmaythen be invested in a new batch of offspring (Fig. 2.1). For instance, in the Eurasian penduline tit, Remiz pendulinus (Fig. 2.2) parental behaviour is phenotypically plastic:desertingthenestandmateincreasesthereproductivesuccessforboththe maleandthefemale.Desertion,however,isharmfulforthedesertingparents’mate, sinceitreducesthereproductivesuccessofitsmate(Szentirmaietal.2007).Asa resultofintensesexualconflict,arangeofbreedingsystemsareobservedwithina population:somenestsarecaredforbyoneparentonly(eithermaleorfemale)and aboutonethirdofclutchesisdesertedbybothparents.Inbiparentallydesertednests alloffspringdieasubstantialcostofantagonisticinterestsofmalesandfemales. Figure 2.1 Central to the question how much care a parent should provide is the tradeoff between current and future reproduction. In general,ifamalehastheopportunity to decrease parental care (A) this may constrain the possibility for his partnertodoso,andthefemalemay evencompensateforthelackofcare by the male. By decreasing paternal care,themalemayenhancehisown reproductive output by acquiring multiple mates, or by enhancing his own longevity, thus enhancing his future reproductive output. If the female,ontheotherhand,decreases parental care, this will negatively affectthemale’sreproductiveoutput. If the female has the opportunity to lower parental care (B), the effects are a mirror image. An increaseinparentalcareby eitherparent isexpected to reduce its future reproductive output. The focalsex(A:male,B:female)isinitalicsinbothdiagrams.(seeSzentirmaietal.2007)

19 Figure 2.2 The Eurasian penduline tit, Remiz pendulinus , has an extremely variable breeding system among birds: incubation and feeding of nestlings is carried out by either the male, or the female, whereasabout3040%of nests isdesertedbybothparents.Thisdiverse breedingsystemappearstobedrivenby intense sexual conflict over care. (PhotographR.E.vanDijk)

Whichparentmaydesert,however,islikelyto depend on the social environment (such as the number of available mates) that influences benefits of desertion. If rematingopportunitiesarelow,thedesertingparentmaynotbeabletostartanew brood,sothatitmightbebetteroffassistingitspartnerinraisingtheoffspring.In addition, if mating opportunities are limited for males, then females may demand paternalcareinreturnformatingaccess.Gametheoreticmodelsrevealedimportant insightsabouttheinteractionsbetweenpairsandtherestofthepopulation(Alonzo& Warner 2000; McNamara et al. 2000), although it is not yet known how the feedbacks between breeding and nonbreeding population members work out in nature. HOWMUCHCARESHOULDPARENTSPROVIDE? Broodsize Inmanyanimalstheoffspringrequirelittleornoparentalcare.Theseincludespecies that exhibit precociality (the offspring leaves the nest after hatching, often still guardedandpartlyfedbytheparents),andinterandintraspecificbroodparasitism (theoffspringisfullyraisedbyanalloparent; e.g.commoncuckoo, Cuculuscanorus , andcommongoldeneye, Bucephalaclangula ,respectively)foundamongavarietyof taxa including birds, fish and insects. Generally, however, parents pay a cost of raising offspring (Fig. 2.1), and studies have pointed out various costs of reproductionintermsoffutureoffspringforawiderangeoftaxa.Parentsarethus

20 likelytotradeofftheamountofcaretheyinvestinacurrentbroodagainstthecare infutureoffspring(Fig.2.1). Onesolutiontothistradeoffistooptimisebroodsize. Largerbroodswill resultinahigherreproductiveoutput,whichmaycomeatacostinfuture.Also,care peroffspringgenerallydeclineswithlargerbroods,whichlimitsthesurvivalofthe offspring.Furthermore,largerbroodsnotonlymeangreaterdemandsontheparents’ provisioning,butbroodsizealsocommonlyaffectsbrooddefence,sinceitwillbe more worthwhile for the parents to defend a larger brood than a small brood (CluttonBrock1991). Theoptimalbroodsizemaybeconfoundedbyamultitude of variables. If foodavailability,forinstance,isunpredictable,theoptimalbroodsizeislikelytoo. Onestrategytogetaroundunpredictabilityisfacultativesiblicide(Mock&Parker 1997). Under favourable conditions the parents raise multiple offspring within a brood,whereasiffoodisscarcetheparentsdeliveralimitedamountoffoodand competitionbetweensiblingsmayreachlethallevels. Siblingcompetitionmayalsobeinfluencedbymaternaleffects.Mothersmay allocatedifferentlevelsoffoodresourcesorhormonessuchastestosteronetotheir offspring. The differential allocation of food or deposition of testosterone can compensateforadelayingrowthoflaterbornoffspring,enhancingtheirabilityto competeforfoodwiththeearlierbornandthusoftenlargerandmorecompetitive siblings(Kilner2002). Broodsexratio Parentscanalsoadjusttheamountofcareinrelationtothesexratioofthebrood. The costs of raising sons or daughters may be different, and may thus have a differentialeffecton,forinstance,survivaloftheparents.Insexuallysizedimorphic speciestheoffspringofonesexmaybemorecostlytoraisethanoffspringofthe other,albeitsexualsizedifferencemayprovideapoorestimateofparentalcare,due to sexual differences in body composition and advanced growth (CluttonBrock 1991).Nevertheless,thefitnessoftheoffspring,andthusthatoftheparents,may vary with offspring sex. In polygamous species, for instance, parents of higher quality may benefit more from investing in offspring of the sex that may attract multiple mates, since the breeding success of the sex with the most variable reproductivesuccesswilldependmoreonadultsize and attractiveness (Trivers & Willard 1973). The differential effect of parental care on the fitness of sons and

21 daughters probably varies widely, although the variance in reproductive success tendstobehigherinmalesthaninfemales(CluttonBrock1991).Additionally,ifthe offspringisphilopatricandcooperateswiththeparentsafterindependence,thecosts andbenefitsofcareforoffspringremainshardtoestimate(CluttonBrock1991). Parentageandparentalcare Certainty of parentage, i.e. the genetic share a parent holds in its offspring, is expectedtoinfluencetheamountofparentalcare,andthusmaydifferbetweenmales andfemales.Malesoftenincreasetheirreproductivesuccessfromengaginginextra paircopulations,andtheyguardtheirmatetoensurethattheywillnotbecuckolded inthebroodtheysharewiththeirsocialpartner.Females,however,maybenefitfrom extrapairyounginavarietyofways:byhavingmoregeneticallydiverseoffspring, gaining direct benefits such as access to territories of several males, or having multiplemalescontributingtoparentalcare.Theoutcomeoftheconflictsbetween sexes,inconjunctionwiththecertaintyofpaternity,maypredisposefemalestocare moreoftenthanmales(Queller1997). Empiricalstudiessupporttheconflictinginterestsofsexesoverparentage;for instance male bluefooted boobies, Sula nebouxii , adjust their willingness to care basedoncertaintyoverpaternity.However,otherstudiesdidnotfindrelationships between parentage and paternal care, and the exact relation is not clear and needs furtherinvestigation(Sheldon2002). DOPARENTSNEGOTIATEOVERCAREPROVISIONING? Theoptimallevelofprovisioningbyoneparentlikelydependsonthebehaviourits mate. One approach to investigate the optimal level of care if to use discrete behaviours (care or desert) in desertion games, oracontinuousadjustmentofcare (‘parental effort game’). These games may ultimately lead to full cooperation betweentheparents,orresultinbiparentaldesertion(Szentirmaietal.2007). Thebeststrategypredictedbythesegametheoreticmodelsmaydependon various variables, including the behaviour of other members in the population (McNamara et al. 2000), and the attractiveness of the partner. With regards to attractiveness,however, observationsandexperimentsprovidedcontrastingresults, sincesometimesattractivemalesincreasedtheircareprovisioning(e.g .innorthern cardinal, Cardinaliscardinalis ,(Linvilleetal.1998),consistentwiththeprediction of the good parent hypothesis), whereas in other species attractive males reduced

22 theirparentalprovisioning(e.g.inzebrafinch, Taeniopygiaguttata ,(Burley1988), consistentwiththepredictionofthedifferentialallocationhypothesis).Alimitation of existing studies, however, is that they assume that attractiveness can only influencemalebehaviourandfemaleresponsetomalequality;inreality,atwoway processislikelyinwhichfemaleattractivenessandmaleresponsealsomatter. Thecurrenciesunderlyingsuchstatedependentdecisionsmaybeinvolvedin aprocessofmanipulationofthepartner.Aparentmay,forinstance,handicapitself soastomanipulatethepartnertoworkharder(Smith&Härdling2000;Bartaetal. 2002).Theideaofpartnermanipulationisconsistentwiththelogicofsexualconflict theory (Lessells 2006), although as yet, there is little direct evidence on partner’s manipulationintheparentalcarecontext,andthus experiments are needed to test thesetheoreticalideas. Mates may not decide independently over parental care. In the Galilee St Peter’sfish, Sarotherodongalilaeus ,forinstance,bothparentscircleovertheeggs afterfertilization,beforeonepicksuptheeggsformouthincubation.Duringcircling theparentsmaymonitoreachother,andpossiblynegotiateovercare.Wearguethat signalling an intention to reject care provisioning (and deserting) may not be evolutionarilystable,becausethiswouldallowthematetoretaliatebydesertingasa preemptivestrike. Shouldparentscompensateforthelackofcarebytheir partner (Fig. 2.1)? The parental effort game (Houston & Davies 1985) predicts that only partial compensationshouldleadtobiparentalcarebeinganevolutionarilystablestrategy, whereasfullorovercompensationislikelytoleadtooneparentdoingallthework. Empirical studies provided various results from no compensation to full compensation (Houston et al. 2005). It appears that a reason for the different outcomesofexperimentsistheamountofinformationavailabletotheparentsabout thedemandsofthebrood(McNamaraetal.1999;Johnstone&Hinde2006). PARENTALBEHAVIOUR:NATUREANDNURTURE Evolutionbynaturalselectioncanonlyoccurifatraithasadditivegeneticvariation andisgeneticallyheritable,i.e. aproportionofphenotypicvariationinapopulation isattributabletogeneticvariationamongindividuals.Studiessuggestthatparental behaviourisconsistentforagivenparent(i.e .repeatable),andmayhavealow,albeit significant, heritable component. Heritability of brood feeding rates, for instance, varies between no heritability and high heritability in birds, with males showing

23 higherheritabilitythanfemales(MacColl&Hatchwell2003;Nakagawaetal.2007), andhelpingrelativestorear younghasaheritablecomponentinwesternbluebird, Sialiamexicana (Charmantieretal.2007).Notethattheseheritabilityestimatestake into account some of the apparent environmental effects such as the number of chicks in a nest. It is usually assumed that the correlations between parental behaviourandthebehaviouroftheiroffspringwhentheygrowupareduetoshared genes,however,thismaynotbestrictlytruebecausebehaviourcanbelearntfrom parents, passed on nongenetically from relatives via social inheritance, or due to maternal effects, e.g . amount of hormones deposited in the eggs and social environmentduringrearingmayimprintoffspringbehaviour. Experimental manipulations (removals, handicapping,see above)showthat parentscanadjustparentalresponsestosocialandnonsocialenvironment;therefore, itisveryunlikelythatparentalcareisfullydeterminedbygenes.Anelegantstudy conclusively supporting the influence of environment on parental behaviour was carriedoutbytranslocatingbreedingSeychelleswarbler, Acrocephalussechellensis , from one island where the population was at carrying capacity and exhibited high incidenceofhelpingbehaviourintoanewislanddevoidofwarblers(Komdeuretal. 1995). Initially,nohelpingbehaviour wasobservedonthenewisland,butasthe territoriesbecamesaturatedhelpingappearedandbecamecommon. HORMONALMECHANISMS Parentingisanentirerepertoireofbehaviours,notasinglebehaviour(AdkinsRegan 2005).Parentingstrategiesarediverse,andthedifferencesbetweencloselyrelated speciessuggestneitherparentalbehaviouritselfnortheunderlyingmechanismsare homologous.Eventhoughthephysiologyandneuroanatomyofparentalbehaviour havebeenwellstudiedinrats,rabbits,andsheep,wedon’tknowtherelevanceof theirfindingstoothermammalsortononmammaliantaxa. Hormonesdonot‘cause’parentalbehaviour,rathertheyprimetheorganisms tocarryoutcertaintasksandmodulatebehaviour;forinstanceexperienceingiving birth and rearing young, sensory stimuli from the pups, and appropriate hormone levelsmayallbeneededtoelicitmaternalbehaviourinNorwayrat.Infemalerats, hormonesofpregnancy,particularlyoestrogenandprogesterone,primethebrainto promoteacceptanceofoffspring(Young&Insel2002).Thisactivationisfocussed onspecificareasofthebrain(includingthemedialpreopticarea),andincreasethe sensitivityofreceptorstoprolactinandoxytocin.Theprecisemechanismbywhich

24 prolactinandoxytocinleadtomaternalactionsarenotknown,althoughstudiesof knockoutmiceshowthatfemaleslackingfunctionalprolactinreceptorfailtoretrieve pups whereas females having two normal copies of the prolactin receptor gene exhibitnormalpupretrievalbehaviour. In female voles oxytocin elicits maternal behaviour as in mice and rats, althoughoxytocinalsoplaysaprominentroleinregulatingthecapacityoffemalesto form a pair bond with her mate (McGraw et al. 2009). In socially monogamous prairie voles, Microtus ochrogaster , females display a partner preference after matingandcohabitationwithamale.Oxytocinreleaseduringcopulationorinfusion of oxytocin into the brain during cohabitation with a male accelerates the developmentofpartnerpreferences. Although paternal care is more common in teleost fish and birds, it is probably best studied in small mammals, particularly in voles. It would be convenienttothinkofmalecareastheantagonist modulation in females,but this does not seem to be the case. Studies in prairie voles suggest vasopressin, a neuropeptidecloselyrelatedtooxytocin,isimportantforpaternalbehaviour(Young & Insel 2002), since vasopressin injected into a males’ brain increased paternal behaviour, whereas vasopressin antagonist decreased it. Although oxytocin and vasopressin are different neuropeptides, they only differ by two amino acids, and probably originated from a common ancestral gene. Oxytocin regulates female parentingandpairbondingbehaviourswhilevasopressinappearstoservethisrolein males.Variationinthelocalizationofoxytocinandvasopressinreceptorsespecially in regards to highly repetitive DNA sequence upstream of vasopressinencoding receptorthatislonginmonogamousprairievolesbutshortinpromiscuousmeadow and mountain voles Microtus montanus (Hammock & Young 2005) appear to contribute to differences between species and individuals in regard to social behaviour. Studies beyond these wellstudied voled, however, in other species of volesandinprimatesfoundnoconsistentrelationshipbetweenmicrosatellitelength andmatingsystem(Finketal.2006). Studies of voles, rats, and mice suggest several important points. Firstly, steroidsandpeptidesaremoreimportantfortheonsetofmaternalbehaviourthanfor itscontinuedmaintenance.Secondly,sinceseveralpeptides,steroidsandproteinsare involved in regulation of maternal behaviour, it is futile to seek THE maternal hormone(AdkinsRegan2005).Thirdly,itisimportanttomoveawayfromtheone gene–onebehaviourparadigm–tounderstandthecascadeofcellularactionsthat

25 alterneuralpathwayswhichresultsinbehavioural change (Young & Insel 2002). Finally, although oxytocin and vasopressin act in distinct brain regions and are involved in female and male parental behaviour, respectively, they act within the samebraincircuit(McGrawetal.2009).Therefore,femalesandmaleshaveevolved differentparentalcarestrategiesduetodifferenthormonalregulation.Thesemaybe accomplishedbychangingtheresponsivenessofthesameneuralcircuitinthebrain. CONCLUSIONSANDOUTLOOK Wedrawthreemajorconclusionsfromthisoverview.Firstly,wearguedthatconflict betweenparentshasamajorinfluenceoncareprovisioning.However,cooperation should also influence care, and full cooperation between parents is important for raisingyounginmanyspecies.Therefore,animportantaspectforfuturestudiesisto establish the relative roles of conflict and cooperation in parental care evolution. Secondly, experiments suggest that parental effort is not fixed: parents can adjust their effort if they need to. The outcomes of these experiments, however, are conflicting,anditisnotunderstoodwhyparentscompensateinsomespeciesbutnot inothers.Thirdly,socialtraits–suchaspostfertilisationreproductivestrategies– are influenced by both genetic and environmental effects. It would be naïve to assumeoneoftheseis‘moreimportant’thantheother, rather, we anticipate their interactionproducesthe diverseparentalcaresystemsweseetoday.Teasing apart thesesophisticatedinteractionsmaysignalanewaura,sociogenomics(Robinsonet al.2005).Finally,wenotethatparentalcareandbreedingstrategiesofmanyanimals –particularlytropicalspecies–havenotbeenstudiedindetail,andweanticipate major advances in natural history of postfertilization reproductive strategies by discovering new species and investigating their breeding ecology. Given the predictedlossofasubstantialnumberofspeciesinthenearfuture,thetaskoffield ecologists, sociobiologists and behavioural geneticists to discover and understand biodiversityismoreurgentthanithaseverbeenbefore.

26 FurtherReading Balshine S, Kempenaers B, Székely T (eds) (2002). Philosophical Transactions of theRoyalSocietyLondonBBiologicalSciences 357 :237403.SpecialTheme Issueonparentalcare. Chapman T, Arnqvist G, Bangham J, Rowe L (2003) Sexual conflict. Trends in EcologyandEvolution 18 :4147. HoustonAI,SzékelyT,McNamaraJM(2005)Conflictoverparentalcare. Trendsin EcologyandEvolution 20 :3338. Reynolds JD, Goodwin NB, Freckleton RP (2002) Evolutionary transitions in parental care and livebearing in vertebrates. PhilosophicalTransactionsof theRoyalSocietyLondonBBiologicalSciences 357 :269281. Tallamy,DW(1999)Childcareamongtheinsects. ScientificAmerican 280 7277.

27 CHAPTERIII SEXUAL CONFLICT OVER PARENTAL CARE IN PENDULINE TITS REMIZ PENDULINUS : THE

PROCESSOFCLUTCHDESERTION RenéE.vanDijk,IstvánSzentirmai,JanKomdeur&TamásSzékely Ibis(2007)149:530534 Authors’contributions REvD :studydesign,datacollection,statisticalanalyses,manuscriptpreparation IS :datacollection,manuscriptimprovement JK :studydesign,manuscriptimprovement TS :studydesign,datacollection,manuscriptimprovement

28 ABSTRACT Dothetwoparentsatanestmakesimultaneousdecisionswhethertocarefortheir offspringortodesert?Ifasingleparentissufficientforrearing young,oneparent (typically, the male) may desert and reproduce with a new mate within the same breedingseason,leavingtheotherparentwiththebruntofcare.Sinceeachparentis expectedtomaximiseitsownreproductivesuccess,theinterestsofthetwoparents donotnecessarilycoincide,andasexualconflictover care may emerge. Here we investigatetheprocessofclutchdesertioninasmallpasserinebird,thePendulineTit Remiz pendulinus . Among birds, this species has a remarkably variable breeding system,becauseasingleparent(eitherthemaleorthefemale)mayprovidethefull careoftheyoung,whereasabout30%ofclutchesareabandonedbybothparents. First,weshowthatbiparentaldesertionoccurswithinasingledayin73.7%ofthe clutches(n=14),whereasdesertiondecisionsaresequentialin26.3%oftheclutches (n=5)(malefirst:10.5%(n=2);femalefirst:15.8%(n=3);n=19clutchesin total). Second, we observed the behaviour of both parents before desertion, and investigated whether desertion can be predicted from their behaviour. However, neithersingingnornestbuildingbehaviourpredictedwhetherthemaleorthefemale woulddesert.Wethereforesuggestthatbiparentaldesertionmaybesimultaneousby maleandfemaleinourpopulationofPendulineTits.Furthermore,theparentsdonot appear to signal their intention to desert their mate. We argue that the parents’ interestmaybeactuallytodisguisetheirintentiontodesert.

29 INTRODUCTION Howdoparentsdecidewhichofthemshouldprovidecare? Tounderstandparental behaviour,weneedtoknowthecostsandbenefitsofcaringanddeserting(Clutton Brock1991;Székelyetal.1996),andtheprocessofinteractionsbetweentheparents (Houston&McNamara1999).Whilstdataonthecosts andbenefits of caring are gradually accumulating from several avian species (reviewed by Bart & Tornes 1989;Liker1995;Houstonetal.2005),theunderstanding of parental interactions haslaggedbehind.Mostmodelsofparentalcare(e.g.MaynardSmith1977;Houston &Davies1985)assumethattheparentsmakeasingle and simultaneous decision independentoftheirmate('sealedbid',Royleetal.2002).Theoreticalanalysesshow that,whenthedecisionsarenotsimultaneous,i.e. the male or the female decides beforeitsmate,thishasprofoundimplicationsforthepredictedpatternofcare(Barta etal.2002;McNamaraetal.2002).Whilstthesearguments have firm theoretical foundations,thebehaviouralinteractionsthatleadtodesertionarerarelyinvestigated innature(butseeBeissinger1987;Valeraetal.1997). Weinvestigatedparentalinteractionsinasmallpasserinebird,thePenduline Tit, Remiz pendulinus, (body mass 910 g) that exhibits an unusually variable breedingsystem(Persson&Öhrström1989;Szentirmai2005).Unmatedmalesstart buildingsophisticatednestsandsingtoattractafemale.Maleandfemalefinishthe buildingoftheirnesttogether.Shortlythereafter,oncethefemalehasstartedegg laying,eitherthemale,orthefemaleorbothdesertthenestduringtheegglaying period.Asingleparent(themaleorthefemale)alwaysincubatestheeggsandrears the young (Persson & Öhrström 1989; Valera et al. 1997). The main benefit of desertion is remating and reproducing with a new mate: deserting parents may remate up to five or six times within a single breeding season (Szentirmai et al. 2007). Approximately 30% of clutches are abandoned by both parents before incubation commences, presumably as a cost of the intense race for new mates (Persson&Öhrström1989;Valeraetal.1997;Arnqvist&Rowe2005).Biparentally desertedclutchesaredoomedtofailure.Bydesertingtheclutch,theparentoffloads care to its mate, whereas he (or she) may increase his (or her) own reproductive successbyabandoningtheclutch,andmatingwithanewpartner. Wehadtwoobjectivesinthisstudy.First,wemeasured whether desertion wassimultaneousorsequentialinbiparentallydesertedclutches.Intaxawithinternal fertilisation,suchasbirds,themalereleasesspermbeforethefemalelaystheeggs. Thuswhilstthefemaleformstheegg,themalecanabandonher(Dawkins&Carlisle

30 1976),andthissuggeststhatdesertionfirstbythemalemightbeexpected.Onthe otherhand, Valera etal. (1997) arguedthatfemalePendulineTitscandesertfirst, becausetheyareabletomanipulatethemalesbyconcealingtheinformationonthe progressofegglayingbycoveringtheeggsandexpelling the male from the nest chamber.Second,ifaparentpreparestodesertfirst,he/shemayrevealthisintention. Forinstance,Beissinger(1987)notedthatinSnail Kites Rostrhamussociabilis , in whicheitherthemaleorthefemalecandesertduringbroodrearing,provisioningof nestlingswassignificantlylowerinthedesertingparent.Thusthewouldbedeserter appearstosaveenergybyreducingitsparentalcontribution.Inthisstudy,wetested whether either vocal or nestbuilding behaviour of parent Penduline Tits predicted laterdesertion. METHODS WestudiedthePendulineTitsbetweenAprilandAugustinfourconsecutiveyears (20022005) in southern Hungary (46˚ 19’ N, 20˚ 5’ E) at an extensive fishpond (Fehértó,1321ha)whereapproximately6090malesand4550femalesbredeach yearonthedykesseparating fishpondunits.Thenumber of nests per year varied fromaminimumof158in2005toamaximumof214in2002.PendulineTitswere ringedwithauniquecombinationofcolourringsand a numbered metal ring (see Bleekeretal.2005).Returningratesofindividualsacrossyearsareverylow:Outof 248colourringedmales,only15maleswereresightedinourareainanextyear between2002and2005.Forfemales,outof125colourringedfemales,only9were seeninmorethanoneyear(vanDijk,RE,unpubl.data). Wevisitednestbuildingmalesnearlyeveryotherday(1.8±0.8days[mean ±SD], n =59nests),andwatchedthemforatleast15minutesandcheckedwhether themalewasmatedand,formatedpairs,whichofthemattendedthenest.Fifteen minutes were sufficient to record the presence of parents (if they were still at the nest),sincemalesandfemaleswerespottedatthenestwithin3min41s±5min11s (SD)and6min48s±7min31s,respectively( n =46nestswheredetailedbehavioural observations were carried out). We considered a male to be mated when the pair copulatednearthenest,orwhenthemaleandfemalebuiltthenesttogether.Aparent wasconsideredtohavedesertedtheclutchifitwasnotseenatthenestforatleast twoconsecutivevisits.Noneofthebirdsclassifiedas‘deserted’returnedtotheirnest afterwards. Desertion always took place during egglaying and never before egg layingorduringincubation.Pairbondswereshortandlastedfor4.7±2.6days( n=

31 315nests).Nestswithfemaleonlycarecontainedaclutchof5.8±1.3eggs( n =140 nests),whereasnestscaredforbymalescontained3.5±1.4eggs( n =35nests).109 nestsweredesertedbybothparents.Theclutchsizewasknownfor82biparentally desertednests;thesehad3.0±1.3eggs.19biparentallydesertednestsoutof109 werecheckeddaily,whereastheremainingnestswerecheckedapproximatelyevery otherday.Wetestedwhetheronesexdesertsbeforetheotherinbiparentallydeserted nestsusingabinomialdistributionwith P =0.5.Inthistestmorethanonenestofa given individual in a given breeding season may have been included (out of 98 colourringedmalesinthe109biparentallydesertednests n =22males;outof29 colourringed females in the 109 biparentally deserted nests n = 6 females). However,theconstitutionofpairswasalwaysdifferent. Weobservedthebehaviourofnewlymatedpairsin2003,2004and2005. Theobservationswerecarriedoutfromahideatadistanceof1015mfromthenest, usingbinoculars.Weobservedeachpairforabouttwohourseachday(124±50 minutes, mean ± SD). Observations were alternated for pairs between morning (05:50to–12:40h,CET)andafternoon(11:30to–19:50h),therebycontrollingfor possibleeffectsoftimeofday.Behaviouralobservationswerecollecteduntiloneor bothoftheparent(s)desertedtheclutch.Every20secondsthefollowingbehaviours wererecordedseparatelyforthemaleandthefemalewithinaradiusof10maround thenest:nestbuilding,calling,and,formalesonly,singing.Thepercentageofeach behaviouralscorewascalculatedforeachrecordassumingthatthesebehavioursonly takeplacearoundthenest.Twentyfivenestswereobserved:6werecaredforbythe male,12bythefemale,and7weredesertedbybothparents.At19nestsboththe maleandthefemalewereindividuallycolourringed,whereasatsixnestsonlythe malewasringed.Ofsixunringedfemales,threebredatthesametime,soweare certain that these were different individuals. For the remaining three females we cannotexcludethepossibilitythatweobservedthesameindividualmorethanonce, although this is unlikely given the size of the study population. One observer collectedallbehaviouralrecordsat24nests,whereasonenestwasstudiedbytwo observers.Wefoundnosignificanteffectofseason(i.e .dateofdesertion),observer oryearonthebehaviourofmaleorfemale(MANOVA;all P>0.524). We used multinomial logistic regression models to predict parental care (maleonly care, femaleonly care, biparental desertion) in response to the prior behaviourofthemale(model(a)inTable3.1)orthefemale(model(b)inTable3.1) separatelyascovariates.Boththemodelforthemalebehaviourandthemodelforthe

32 femalebehaviourpredictingparentalcarefittedthedata(Pearson’sGoodnessofFit; male: χ2=45.476,df=42, P = 0.329; female: χ2=50.980,df=44, P=0.218). Statistical analyses were performed using SPSS 11.5.0 and SPSS 12.0.0 for Windows. RESULTS Allnestsincludedinthisstudyweredesertedbyoneorbothoftheparentsduring egglaying.Thepatternofparentalcareatnestsinourpopulationwassimilartothat reportedbyothers(e.g . Franz&Theiss1983;Persson&Öhrström1989):about11% hadmaleonlycare,49% Table3.1. Multinomiallogisticregressionmodelsofparentalcarestrategyinresponseto(a)male behaviourand(b)femalebehaviour(n=25nests,df=1).Separatemodelswereconstructedfor(a) and(b).Thereferencecategoryisbiparentaldesertion.Predictedeffectsizesandstandarderrorsare given. (a) Carestrategy Modeleffectestimate(±SE) Wald P Maleonlycare Building 0.162±0.114 2.003 0.157 Calling 0.309±0.519 0.354 0.552 Singing 0.113±0.476 0.056 0.812 Femaleonlycare Building 0.097±0.103 0.901 0.342 Calling 0.399±0.460 0.751 0.386 Singing 0.553±0.406 1.857 0.173 (b) Carestrategy Modeleffectestimate(±SE) Wald P Maleonlycare Building 0.046±0.061 0.553 0.457 Calling 0.589±1.215 0.235 0.628 Femaleonlycare Building 0.049±0.063 0.621 0.431 Calling 1.582±1.292 1.500 0.221 had femaleonly care, and 40% suffered desertion by both parents (Szentirmai 2005).Ofthe19biparentallydesertednestswhichwecheckeddaily,73.7%( n =14) weredesertedbybothparentsonthesameday,10.5%( n =2)weredesertedfirstby themale,and15.8%( n =3)weredesertedfirstbythefemale(Fig.3.1).Atthose biparentally deserted clutches where one parent deserted first, the other parent

33 alwaysdesertedbythenextday( n =5).Theseresultsareconsistentwiththetotal sample of biparentally deserted nests, including those that were checked approximatelyeveryotherday:78.9%( n =86),11.0%( n =12),and10.1%( n =11), respectively (Fig. 3.1). Thus, the majority of biparentally deserted clutches are desertedbybothparentsonthesameday.Thefrequenciesofnestsdesertedfirstby the male and those deserted first by the female were not different from binomial distribution ( n = 23, P = 1.000). When we took only one nest randomly per individually identified male and female, the pattern remains consistent with our previousresults(bothparentsonthesameday:71.4%[n=10],malefirst:7.1%[n= 1],femalefirst:21.4%[n=3]). The behaviour of neither male nor female predicted which of the parents, maleorfemaleorboth,woulddeserttheclutch(Table3.1).

100

80

60

40 Percentage of nests

20

0 Male First Simultaneous Female First Figure 3.1. Percentage of Penduline Tit nests deserted by the male first, female first and by both parents simultaneously using nests that were checked daily (filled; n=19nests),orlessregularly (open; n =109nests). DISCUSSION BiparentaldesertionisarapidprocessinthePendulineTit,sincemostbiparentally desertednestsweredesertedbybothparentsonthesameday.Inourpopulationof Penduline Tits, neither sex consistently initiated desertion. This result is different

34 from Persson and Öhrström’s (1989) observation of a Swedish population which suggested that in the biparentally deserted nests it was always the female that deserted first, since they never observed a female at a nest after the male had deserted.Interestingly,Valeraetal.(1997)reportedadifferentpatterninanAustrian populationofPendulineTits(seetheirTable1,page24):malesdesertedearlier(1.6 ±0.1daysafterthestartofegglaying)thanfemales(2.3±0.1,MannWhitneyU, Z = ± 3.403, P < 0.001). Note that Valera et al.’s data appear to include both uniparentallyandbiparentallydesertednests,sotheyarenotdirectlycomparableto our data (see Fig. 3.1). Nevertheless, the comparison between these three detailed studies suggests that there are differences between populations in the process of desertion. Although we found no consistent pattern within the Hungarian population, someindividualsmayconsistentlydesertearlierthanothers.Forinstance,attractive males (i.e. males with a larger mask that have a significantly higher chance of attractingafemaleandneedashortertimetoattractafemalethanmaleswithsmaller masks (Szentirmai 2005)) may desert their mate sooner than unattractive ones. Recently, Bleeker et al. (2005) showed that parent Penduline Tits in good body condition are more likely desert than those in poor condition. Thus parental care strategy(desertorcare)isatleastpartiallystatedependent. One may expect an arms race for desertion between male and female PendulineTits,sinceeachparentmaydesertfirstasapreemptivestrike,inorderto obligeitsmatetostayandcarefortheoffspring.Suchpreemptiveactionshavebeen analysedingametheoreticmodels(Lazarus1990;Bartaetal.2002),althoughthe relevanceofthesetheoreticalmodelsinnaturalpopulationsneedsfurtherscrutiny. Furthermore,desertioncanbeviewedasaninteractiveprocessinwhichtheparents negotiate over care provisioning (McNamara et al. 2002). In such an arms race it may be a good strategy to disguise the intention to desert. Indeed, from our behaviouralobservations,itseemsthatPendulineTitparentsdonotsignalorreveal anyintentiontodesertintheirbehaviourclosetothenest. Inconclusion,weshowedthatclutchdesertionisarapidprocessinPenduline Tits, since the decision (care/desert) is made withinaday,or atmostwithintwo days, at biparentally deserted nests. We need further studies to establish whether desertionstrategiesareconsistentforagivenindividual,andtoevaluatehowstate dependencyinfluencesparentalstrategies.Futureworkwithanincreasedresolution, e.g. usinganintervalrecordingcameratorecordthebehaviourofparentsattheir

35 nestoverfullday,willbeimportanttorevealthesubtleinteractionsbetweenmales andfemalesduringthecriticaldaysofpairformationandegglaying. ACKNOWLEDGEMENTS WethankGáborBakacsi,DušanBrinkhuizen,RobGordijn,KennethHayes,SzabolcsKajdocsi,Arno waKang’eri,OtíliaMenyhárt,LídiaMészárosandArjenPilonforassistanceinthefield.Kiskunsági NationalParkandSzegedfishKft.kindlypermittedustoworkandliveinFehértó,Hungary.Franjo Weissingprovidedusvaluablestatisticaladvice.WethankMichaelBrooke,JimReynoldsandone anonymous reviewer for comments on a previous version of this paper. Financial support was provided by Marco Polo Fonds and Groninger Universiteitsfonds to REvD, and grants to TS (Hungarian Scientific Foundation OTKA T031706, T043390, The Royal Society 15056 and the BBSRCBBS/B/05788).TSwasalsosupportedbyTheLeverhulmeTrust(RF/2/RFG/2005/0279).

36 CHAPTERIV EURASIAN PENDULINE TITS CONCEAL THEIR INTENTIONTODESERTTHEIRMATE RenéE.vanDijk,JanKomdeur&TamásSzékely Manuscript Authors’contributions RevD :studydesign,datacollection,statisticalanalysis,manuscriptpreparation JK :manuscriptimprovement TS :studydesign,manuscriptimprovement

37 SUMMARY Shouldparentsadvertiseorconcealtheirintentionstoprovidecare?Parentsare expectedtosignaltheirabilitiestoprovidegoodcarefortheyoungsincethismay make them more attractive and enhance the reproductive effort of their mate. In manyanimals,however,oneparentabandonstheyoung.Thisiscostlytothemate, becausethedesertedparentthenbearsthefullcostofcareprovisioning.Inthelatter situationsignallingbadparentingunlikelyevolves,becauseitwouldnotbenefitthe wouldbe deserter. We tested these propositions in a small passerine bird, the Eurasianpendulinetit Remizpendulinus thathasahighlyvariablebreedingsystem: both males and females are sequentially polygamous (up to 6 mates in a single breedingseason),andonlyoneparent(eitherthemaleorthefemale)incubatesthe clutchandrearsthechicks.Herewefocusontheshorttimewindowofegglaying, duringwhichdesertiontakesplace.Ontheonehand,wepredictedthatthebehaviour of wouldbe deserter changes nearer desertion, for instance he/she reduces the activitiesaroundthenest.Ontheotherhand,desertersmaydisguisetheirintentionto desertgiventhatdesertioniscostlytotheirmate.Weinvestigatedthebehaviourof 20pairsofpendulinetitsinsouthernHungary.Byanalysing232816videoframes weshowthatnestattendancepriortodesertiondoesnotpredictoffspringdesertion by either the male or the female. This result is consistent with the argument that wouldbe deserters should conceal their likely action in future. An alternative proximatelevelexplanationisthatdesertionisarapidprocessperhapstriggeredby internalorexternalstimuli.Pendulinetitsrespondinstantaneouslytothesestimuli, andthisprocessissofastthatthematehasnotimetoexhibitcountermeasures.

38 INTRODUCTION Thebehaviourofthepartnerisexpectedtoplayanimportantroleinthedecision howmuchtoinvestinacurrentbrood(Houston&Davies1985;McNamaraetal. 2002;Houstonetal.2005; ChapterII ).Additionally,giventhecostsofparentalcare in terms of time and energy (CluttonBrock 1991), the interests of the individual maleandfemaleparentasforhowmuchcaretoprovideareoftendifferent(‘sexual conflictoverparentalcare’;Trivers1972;Houstonetal.2005).Parentalinteractions during which parental care may be negotiated have been suggested to play an importantroleinresolvingtheconflict(Houston&McNamara1999;McNamaraet al.1999;Johnstone&Hinde2006).Theoutcomeofthesenegotiationsandtheextent towhichparentsrespondtoeachotherappearstovarywidelybothacrossandwithin species,fromcompleteinsensitivitytotheother’sbehaviour(e.g.Schwagmeyeret al.2002;Steinegger&Taborsky2007)toaclearresponseinapositive(‘matched response’; Griggio et al. 2004; Hinde 2006) or negative direction (‘compensatory response’; Houston & Davies 1985; Griggio & Pilastro 2007; Kosztolanyi et al. 2009).Onepossibleexplanationistheantipodalpredictionsastowhetherparents shouldadjusttheirbehaviourinrelationtofutureparentalinvestment(e.g.Kokko 1998; Osorno 1999; de Heij et al. 2006), or whether they would be better off disguising their decision over parental care. In snail kites ( Rostrhamus sociabilis ) desertingparentsprovisionednestlingswithlessfoodpriortodesertion,soastosave energy that may be invested in future reproduction, whilst at the same time the mate’s abilities to care for the offspring may be tested (Beissinger 1987; Bart & Tornes1989;Kokko1998;Barta etal.2002). Alternatively, a parent may benefit from concealing its intention to desert to prevent a preemptive strike of being desertedbyitspartner(Lazarus1990;Bartaetal.2002; ChapterIII ).Becauseofthe latter, also the timing of desertion – which parent should desert first? – will be importantfortheprocessofdesertion.Ifthereisapatternformalesandfemalesto desert at a certain time of the day, this may have important implications on the processofdesertion asthepredictability ofdesertion increases. Nest desertion by malesandfemalesislikelyassociatedwiththeprogressofegglaying(Dawkins& Carlisle1976;Valeraetal.1997).Malesmayrisklosingpaternityiftheydeserttoo early. Females will be constrained by egg production, but deserting too late may resultindesertionbytheirmate,whilstdesertingtooearlymay reduce thechance theirmatewillstayandcare(Schleicheretal.1997;Valeraetal.1997;Arnqvist& Rowe 2005). Despite extensive theoretical interest, an empirical understanding of

39 parental interactions in nature is only gradually accumulating (Beissinger 1987; Valeraetal.1997;Griggioetal.2004;Hinde&Kilner2007;Steinegger&Taborsky 2007; ChapterIII ).Hereweinvestigatehowparentalinteractionsmaypredictnest desertioninsequentiallypolygamousEurasianpendulinetits. Eurasian penduline tits exhibit a uniquely diverse mating and breeding systeminwhich,likelyasaresultofsexualconflict,8095%ofnestsisdesertedby themale,3070%bythefemaleand aboutonethird of nests is deserted by both parents(Szentirmaietal.2007).Afterdesertion,bothmalesandfemalesmayremate withupto6matesinagivenbreedingseason:sequentialpolygamybybothsexes commonlyoccurs.Inanearlierstudy,usingeveryotherdaynestchecksandtwo hourbehaviouralobservationsatadailybasis,wesuggestedthatmaleandfemale pendulinetitsdesertsimultaneously,andthatneitherparentbehaviourallysignalled its intention to desert ( Chapter III ). Yet, the association of these behaviours with parental care decisions may be subtle. A parent may benefit from preventing an increaseorreductioninparentalcontributiontobecomesufficientlyhightoconvey informationabouttheintentiontodesert,toavoidbeingdesertedas apreemptive strikebythepartner(Lazarus1990).Theaimofthisstudywastopickupsuchsubtle behavioural changesusinguniquely detailedbehaviouralvideoobservationsatthe nest. Firstly, we investigated if nest attendance could predict the decision about parental care. We predicted that the deserting parent will attend the nest less frequentlythantheparentthatisgoingtocarefor the offspring (see ChapterIII ). Ourstudyisthefirstinvestigatingnestdesertionstrategiesusingdetailedbehavioural videorecordings. Secondly,wedeterminedwhichparentdesertedfirstatbiparentallydeserted nests. Desertion by one of the parents likely has a profound influence on the predicteddecisionaboutparentalcarebytheparentthatisleftbehind(Bartaetal. 2002;McNamaraetal.2002; ChapterIII ). Finally,wedeterminedatwhattimeofthedaymaleorfemaleparentsdesert theirnest.Inourpopulation,36.5%ofnestscontainedatleastoneextrapairyoung (Mészáros,AL,vanDijk,RE,vanderVelde,M,Komdeur,J,Székely,T,&Szabad, Junpubl.data).Giventheapparentriskformalestolosepaternity,weexpectmales tomateguardtheirfemalesandonlydesertjustafterthefemalehaslaidaneggto ensurepaternity(Birkhead&Møller1992;Schleicheretal.1997;Komdeuretal. 2007;Johnsenetal.2008).Femalesmaytradeofftheriskofdesertingtooearlywith

40 areducedchanceoftheirmatestayingbehindtocare,withtheriskofdesertingtoo late,resultinginbeingdesertedbytheirmate,butweexpecttheywilldesertassoon asanegghasbeenproducedtoreducethelatterrisk.Wethusexpectbothmalesand femalestodesertintheearlymorning. 2.MATERIALANDMETHODS Studysiteanddatacollection Fieldworkwasconductedina1,321hareedmarsh,Fehértó, in southern Hungary (46º19’N20º6’E)betweenAprilandAugustin2006and2007.Ifaparenthadnot beenobservedatthenestforatleast15minattwoconsecutivenestchecks( n=14 individuals;10malesand4females;seebelow)orforatleastonehourusingour detailedvideoobservations( n =14individuals;5malesand9females;seebelow),it wasclassifiedas‘deserted’.Onceclassifiedassuch,noneoftheseindividualswere observedatthenestagain(seeBleekeretal.2005and ChapterIII fordetailedfield methods). We investigated nest attendanceby male and femaleEurasianpendulinetit using video recordings during daylight hours during the period between pair formationandnestdesertion(2.50±1.36daysofvideorecordingsperpair,302min ±170minperday, n =20pairs).Duringthisperiodbothparentsbuildthenestafter themalehasinitiatedthenestbeforepairformation(Hoietal.1994).Usingatime lapsevideocamera(SonyDCRHC44E),setupatapproximately10mfromthenest using up to 12x optical zoom, we stored one picture every five seconds. A total sample of 232816 frames was analysed frame by frame using MATLAB v. 6.5, coding presence on or inside the nest as: (i) maleonly, (ii) femaleonly, (iii) simultaneousnestattendancebymaleandfemale,or(iv)bothparentsabsent.All recordings were analysed by one person only (REvD). We only included pre desertionrecords. Todistinguishmaleandfemaleparentsfromintrudersweusedcolourrings, individual differences in plumage (Cramp et al. 1993; Kingma et al. 2008) and behaviour (e.g. the presence/absence bouts of females are longer than for males; intrudersareoftenontheoutsideofthenestandbuildverylittle).At39.3%ofall framesrecordedwewereabletoreadthecolourringcombination.Inaddition,when thebirdsareinsidethenesttheheadisfrequentlyvisible.Thismakesitpossibleto distinguishthesexesbasedoneyestripesizeandcrownfeathercolouration(Kingma etal.2008; ChapterIX ).Inthosecasesweassumedthatthiswasthesameindividual

41 forwhichwereadthecolourringcombinationatthearrivalofthebirdatthenest. Thisisrealisticgiventhehighresolutionofour recordings (one photo every fifth second)andthelengthofthepresence/absencebouts(seeResults).Frameswherethe identityofthebirdwasambiguouswereomittedfromtheanalyses(7.4%oftotalof recordedframes).Outofthe20pairsfilmed,threemalesand14femaleswerenot colourringed.However,fiveoutofsevenunringedfemalesin2006,threeunringed out of seven unringed females in 2007, and both unringed males in 2007 bred simultaneously, and we can thus be certain these are different individuals. We unlikelyobservedthesameindividualintwoyearsasadultreturningratesbetween yearsarelow( ChapterVII ). Dataanalyses Wecalculated,formalesandfemalesseparately,thepercentageoftimeaparentwas presentatthenestaswellasthenumberofnestvisits per hour (‘nest attendance frequency’).Forthelatterweexcludeddatafromrecordingsthatweremadefor< 60minperhour.Fortimeinseasonweusedadateformatasthenumberofdays since1Marchineachyear. We used binary and multinomial logistic regression models (Hosmer Lemeshow;p >0.141;multinomiallogisticregressionwithbiparental desertion as thereferencecategory:Pearsongoodnessoffit; p >0.297)topredictparentalcarein response to male or female nest attendance. We used linear mixed models with restrictedmaximumlikelihood(LMM)totestwhether(i)thetimeoftheday,(ii) parentalcarestrategy,(iii)thetimebeforedesertion,and(iv)theinteractionofthe timebeforedesertionandtheparentalcarestrategypredictsnestattendance(upto 116 hours before desertion). The covariates ‘time of the day’ and ‘time before desertion’wereusedinallanalysesatatwohourresolution.Wealsocalculatedthe residuals for male and female total nest attendance per nest site. We therefore determinedthefunctionthatprovidedthebestfitoverthetimebeforedesertionfor eachdayseparatelyandcalculatedtheresidualsusingCurveExpertv.1.37withall modelfamiliesselectedandthreedegreesofpolynomialtoconsider.Thetimeofthe day,parentalcarestrategy,andthetimebeforedesertion,andtheirinteractionwere entered as fixed effects, and nest site as subject grouping with the time before desertionandthetimeofthedayasrepeatedvariables.Weappliedcorrelationmetric compoundsymmetryas therepeated covariance type.Theassumptionofnormally distributed data was violated for the models presented, but this was caused by

42 outliers and we thus anticipate that this unlikely will have had a considerable influenceonourmodels’results(Sokal&Rohlf1995).Weusedseparatemodelsfor totalnestattendanceandnestattendancefrequency,aswellasforthesexes. Totestforapatterninthetimingofdesertion,webootstrappedthetimingof malesandfemales,andcomparedthesewithrandomtimingofdesertionformales and females separately. These random timings were extracted 1000 times from a uniformdistributionwiththeminimumandmaximumtimingofdesertiongivenby theobservedminimumandmaximumformalesandfemales.Allstatisticalanalyses wereperformedusingSPSS14.0.0(SPSSInc.,USA). Table 4.1 Results of the binary logistic regression models of male and female care strategy in responseto(a)totalnestattendancebymaleandfemaleseparately,i.e.maleandfemaleonlyplus simultaneousnestattendance( n=20pairs,df=1)and(b)maleandfemalenestattendancefrequency pertwohours( n=19pairs,df=1).Separatemodelswereconstructedfor(a)and(b).Predictedeffect sizesandstandarderrorsaregiven. (a) Totalattendance Modeleffectestimate(±SE) Wald P Malebehaviour Male 0.055±0.075 0.526 0.468 (careversusdesert) Female 0.027±0.087 0.094 0.759 Femalebehaviour Male 0.090±0.075 1.442 0.230 (careversusdesert) Female 0.007±0.082 0.007 0.934 (b) Carestrategy Frequency Modeleffectestimate(±SE) Wald P Malecareversus Male 0.022±0.099 0.048 0.826 maledesertion Female 0.250±0.218 1.314 0.252 Femalecareversus Male 0.203±0.132 2.346 0.126 femaledesertion Female 0.143±0.195 0.537 0.464 3.RESULTS Doesnestattendancepredictparentalcare? Five(25%)nestsoutofthe20weredesertedbythefemale,sevennests(35%)bythe maleandeightnests(40%)weredesertedbybothparents. Wefoundnoeffectofyearordateofnestdesertionontotalnestattendance bythemaleorfemale( F >0.005, p >0.256, n =20).Malesandfemalesattendedthe nestinboutsof1min14s±1min53sand3min46s±4min29s,respectively,whereas

43 theywereabsentfromthenestforonaverage5min13s±6min50sand12min36s± 14min46s( n =20malesand20females).Ofallrecordedperiodsofmaleandfemale absence, 93.0% and 69.4% was shorter than 15min, respectively, and 98.5% and 90.0%wasshorterthan30min.Thissuggeststhatusing15minobservationsduring nestcheckswasusuallyenoughtoscorethepresenceofmaleandfemalesatthenest andthattwoobservationswereenoughtodetermine if a parent had deserted (see Methods). Neithermeantotalnestattendancebymaleorfemale,i.e.maleorfemale onlyplusjointnestattendance(Table4.1a),nornestattendancefrequencybymale or female (Table 4.1b) predicted whether the male or female parent deserted the clutch. Figure 4.1 Maleonly, femaleonly, and simultaneous nest attendance over the time 40 oftheday(mean±SE).Timeperiodattwo hour resolution (for instance, 6 = mean attendance from 4am until 6am). n = 20 20 pairs continuousline=femaleonly;stripedline= nest attendance (%) attendance nest maleonly; dotted line = simultaneous nest attendance 0 6 8 10 12 14 16 18 20 time of day

We found that males reduced their total nest attendance (LMM; F = 9.253, p = 0.003)andnestvisitfrequency( F =8.816, p =0.004, n=20males)overtheperiod before desertion, whereas females only reduced their total nest attendance ( F = 37.725, p <0.001)andnestvisitfrequency( F =6.913, p =0.010, n =20females) overthetimeoftheday(Fig.4.1).However,whenweincludedonlyobservationsof upto48hoursbeforedesertiontookplace,therebyincreasingthenumberofnests per time unit from 2.37 nests to 5.21, the above effect for male nest attendance disappeared( p >0.312, n =20;Fig.4.2a),whereastheeffectofthetimeofdayon female nest attendance remained significant ( F = 25.399, p < 0.001 for total attendance, and F = 4.703, p = 0.034 for nest visit frequency; n = 20; Fig. 4.1). Neither parental care strategy, nor the interaction with the period before desertion predictedmaleorfemaletotalnestattendanceornestvisitfrequency( p >0.126;Fig.

44 4.2).Similarresultswerefoundusingtheresidualsperdayfromthecurveproviding thebestfit:Femalenestattendancewassignificantlyassociatedwiththetimeofday fortheanalysisincludingalldays,aswellasforthelast48hoursonly(LMM; p < 0.001, n =20nests;Fig.4.1).Allothereffectswerenonsignificant( p >0.052). Timingofnestdesertion Desertion was a rapidprocess. Out of eightbiparentally deserted nests, at five we knew when both parents deserted. These parents deserted within little more than 1dayaftereachother:onenestwasdesertedfirstbythefemale,afterwhichthemale deserted2h21min45slater.Theothertwonestsweredesertedbythemalefirst,after whichthefemaledesertedatonenestafter1dayand21min5s,andattheothernest the female deserted only 25s after the male. At a further two nests, one female desertedat15:36:45,afterwhichthemaledesertedthenestbetween19:37:30the samedaywhenweleftthenestand5:35:00thenextmorningwhenwecameback. Atthesecondnestthefemaledesertedat13:58:40,andthemaledesertedthenest later as well at an unknown time. At the remaining nests we were unable to determinethesequenceofdesertion. Theexacttimingofdesertionhasbeenestablishedfor5malesand9females at20nests.Femalesdesertedthroughouttheday(Fig.4.3).Timingofdesertionby femaleswasnotdifferentfromtherandomtimingofdesertion( Z =1.592, p =0.111, n = 2000). In contrast, males tended to desert either in the morning or late afternoon/evening(Fig.4.3):twomalesdesertedbefore7.00am,threeafter4.00pm (Z =4.808, p <0.001, n =2000).Anadditionalfivemalesdesertedbetween17:18:25 and7:45:00(Fig.4.3),buttheexacttimingofthesemaleswasunknown. 4.DISCUSSION Consistentwithourpreviousstudy( ChapterIII ),weshowthati.thebehaviouratthe nest by either sex does not predict which parent will desert, ii. neither sex consistentlydesertedfirstandiii.femalesmaydesertthroughouttheday,whereas malesdesertedeitherintheearlymorningorlateafternoon.Toourknowledgethisis the first study pointing out a sex difference in timing of desertion at a daily resolution.

45 Figure 4.2 The pattern of nest attendance over the period before desertion for three parental care strategies. Mean residuals of nest attendance from best fitcurveperdayatatwo hourresolution; mean ± SE. For each day, as separated by the grey dotted line, a separate function was fitted. Desertiontakesplaceatx=0.(a)Meanresidualsofnestattendancebythemale,(b)meanresiduals ofnestattendancebythefemale.Nestswerenotfilmedduringthenightorduringbadweather,hence thegaps. N=20pairsintotal. continuousline=femaleonlycare;stripedline=maleonlycare;dottedline=biparentallydesertion (a)

40.00

30.00

20.00

10.00

0.00

-10.00

-20.00 male nest attendance (residuals) attendance nest male -30.00

-48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 time before desertion (hrs)

(b)

40.00

30.00

20.00

10.00

0.00

-10.00

-20.00

female nest attendance (residuals) attendance nest female -30.00

-48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 time before desertion (hrs)

46 Figure4.3Timing of desertion by males (black) and females (white); shaded boxes indicate those malesthatdesertedeitherintheeveningorearlymorning

5

4

3

2

1 number of deserting males and females males and deserting of number

0 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 time of day

Behaviouralcuesfornestdesertion Although there appears to be no strict ‘cruel bind’ given that some nests are sequentiallydeserted,thebehaviourofoneoftheparentsislikelyinfluencedbythat ofitspartner(McNamaraetal.2002).Inthispaper,usingmoredetailedbehavioural observations,wefoundsupportforourargumentthatEurasianpendulinetitsmaybe betteroffconcealingtheirdecisionaboutparentalcaretopreemptbeingdesertedby theirmate( ChapterIII ):maleandfemalenestattendancepriordesertioncouldnot predict the parental care strategy adopted. Parents do not appear to adjust their behaviour as the time that one (or both) of the parents is going to desert is approaching,nordotheyadjusttheirbehaviourtotheparentalcarestrategyadopted atagivennest. Alternatively,ourresultsonthetimingandsequenceofdesertionsuggestthat thedecisiontocareordesertisonlymadewithinasmalltimewindowaroundthe thirddayofegglaying,i.e. justbeforetheyactuallydesert(seebelow).However,it seemslikelythatpotentiallyconfoundingvariablesinfluencingthedecisiontocare ordesert,suchastheavailabilityofmates,theirattractiveness,andfoodavailability, arebeingassessedoveramoreextendedperiodduringandperhapsbeforetheegg layingphase.

47 The daily pattern found for females may be confounded by a multitude of variables, but one possible explanation is the potential for success of extrapair copulations:Becausefemalesareleastreceptivearoundegglaying(Birkheadetal. 1996), the best time for females to search for and solicit extrapair copulations shouldbeduringtheafternoonandearlyevening.Ifsheistoinvestinnestbuilding, thebesttimeforthatinthisrespectwouldindeedbeduringtheearlymorning. Timingofdesertion Thefactthatatbiparentallydesertednests,neitherthemale,norfemaleconsistently initiateddesertionandthattheparentsdesertedeitheronthesameday(withonenest where the interval between desertion of both parents was as little as 25sec), or at mostwithintwodayssupportsthesuggestionthattheprocessofdesertionisrapid (ChapterIII ).Italsosuggeststhatdesertionasapreemptivestriketoavoidtobe desertedisnotalwaysasuccessfulstrategyinpendulinetits:bothmalesandfemales mayescapethe‘cruelbind’(Dawkins&Carlisle1976;Lazarus1990;McNamaraet al.2002;Griggioetal.2004). Certainty over paternity might drive males to desert either in the late afternoon/earlyeveningorintheearlymorning,butnotlatemorning/earlyafternoon. The high population density in our study area and the polygamous nature of the pendulinetit’sbreedingsystemsuggestthatspermcompetitionmaybeintense.For males,guardinghismateuntiltheeveningoruntiltheeggisactuallylaidthenext morningsoastoensurehisspermwillfertilisetheeggmaythusbe a worthwhile strategy.However,mateguardingmaynotbeintense,sincetheparentsspendvery littletimetogetheratthenest(Fig.4.2;see:Schleicheretal.1997).Desertinginthe morning also allows time to forage and seek new mates, with a reduced risk of loosingpaternityoverfutureoffspring,ifthetimearoundegglayingistheperiod wheninseminationisleastlikelytoresultinfertilisation(Birkheadetal.1996).The condition of males may confound why some males desert during the evening, whereasothersdesertinthemorning:Ifamaleisinagoodcondition,hemayafford tospendthenightoutsidethenest,whereasamaleinapoorconditionmayneedto spendthenightinsidethenestandbenefitfromitsinsulativecapacities(Glutzvon Blotzheim1993;Schönfeld1994;Szentirmaietal.2005b).Oursamplesizecurrently doesnotallowustodistinguishwhichindividualmaletraitsmayberelatedtotiming ofdesertion.

48 Femalesarelikelyconstrainedbyaminimumnumberofeggstheylaybefore itpaystodesert(Persson&Öhrström1989;Franz1991; AppendixI ),afterwhichan assessmentofotherfactors,suchasprogressofnestbuilding,foodavailability,or availabilityofmates,maydeterminewhentheywilldesert,whichmayshowdaily variation. Activity of males (female mating opportunities) appears not to change substantially over the course of the day (see Fig.4.2),andalsoadawnchorus,as exhibitedbymany,istypicallyabsentinpendulinetits(vanDijk,RE,Bot, S, & Pogány, Á, pers. obs.). This suggests that a sex difference in hormones is unlikelyaproximateexplanationbehindthesexdifferenceintimingofdesertion. Althoughthisclearlyrequiresfurtherresearch,thesexdifferenceintimingof desertion has important implications on the process of desertion: males seem somehowconstrainedastowhentheymaydesert,whereasfemalesmaydesertatany timeduringtheday. Futureavenues Furtherworkonbehaviouralinteractionbetweenparents atvery fine resolutionis requiredtounravelhowsubtleadjustmentsofbehaviourofanimalsmayinfluencea resolutiontosexualconflictovercare.Althoughinourpreviousstudy( ChapterIII ) wepointedoutthatvocalbehaviourcouldnotpredictparental care strategies, this couldbeacandidatetraitthatmaybeusedtoadvertisetheparentalcaredecisionfor instanceonlyjustbeforedesertiontakesplace.ParentsoftheGalileeStPeter’sfish Sarotherodon galilaeus , appear to monitor each other’s behaviour, and possibly negotiate over parental care, by leaving the eggs on the ground after fertilisation before either the male, the female or both pick them up for mouth incubation (Schwanck&Rana1991;BalshineEarn&Earn1997).Experimentalmanipulation ofparentalbehaviourpriortodesertion,suchasmateremoval,likelyfurtherreveals newinsightsastohowparentsdecideoverparentalcare. Acknowledgements We are grateful to all people who helped with the fieldwork in Hungary. We thank the Kiskunság National Park (2386423/2006, 2386432/2007) and Szegedfish Ltd. for permission to carry out fieldwork.WealsothankJohanvanderDennenforwritingtheMATLABscripttoanalysethetime lapsevideorecordings.TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropean Community’sSixthFrameworkProgramme(FP6/20022006)undercontractn.28696. Theworkwas further supported by a University of Bath studentship to REvD; the Hungarian National Science

49 Foundation OTKA (T043390 to TS); a Royal Society Joint Project grant (15056 to TS); and the LeverhulmeTrust(RF/2/RFG/2005/0279toTS).

50 CHAPTERV

Whatgamesdopendulinetitsplay?

RenéE.vanDijk,TamásSzékely,JanKomdeur&FranzJ.Weissing Manuscript Authors’contributions RevD :data collection, statistical analyses, gametheoretic analyses, manuscript preparation TS :manuscriptimprovement JK :manuscriptimprovement FJW:studydesign,gametheoreticanalyses,manuscriptimprovement

51 ABSTRACT TheEurasianpendulinetit, Remizpendulinus ,exhibitsanunusuallydiversebreeding system where femaleonly care (5070% of nests), maleonly care (520%) and biparentaldesertion(3040%)alloccurwithinasinglepopulation.By meansofa gametheoreticalapproach,weinvestigatewhether,andtowhatextent,thisdiversity can be understood in terms of evolutionarily stable strategies (ESSs). We model parental decisions as a singleshot twoperson game where both players have two pure strategies (‘care’ and ‘desert’) and use field data to quantify the fitness consequencesofcaringanddesertionformalesandfemalesseparately.Thepayoff matrixresultingfromthefitnessestimatessuggeststhatpendulinetitsareinvolvedin acoordinationgamewithtwoalternativeESSs:femaleonlycareandmaleonlycare. WhydidneitheroftheseESSsspreadandfixateinthepopulation?Toanswerthis question, we argue that the average payoff matrix of the population gives a poor representationoftheconflictsbetweenindividuals.Usingbootstrapping,wereplace thepopulationpayoffmatrixbyavarietyofpayoffmatricesforindividualconflicts. SomeofthesecorrespondtoaPrisoner’sDilemma(withbiparentaldesertionasthe onlyESS),othershavefemaleonlycareormaleonlycareasauniqueESS,andstill otherscorrespondtothecoordinationgamewithtwoalternativeESSs.Weconclude that the predicted distribution of care corresponds reasonably well to the parental careobservedinpendulinetits.

52 INTRODUCTION Decisions about parental care are among the most important decisions for the life history of individual animals. In vertebrates, a diversity of parental care systems exists,rangingfromcooperativebreedingwithbiparentalcareandhelpers,suchasin meerkats, Suricata suricatta,(Manseretal.2008)orinlongtailedtits, Aegithalos caudatus ,(Sharpetal.2008)toverylimitedparentalcare,suchasinprecocialbirds orbroodparasites(CluttonBrock1991;Reynoldsetal.2002;Langmore&Kilner 2007; McGraw et al. 2009; Chapter II ). Of particular interest are species with variableparentalcaredecisions,suchasthosewhichexhibitacombinationofmale only,femaleonlyandbiparentalcare,forinstancesnailkite, Rostrhamussociabilis , Coqui Antillano, Eleutherodactylus johnstonei , Kentish plover, Charadrius alexandrinus , St Peter’s fish, Sarotherodon galilaeus , and Eurasian penduline tit, Remizpendulinus ,(Beissinger&Snyder1987;Székely&Lessells1993;Balshine Earn1997;Bourne1998;Szentirmaietal.2007).Thesespeciesprovideanexcellent opportunitytotestpredictionsofgametheoreticapproach. AnintriguingexampleistheEurasianpendulinetit.Bothsequentialpolygyny and sequential polyandry commonly occur in a breeding season, so that several combinationsofparentalcareoccursimultaneouslywithinasinglepopulation.All incubationandfeedingofnestlingsiscarriedoutbyoneparent,at520%ofnestsby themalesandat5070%bythefemales.Additionally,aboutonethirdofclutchesis desertedbybothparents(Persson&Öhrström1989;ChapterVIII ;Table5.1).What maybetheexplanationofsuchadiversebreedingsystem? Parentalcareisinfluencedbythesocialandnonsocialenvironmentandoften hasmajorimpactsonthereproductiveoutputinmanyanimals(CluttonBrock1991; Burley&Johnson2002;Owens2002;Székelyetal.2006;Charpentieretal.2008; McGraw et al. 2009; ChapterII ). A decision aboutparental care is mediatedby a tradeoffbetweentheeffortinvestedinacurrentbroodversusthecostsintermsof futuresurvivalandreproductionandbyatradeoffbetweenthequalityandquantity oftheoffspring(CluttonBrock1991;Houstonetal.2005; ChapterII ).Sincecareis costly and parents may breed several times in their lifetime with different individuals,thereisaconflictbetweentheparentswherebyeachtriestoshuntcare provisioning to its mate (Parker 1979; Houston et al. 2005; McGraw et al. 2009; ChapterII ).Thecostandbenefitsofcare,andthebehaviouralinteractionbetween the parents are all important predicting how the parents resolve their conflicting interests(McNamaraetal.2002;Houstonetal.2005; ChapterII ).

53 Table5.1: ParentalcarestrategiesinvariouspopulationsofEurasianpendulinetits(means±CI;after ChapterVIII )andthosepredictedbythebootstrappedobservedpayoffswiththecoordinationgame solvedusingpayoffandriskdominance(seeTable5.4;FC=femaleonlycare,MC=maleonlycare, BD=biparentaldesertion).Thepatternsofparentalcarearenotsignificantlydifferentacrossthefive Europeanpopulations( ChapterVIII ).Thepredictedpatternofparentalcareapplyingpayofforrisk dominanceofthebootstrappedindividualpayoffsissignificantlydifferentfromtheobservedpattern inourpopulationinHungary. Population FC MC BD n (%) (%) (%) Hungary 45.0±0.2 16.7±0.2 38.3±0.2 60 (ChapterVIII ) TheNetherlands 50.0±0.4 6.3±0.3 43.8±0.4 16 (ChapterVIII ) Sweden 47.9±0.2 17.9±0.1 34.3±0.2 140 (Persson&Öhrström1989) Germany 65.2±0.2 6.7±0.1 28.1±0.2 89 (Franz1991) Austria 54.2±0.2 14.0±0.1 31.8±0.2 107 (Franz1991) Range 45.0–65.2 6.3–17.9 28.1–43.8 412 Payoffdominance 45.4 28.0 26.6 5000 † (χ2 =71.82, P <0.001, n =534pairs) Riskdominance 48.5 38.5 12.9 5000 † (χ2 =371.36, P <0.001, n =534pairs) †Valuesbasedonbootstrappedpayoffs Since the seminal study by Maynard Smith (1977), parental conflicts are often analyzedbymeansofagametheoreticapproach.Evolutionarygametheoryallows derivingofpredictionsinsituationswherethefitnessofanindividualdoesnotonly depend on this individual’s own behaviour, but also on the behaviour of other individuals in the population. Parental decisions are prototype examples for such frequency dependence,sincethefitness(‘payoff’)ofaparentwhodecidedtocare for the clutch may be quite different if the other parent also cares as opposed to deserttheclutch.

54 Table5.2. ThebreedingbiologyofEurasianpendulinetits:numberofeggsandnestlingsproducedinthefirstnestofthebreedingseason,theprobabilitytohaveatleastonemore successfulbreedingattemptafterthefirstsuccessfulnest(‘successful’meaningpairformationandegglayingtookplace),thenumberofsuccessfulsubsequentbreedingattempts andthenumberofeggsandnestlingsproducedinsubsequentnests(means±SD). n isthenumberofmalesorfemales. maleonlycare femaleonlycare biparentaldesertion ♂ ♀ ♂ ♀ ♂ ♀ eggs 3.50±1.13 4.00±1.00 6.39±1.15 6.15±1.25 3.13±1.14 2.31±0.79

first nestlings 2.59±1.57 2.07±2.00 3.40±1.97 3.37±1.98 0.00±0.00 0.00±0.00 probabilitysuccessful 0.06 0.67 0.74 0.38 0.34 0.83 number 1.00±0.00 1.00±0.00 1.88±1.14 1.48±0.77 1.77±1.06 1.38±0.52 eggs 0.06±0.24 2.45±2.12 6.34±6.05 2.61±3.97 4.49±4.66 7.12±5.00

subsequent nestlings 0.00±0.00 0.74±1.28 1.96±2.52 0.95±1.70 1.54±2.54 3.52±2.92 n 18 3 46 52 47 6 Thevariableparentalcareinpendulinetitsislikelyaresultofsexualconflict,since after desertion,both males and females may rematewithuptosixmateswithina given breeding season, and both parents appear to produce more offspring in a breedingseasonwhentheydesertratherthancarefortheoffspring(Szentirmaietal. 2007;Table5.2),althoughthereproductiveconsequencesofbiparentalcarearenot known,becausethishasnotbeenobservedinourpopulation ( Chapter VIII ).Nest desertiontakesplaceduringegglaying.Oncethemalehasdeserted,femalesoften lay a few more eggs, so that maleonly cared clutches and biparentally deserted clutches are significantly smaller than those cared for by females (Persson & Öhrström1989;Valeraetal.1997;Szentirmaietal.2007;ChapterVIII ;Table5.2). In addition, in biparentally deserted nests all offspring die (Persson & Öhrström 1989; Szentirmai et al. 2007). Hence, although offspring survival does not differ significantly between maleonly and femaleonly cared clutches ( Chapter VI ), the caring/deserting behaviour has a major influence on both parents’ reproductive output(Szentirmaietal.2007;thispaper). Existing game models for parental care have proved to be a useful mathematical approach to understand how individuals interact and which strategic decisions they may adopt to resolve their conflicting interests (McNamara et al. 1999; Johnstone & Hinde 2006; McNamara & Weissing 2009). Game theory attemptstofindtheoptimalstrategyforanindividual,whichdependsonthestrategy adopted by other players in the game. It can help us to predict which strategy is resistant against any possible mutant strategy given the fitness payoffs for each strategy,i.e.theEvolutionarilyStableStrategy(ESS;MaynardSmith&Price1973). Frequencydependence of strategies likely has a profound influence on which strategyresultsinthehighestfitnesspayoff,in particular for strategies in a social context,whichincludesparentalcare(McNamara&Weissing2009).Agamemay involveasingleinteractionbetweentheindividuals where the history of previous interactionsgenerallydoesnotexist,orisnottakenintoaccount(MaynardSmith 1977;Webbetal.1999),repeatedinteractionsresultinginacontinuousadjustment ofstrategieswithevolutionarilystablelevelsofeffortdependingonthestrategyof theopponentorpreviousinteractionsandthereputationofplayers(suchastitfor tat;Axelrod&Hamilton1981;Houston&Davies1985;Milinski1987),orrepeated interactions based upon bargaining, where the outcome is negotiated leading to evolutionarilystablenegotiationrules(McNamaraetal.1999).Whilstthesegame theoreticmodelsinaparentalcarecontextelicitedmuchempiricalinterest(Wolfet

56 al.1991;Östetal.2007;Harrisonetal.submitted), most of them have not been applied to a specific situation in the field or in captivity (with the exception of BalshineEarn&Earn1997).Ourobjectivehereistodevelopgametheoreticmodels fortheparentalcarepatternsofpendulinetitsandinvestigatewhichmodelgivesthe bestpredictionsinregardstotheobservedbehaviourinnature. FITNESSESTIMATES StudySiteandDataCollection WestudiedEurasianpendulinetitsduringthebreedingseasonsbetweenApriland August in six consecutive years (2002 – 2007) at a 1,321 ha fishpond system, Fehértó,insouthernHungary(46º19’N20º6’E),whereapproximately6090males and4550femalesareknowntobreedeachyear(Szentirmaietal.2007;theseare the number of individual we ringed, biased towards males given that females are more difficult to trap than males). We searched the study area for nestbuilding pendulinetits,andvisitedeachnestabouteveryotherdaytodeterminethedateof nest initiation, date of pair formation, which parent attended the nest, the date of desertion,numberofeggs(atapproximatelytheeighthdayaftercommencementof incubation),andthenumberofnestlings(attendaysafterhatchingofthefirstegg; the number of nestling at the tenth day after hatching is highly correlated to the numberoffledglings;Kingmaetal.2008; ChapterIII ).Wetrappedandringedbirds with one metal ring from the Hungarian Ornithological Institute and a unique combination of three color rings (A.C. Hughes, Middlesex, UK; see details in Bleekeretal.2005).Maleswereusuallytrappedbeforeincubationusingmistnets, whereasfemaleswereusuallytrappedduringincubationatthenest.Adultreturning rates between years are low (5% for males, 2% for females; Chapter VII ). Pseudoreplication was avoided by selecting only one datum per colourringed individual. Additionally, the composition of pairs was nearly always different betweensubsequentclutches:outof194colourringedpairsthatproducedaclutch between2002and2007,onlysixpairs(3.1%)didnot change mate at successive nests. Thepattern ofparental care is consistentbetweenpopulationsofpenduline tits across Europe and it does not appear to be associated with breeding density (Table5.1; ChapterVIII ).

57 EstimatingthePayoffMatrix We used field data to calculate the seasonal reproductivepayoffforanindividual, given the parental care strategy adopted at the first nest in a breeding season. Althoughtheestimated numberoffledglingsforfemales is correct, for males the actualnumbermaybeinfluencedbytheoccurrenceofextrapair young.However, ourpilotdatasuggestthatalthough36.5%ofnestscontainsatleastoneextrapair offspring,thenumberofextrapair youngdonotappear to be associated with the parentalcarestrategyadoptedatagivennest(Mészáros,LA,vanDijk,RE,vander Velde, M, Komdeur, J, Székely, T & Szabad, J, unpubl. data). We therefore anticipatethatitisunlikelythattheexistenceofextrapairpaternityconfoundsour results.Wefocusonthestrategy adoptedatthefirst nest in the breeding season, sincethislikelyhasamajorimplicationontheadditionalreproductiveoutputthat canbeobtainedatlaternestsinthesameseason(theincubationandnestlingfeeding periodisapproximately34days;Crampetal.1993;vanDijk,REandSzékely,T unpubl.data;Table5.2).Todefinewhatthefirstnestinabreedingseasonwasfora givenindividual,wetookthenestinitiationdateofthefirstnestofknown,banded males in our population in each year ( n = 267 males). The mean of these nest initiationdateswas3June(SD=22.7).Wedidthesameforallsecondnestsof malesafterafirstsuccessfulnest,i.e .anestwerethemalehadattractedafemaleand a clutch was produced ( n = 101 males). The mean of the nest initiation dates of secondnestswas8June(SD=21.1).Wethereforeincludedallnestsofabanded individualmaleorfemalefromthestartofthebreedingseasonuntil6Juneasfirst nestsinaseasonineachyear.Thesmalldifferencebetweenthemeannestinitiation dateofthefirstandsecondbreedingattemptsisduetomalesarrivingthroughoutthe season in our population. Some of these late arriving or early leaving males and femalesmayhavebredoutsideourpopulation(Franzetal.1987).Wecurrentlyhave no data to estimate the frequency of immigration, although the distance between subsequentbreedingattemptsistypicallylimited(Mészárosetal.2006).Thismay, however, underestimate the seasonal reproductive successperindividual,andmay thus confound some of the variation predicted by our model. To calculate the seasonalreproductivesuccessofindividualmalesandfemales,wesummedupfor eachindividualthereproductiveoutput(eggsornestlings)inthefirstnestwiththat inallsubsequentnestsinagivenbreedingseason.Thiswasdoneseparatelyforthe parentalcarestrategyeachindividualadoptedatitsfirstnestandirrespectiveofthe parentalcarestrategyadoptedatsubsequentnests(separatelyforeachindividual:

58 Table5.3Thereproductivepayoffmatrices.FC=FemaleCare,FD=FemaleDesertion,MC=Male Care,MD=MaleDesertion.Capitalizedlettersabovethediagonalindicatethepayoffsforthefemale, lowercase letters below the diagonal line the payoffs for the males. We assume that unilateral desertionyieldsahigherpayoffforbothmalesandfemalesthanbiparentalcare.(a)genericversion; thearrowscorrespondtothepayoffrelationshipB>Aandb>a.(b)–(e)fourspecificscenariosfor thedifferentrelationshipsbetweenthepayoffsforcandD. (a)

(b) (c) c<dandC>D c>dandC<D singleESS:femaleonlycare singleESS:maleonlycare

(d) (e) c<dandC<D c>dandC>D singleESS:biparentaldesertion twoESSs:femaleonlycareandmaleonlycare Prisoner’sDilemma coordinationgame(or:Snowdriftgame)

59 ∑x 1, x2,…x i;x=reproductivesuccessatnest i,wheretheparentalcare strategyis takenintoaccountforx 1 only).Ifthenumberofeggsornestlingswasnotknownfor anest,weusedthepopulationmeanforagivenstrategy(i.e .maleonlycare:3.67 eggs,2.22nestlings;femaleonlycare:5.80,3.07;biparentaldesertion:2.93,0.00; neggs =371nests, nnestlings =194nests; thisstudy).Weusedestimatedreproductive successfor77clutchesoutofatotalof339clutches(i.e.22.7%ofclutches)andfor 33outof336broods(9.8%). Table 5.2 provides the reproductive output for the different parental care strategiesandformalesandfemalesseparatelytoillustratethebreedingbiologyof pendulinetits.Aswediscussedabove,thenumberofeggsandnestlingsinmaleonly caredandbiparentallydesertednestsissmallerthanthatinfemaleonlycarednests. Also,onceamalecaredfortheoffspring,hedoesnotproduceanymoreoffspringin thesubsequentnestsinthesamebreedingseason,whereascaringfemalesareknown toproduceuptotwoclutchesinabreedingseason. GAMETHEORETICANALYSIS Wemaketheassumptionthatpendulinetitsplayasingleshotgamewithonlytwo pure strategies: care or desert. This is a realistic assumption, because pairs rarely producemultipleclutchestogetherandthusreciprocity with titfortat strategies is unlikely(seeabove;Axelrod&Hamilton1981; ChapterIX ).InTable5.3awegive thepossiblepayoffsforallcombinationsofstrategiesplayedbymalesandfemales followingtheaboveassumption.Randompayoffswouldproducemixedstrategies, which would include biparental care. In our population, however, we have not observed any case of biparental care (incubation and brood care; n = 534 nests; ChapterVIII ),therefore,thefitnesspayoffforbiparentalcare(Aanda)couldnotbe estimated. Instead, we assume that unilateral desertion of a caring partner always yields a higher fitness payoff than caring (i.e . B > A and b > a). For both sexes, uniparentalcareyieldsahigherreproductivepayoffthanbiparentaldesertion(Table 5.4a),andalsotherelativelyhighpayoff(5.4±3.2nestlings)formalesincaseof unilateraldesertionfurthersupportsourassumptionofb>a. ArePendulineTitsCaughtinaPrisoner’sDilemma? Cooperativebehaviourisoftennotevolutionarilystableagainststrategiesexploiting the cooperation of others. This may lead to no cooperation at all, a situation exemplifiedbythePrisoner’sDilemma(PD).Inthisgame,eachplayermayeither

60 Table5.4. Thereproductive outputof malesand females overthebreedingseasondependson the parentalcarestrategyadoptedattheirfirstnestinthebreedingseason:(a)seasonalmeannumberof nestlings±SD. n isthenumberofnests.Amalethatcaredfortheoffspringathisfirstnestinthe seasonproducedmorenestlingsthanamalewhosefirstnestwasbiparentallydeserted( U =257.5, P =

0.009, nmc =18, nbd(biparentaldesertion) =47,Cohen’s d =0.878,1β=0.88).Thenumberofnestlingsfora femalethatcaredfortheoffspringatthefirstnestinaseason,however,wasnotsignificantlydifferent fromthatforfemaleswhosefirstnestwasbiparentallydeserted( U =86.5, P =0.591, nfc =52, nbd =4, d =0.528,1β=0.17).Thismatrixisconsistentwiththatofthecoordinationgame(asin(c)).(b)–(e) are the four possible scenarios for the different relationships between the payoffs for c and D; we providethepercentageofcaseswherethebootstrappingprocedureyieldedeachofthefourscenarios. (a)

(b) (c) c<dandC>D c>dandC<D singleESS:femaleonlycare singleESS:maleonlycare Probability:0.230 Probability:0.277

(d) (e) ESS:biparentaldesertion ESS:femaleonlycareandmaleonlycare Prisoner’sDilemma coordinationgame(or:Snowdriftgame) Probability:0.157 Probability:0.336

61 cooperate,ordefect,butthebestresponseistodefectforanyactionbytheopponent (Axelrod&Hamilton1981;Noë1990;Nowak&May1992;McNamaraetal.2004). Thepayoffmatrixofthefitnessestimates(Table5.4a),suggeststhatdesertionisnot thedominantstrategyandthepopulationasawholedoesthusnotappeartoplaythe PD.Instead,thesnowdriftgameprovidesabetterfit.Thesnowdriftgamehasbeen frequently used to study the evolution of cooperation (Doebeli & Hauert 2005; McNamara et al. 2008; Helbing & Yu 2009), although it deals with a symmetric populationandhasmixedESSs.Ourpopulation,however,consistsoftwotypesof players:malesandfemales,i.e. anasymmetricpopulationwherenoteverybodyisin thesamerole.Itisastandardresultingametheorythatinsuchasymmetricgamesan ESScanneverbeamixedstrategy. The behaviour of penduline tits is most consistent with the coordination game,whichhastwoESSsinsteadofmixedstrategies.Thesearethetwowaysof unilateralcooperation:maleonlycareandfemaleonlycare.EachoftheseESSsmay be viewed as a convention, where the asymmetry (male versus female) is used to settletheconflict.Althoughtheconflictissettled,onceoneoftheseESSsisreached, the problem remains which of the two ESSs will be reached in the course of evolution. This is where cooperation is coordinated: every player agrees that unilateralcooperationwouldbebest,buteachplayerhasapreferenceforoneofthe twoESSs.Thiskindofgamehasbeenanalyzedinthe game theoretical literature underthename'BattleoftheSexes'(Luce&Raiffa1957). CanReproductivePayoffsPredictParentalCare? Althoughatapopulationlevelpendulinetitparentsmaybeplayingthecoordination game,individualpairsofbirdsmaynotalwaysplaythesamegame,butsome,for instance, may play the PD. There are four cases to consider for the relationship betweencanddandbetweenCandD(Table5.3).Allthesewillleadtodifferent typesofgame(Table5.3be)andsuchpairsmayfindthemselvesin (1) agamewherefemaleonlycareistheonlyESS(cD); (2) agamewheremaleonlycareistheonlyESS(c>dandCdandC>D).

62 Toestimatetheprobabilityforeachscenario,webootstrappedtheindividualfitness payoffs(numberofnestlings)usingfielddataforeachmaleandfemalethatadopted agivenstrategyattheirfirstnest(Table5.4a)5000times.Wethencalculatedthe percentageof caseswherec>d, cD, and CD)=0.36*0.58 (2)Prob(maleonlycare)=Prob(c>d)*Prob(Cd)*Prob(C>D)=0.64*0.58 Whentwoindividualsfindthemselvesinaoneshotcoordinationgametheyhaveto bargain about the outcome. It is conceivable that bargaining does not necessarily resultinoneofthetwoESSs(FCandMC).Ifthebargainingprocessfails,biparental desertionmightalsooccur.Althoughwedidnotmodelthebargainingprocess,we attempted to make predictions on the probabilities of the various outcomes. We appliedtwosolutionconceptsforcoordinationgames from classical game theory: payoff dominance and risk dominance. A payoff dominant equilibrium will be chosenwhenthepayoffislargerthan(oratleastequalto)thealternativestrategies availabletotheplayers.Riskdominantstrategiesontheotherhandarebasedonthe potentiallossesaplayermayhavetoincurwhendecidingonastrategy.Astrategy willthusberiskdominantwhentheproductofthedeviationlossesforapairata givenstrategyislargerthanthealternative(Harsanyi&Selten1988). Payoff and risk dominance of the payoffs for the various strategies was determined applying the requirements in Table 5.5. The risk dominance depends, among others, on the payoff values under biparental care. To calculate the latter term,wevaried‘a’between0.2≤a≤10togetA=B–b+a,where=(BA)/(b a)=(CD)/(cd),whichfollowsfromequalizingtherequirementsofriskdominance: (cd)*(BA)=(ba)*(CD).Intheseequationsb,c,d,B,C,andDaregivenbythe observedpayoffs(Table5.4a).Givenourassumptionofb>aandB>A,tocalculate thepredictedpatternofcarestrategiesapplyingriskdominanceweseta=5.2(i.e .a <b,whereb=5.36)and,accordingly,A=2.7(i.e.B>A,whereB=2.81).These approximatethemostconservative,butrealistic,valuesundertheassumptionsb>a andB>A .

63 Table5.5 Requirementsforpayoffdominanceandriskdominanceoftheparentalcarestrategiesat theindividuallevel.Payoffdominanceisappliedtodeterminetheparentalcarestrategybasedonthe individualpayoffsandtoresolvethecoordinationgame.Ifpayoffdominanceisnotdecisiveinthe coordination game, risk dominance may be applied. BD = biparental desertion, FC = femaleonly care,MC=maleonlycare payoffdominanceof payoffdominancein riskdominancedecisive individualpayoffs coordinationgame BD c<d&C<D FC c<d&C>D b>c&C>B (cd)*(BA)<(ba)*(CD) MC c>d&C<D b<c&C<B (cd)*(BA)>(ba)*(CD) Usingthebootstrappedindividualpayoffs,wefoundthat66.4%ofvariation inparentalcare(maleonlycare,femaleonlycareorbiparentaldesertion)isdirectly explained by the reproductive payoffs whereas 33.6% of variation remained unexplained,andthesepairsthusendedupinthecoordinationgame(Table5.4).The latter was then resolved applying payoff and risk dominance (Table 5.5). Payoff dominance led to the following prediction of parental care, which, although significantly different, approached the observed pattern of care in nature (between brackets): 45.4% femaleonly care (5070%), 28.0% maleonly care (520%), and 26.6%biparentaldesertion(3040%)(Table5.1and5.4;predictedversusobserved patternofparentalcareinHungary: χ2=72.21, P <0.001, n =534pairs). Applyingriskdominance(withA=2.7,anda=5.2)didnotimprovethefit ofthepredictedpatterntoobservedpercentages(femaleonlycare:48.5%,maleonly care:38.5%, andbiparentaldesertion12.9%),butrather caused a larger deviation fromthenaturalpatternofcare(Table5.1and5.4; χ2=371.56, P <0.001, n =534 pairs). DISCUSSION ArePendulineTitsCaughtinaPrisoner’sDilemma? Toourknowledge,thisisthefirstpaperusingextensivedatacollectedinthefieldto explore to what extent the PD may resemble the decision making process over parentalcare.Despitetheimmensetheoreticalinterest, there are only few studies, wherethePDissupportedbyfielddata,inwhichcasesomeadjustments,suchas repeatedinteractionswithtitfortatstrategies(IteratedPD),tothe‘original’single shotPD,wheredefectionistheonlyESS,seemtobeessential(Milinski1987;Legge 1996;Hugie&Lank1997).TheonlyempiricalsupportforthesingleshotPDcomes

64 from the communally breeding Pukeko, Porphyrio porphyrio , where communally breeding individuals are at a reproductive disadvantage compared to pairs (Craig 1984).Theterritorialinteractionsinthatstudy,however,didnotconsistofstricttwo persongames. Only rarely have such game theoretical models been directly applied to empirical data. BalshineEarn and Earn (1997) presented a gametheoretic model parameterizedwithempiricaldatatoinvestigatetheparentalcarestrategiesobserved intheGalileeStPeter’sfish,acichlidthatexhibitsavariablebreedingsystem.Here, usingaspeciesthatexhibitsintensesexualconflictovercareand,likelyasaresultof that, an unusually diverse breeding system, we show that Eurasian penduline tit parents appear not to play the singleshot PD game to resolve their bargaining processastowhowillcarefortheoffspring.Instead,thefitnesspayoffmatrixofthe seasonal reproductive success (number of nestlings) is consistent with that of the coordinationgame.Inthecoordinationgamedesertionisstillpredominant,butitis onlyanESSifoneoftheparentsstaysbehindtocare.WhileinthePDcooperation doesnotpersist,itismaintainedatanintermediatelevelinthecoordinationgame (Doebeli&Hauert2005).DesertionconsequentlyresultsintwoESSs,femaleand maleonlycare.WethusfoundnoempiricalsupportfortheinfluentialPD,despite thehighlevelsofdesertionobservedinEurasianpendulinetits. Penduline tits apparently adopt optimal strategies in terms of reproductive payoffsandarenotcaughtinasituationexemplifiedbythePD,wherethestrategies maybeevolutionarilystable,butmaynotnecessarilyresultintheoptimalpayoffs for a given individual (Dawkins 1980; Doebeli & Hauert 2005; McNamara & Weissing 2009). Some assumptions associated to the PD game, especially those relatedtothesocialenvironmentsuchasreciprocityandnoexchangeofinformation during each round, may form major limitations to the applicability of the PD to understandtheevolutionandexistenceofcooperationinnature(Noë1990;Legge 1996).Theplayersina‘naturalgame’will,forinstance,oftencloselymonitoreach other obtaining information about the opponent, and will let the decision on a strategydependontheopponent’sbehavior(Noë1990;Heinsohn&Packer1995; McNamaraetal.1999;McNamaraetal.2002;Stevens&Hauser2004; ChapterIII ). Webelieveitwouldbeusefultofindmorebiologicalsystemstoempiricallytestthe applicabilityofthePD,givenitsimmensetheoreticalinterestandatthesametime veryscarceempiricalsupport(see:Craig1984;Milinski1987;Legge1996;Hugie& Lank1997;Stevens&Hauser2004;Doebeli&Hauert2005).

65 CanReproductivePayoffsPredictParentalCare? Using a novel approach applying payoff dominance within a coordination game structuretoresolvethebargaininggameEurasianpendulinetitparentsmayplay,we show that their diverse breeding system can be largely explained as reproductive payoffbasedstrategies:thepredictedpatternofparentalcare,basedonbootstrapped, observed reproductive payoffs approached the pattern of care observed in nature, includingthelargeproportionofbiparentallydesertednests.Additionally,atsome two third of nests the variation in parental care is directly explained by payoff dominance.Fortheremainingonethirdofnestspayoffdominancecanresolvethe bargainingprocessasdescribedbyacoordinationgame.Applying riskdominance resultedinapredictionoffrequenciesofparentalcarethatdeviatedfurtherfromthe observed pattern than that predicted by payoff dominance. The theory of risk dominance stems from research in economical sciences (Harsanyi & Selten 1988) and is based on rational decision making. The application of risk dominance in biologicalsciencesneedsfurtherexploration,butitmayassumeatoohighlevelof rationalitytobeapplicabletomanybiologicalsystems. Thesignificantdeviancefromtheempiricallyobserved pattern of care can presumablylargelybeascribedtoindividualdifferences,whichmayconsistofeither individual quality or environmental differences. An autocorrelation of individuals playing different strategies may cause a consistent bias in the exact payoffs. Attractivemales,forinstance,maynotonlydesertwhentheirpartnerstaysbehindto carefortheoffspring,butmayalsodesertwhenthepartneralreadyhasdeserted.A less attractive male may be better off caring for the offspring in the latter case. BalshineEarn and Earn (1997) also showed in their model that natural variation between individuals and in the environment could promote the existence of the differentfrequenciesofparentalcareobserved(seealso:McNamaraetal.2004).A spatialstructureofstrategies,suchasdesertinhighqualityhabitatsandcareinpoor habitats,couldleadtospatialautocorrelation,potentiallyconfoundingtheoutcome ofouranalyses.Althoughsuchaspatiallydiverseenvironmenthasbeensuggestedto havethepotentialofharboringmultiplecoexistingstrategies(Nowak&May1992), webelievetheextenttowhichthismayhaveinfluencedourresultsislikelylimited, sinceinearlierstudieswedidnotfindthattheparentalcarestrategywasrelatedto habitat characteristics ( Chapter VII & VIII ). However, it remains worthwhile to furtherinvestigatethepossibilityastohow,forinstance,matingopportunitiesmay

66 be spatially structured, potentially resulting in a spatial structure of deserting strategies.Similarly,asocialstructuremayinfluencetowhatextentindividualsare willingtocooperateandcarefortheoffspring.Asocialnetworkmayhaveimportant implicationsonthedecisionaboutparentalcare(McDonald2007;Voelkl&Kasper 2009). Such extrinsic variability in behaviour, the reputation of the players in a game,aswellasoccasionalmistakesmadebyplayers,areallwaysbywhichthe solution of a game may be influenced in a population and by which multiple strategiesmaybemaintained(Selten1983;McNamaraetal.2004;Ohtsuki&Iwasa 2007; McNamara et al. 2008; McNamara & Weissing 2009). The ramifications of individualqualities,aspatialorsocialstructure,andenvironmentaleffectsmaybe investigatedusingastatedependentgametheoreticmodel. In conclusion, we show that, although individual pairs may play various games,thebargaininggameoverparentalcarependulinetitparentsmayplayismost consistent with the coordination game. Payoff dominance of the individual reproductiveoutputsmayresolvethiscoordinationgameandexplainsalargepartof thevariationofinthepatternofcareobservedinnature. Acknowledgements We are grateful to all people who helped with the fieldwork in Hungary. We thank the Kiskunság National Park (2386423/2006, 2386432/2007) and Szegedfish Ltd. for permission to carry out fieldwork.TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropeanCommunity’s Sixth Framework Programme (FP6/20022006) under contract n. 28696. The work was further supportedbyaUniversityofBathstudentshiptoREvD;theHungarianNationalScienceFoundation OTKA(T043390toTS);aRoyalSocietyJointProjectgrant(15056toTS);andtheLeverhulmeTrust (RF/2/RFG/2005/0279toTS).

67 CHAPTERVI SEXDIFFERENCESINCAREPROVISIONINGDONOT EXPLAIN FEMALEBIASED UNIPARENTAL CARE IN

THEPENDULINETIT REMIZPENDULINUS ÁkosPogány,RenéE.vanDijk,PéterHorváth&TamásSzékely ManuscriptunderrevisionforAnimalBehaviour Authors’contributions AP:datacollection,statisticalanalysis,manuscriptpreparation REvD :studydesign,datacollection,manuscriptimprovement PH :datacollection TS :studydesign,manuscriptimprovement

68 ABSTRACT Parentalcareiscostly,thusevolutionarytheorypredictseachparentshouldshiftcare provisioning to its mate. We investigated sexual conflict over care in a small passerinebird,theEurasianpendulinetit Remizpendulinus.Thisspeciesexhibitsan unusually complex breeding system: sequential polygamy by both sexes, and uniparentalcarewhereby oneparent(eitherthe maleorthefemale)desertsduring egglaying,anditsmateincubatestheeggsandrearsthechickstoindependence.Ina Hungarian population of Eurasian penduline tits, femaleonly care of clutch and brood was more common than maleonly care (47% versus 14%of534clutches). Moreover,femalecaredclutcheswerelargerthanthosecaredforbymales.Herewe testtheparentalqualityhypothesis,whichstatesthatfemalesprovidebettercarethan males, and that this selects for more frequent care by the female. We show that neitherincubationbehaviournorbroodfeedingratesweredifferentbetweenmales and females after controlling for initial clutch size, egglaying date and ambient weather.Consistentwiththeseresults,offspring survivalandnestlingsizedidnot differ between malecared and femalecared clutches; our results therefore do not supporttheparentalqualityhypothesis.Wediscussalternativeexplanations,suchas sexdifferencesincostsandbenefitsofoffspringdesertion,whichmighthaveledto theobservedfemalebiasedparentalcareinEurasianpendulinetits.

69 INTRODUCTION Sexual conflict theory suggests males and females should adopt strategies that maximize their own reproductive success, regardless of the interest of their mate (Parker 1979; Lessells 1999). Since the interests of males and females over reproductionareoftendifferent(forinstance,theoptimalnumberofmatesisoften higherformalesthanforfemales),conflictoverparentalcaremayemergesuchthat each parent prefers the other to work harder in provisioning the young (Lessells 1999; Arnqvist & Rowe 2005; Houston et al. 2005). One of the most extreme outcomesofparentalconflict(orpostzygoticsexualconflict,Royleetal.2002)is offspringdesertion(Székelyetal.1996).Aparentthatdesertsitsoffspringoffloads the burden of complete parental care to its partner, whereby improving its own survivalandfuturereproductivesuccess(Houstonetal.2005; ChapterII ). Inanimalswithuniparentalcareitisusuallythe female that cares for the young,althoughthereareabundantexceptions(CluttonBrock1991;Székelyetal. 1996; Tallamy 2001; Reynolds et al. 2002; Berglund & Rosenqvist 2003). Two fundamentalreasonshavebeensuggestedtoexplainwhyfemalecareismorelikely thanmalecare.First,intraandintersexualselectionoftenresultsinhighervariance inmatingsuccessofmalesthanoffemales.Followingonfromthis,bycaringforthe youngthemostsuccessfulmalesinapopulationwouldsacrificehigherreproductive successthanthemostsuccessfulfemales(Queller1997;Kokko&Jennions2003). Females, therefore, are expected to enhance the efficiency of their care (parental quality hypothesis; Erckmann 1983; Eckert & Weatherhead 1987), whereas males areexpectedtoevolvetobettercompetitiveabilitiestoaccessmates.Theparental qualityhypothesisthereforepredictsmorefrequentandbetterfemalecarethanmale care.Thesecondpotentialreasonwhyfemalecareismorecommonthanmalecareis thatininternallyfertilizingorganismssuchasbirdsmalesmaybecuckolded.Hence, females more likely rear their own offspring (assuming brood parasitism does not occur), whereas males may not do so. Therefore, the interest of males is often to ensuretheirmateisfertilizedbythem(mateguarding),orsecureandfertilizemany femalesinsteadofinvestingintoparentalcare(Trivers1972;Queller1997;Westneat &Stewart2003;Kokko&Jennions2008).Consequently,bothprecedingarguments suggest that femaleonly care is more likely to evolve than maleonly care (McNamaraetal.2002;Kokko&Jennions2003). Specieswithvariablebreedingsystems(sensuReynolds1996)offerexcellent opportunities to investigate the driving forces behind the evolution of different

70 patterns of parental care. The Eurasian penduline tit, Remiz pendulinus ,isasmall passerinebird(bodymassabout9g)withastrikinglyvariablebreedingsystemin whichbothmalesandfemalesmatewithmultiplematessequentially(upto7social mateswithinasinglebreedingseason).Besides,theclutchandyoungarecaredfor bythefemale(48%65%),themale(7%18%),orneitherparent(28%40%, N= 89291nestsinfourEuropeanpopulations,(Persson&Öhrström1989;Franz1991; Pogányetal.2008).Thehighfrequencyofbiparentallydesertedclutches,afeature common across all European populations studied to date, indicates intense sexual conflictoverparentalcare(Persson&Öhrström1989;Valeraetal.1997;Arnqvist& Rowe 2005). The latter conjecture was confirmed by Szentirmai et al. 2007 who quantifiedthereproductivepayoffsofcaringanddeserting:bothmaleandfemale pendulinetitsthatdesertedtheirclutchincreasedtheirownreproductivesuccessand reducedthatoftheirmate.Thependulinetitistheonlyspeciesasfarasweareaware in which the consequences of parental care decisions are mirrored in males and females:whatisgoodformalesisbadforfemales,andviceversa. Here we test the parental quality hypothesis using a 6year dataset from a populationofEurasianpendulinetitsinHungary.Firstly,wepredictedthatfemales should show a greater degree ofparental care (incubationandbroodprovisioning) thanmales.Secondly,wepredictedthatnestlingswillbelargerandchicksurvival will be higher in nests cared for by females, as a consequence of their greater parental care. Thirdly, we also predicted that males are less able to care for large clutchesthanfemales,thereforeoffspringsurvivalandnestlingsizeshoulddecline more steeply with increasing clutch size in malecared nests than in femalecared ones. METHODS Fieldwork WestudiedEurasianpendulinetitsatFehértó,southernHungary(46º19’N,20º5’ E) between April and July of 2002 2007. Fehértó is an extensive system of 16 fishpondsseparatedbydykes(1321ha),andpendulinetitsnestintreesalongthese dykes.Wesearchedfor newnestsandchecked existingnestsapproximatelyevery other day throughout the breeding season. Male and female penduline tits were trappedusingmistnetscombinedwithsongplayback near the nest, or a specially designednesttrap(Z.Barbácsy,pers.comm.).Birdswereringedwithanumbered metalringfromtheHungarianOrnithologicalInstitute,andauniquecombinationof

71 threecolourrings(A.C.Hughes,Middlesex,UK;formoredetailsontrappingand ringing,seeEthicalnote,Bleekeretal.2005;Szentirmaietal.2007).Pendulinetits weresexedaccordingtotheirsexuallydimorphicplumagetraits:maleshavelarge blackmasksandaremorecolourfuloverall(Kingmaetal.2008). We recorded incubation and feeding rates at malecared (MC) and female cared (FC) clutches between 2005 and 2007 (see Supplementary information). Incubationwasrecordedat29nests(9MCand20FC)duringathreehourperiod (2.83±0.07h,mean±SE)betweenthe7 th and10 th dayofincubation.Ifthefemale hadbeentrappedonthenestduringthisperiod,wewaitedatleastonedaybefore recordingatthatnest(seeEthicalnote).SamplesizeforMCissmall,becausefewer nests are cared for by males than by females (see Results). Recording started at a randomlyselected time between 0700 and 1700 hours. We used a Sony DCR TR7000Hi8andaPanasonicNVDS28EGminiDVdigitalrecordermountedona tripodplacedapproximately15mfromthenestsothattheincubatingparentswere notdisturbed. Werecorded(ordirectlyobserved)feedingratesat30nests(10MCand20 FC)forapproximatelytwoandahalfhours(2.58±0.11h,mean±SE)onthe10 th day after hatching, starting randomly between 0700 and 1700 hours. In 2005 and 2006,thenumberoffeedingvisitsmadeat24nests(7MCand17FC)wasobserved fromahideatleast15mfromthenest.In2007,feedingratesweredeterminedat6 nests (3 MC and 3 FC) using the same video recording system used to monitor incubation. Uniparental care by the male or the femalewasconfirmedatallnests involvedinincubationorfeedingobservationsandrecordings;onlyoneparentwas everseentoincubateorfeedateachnest. Wecollectedoffspringsurvivaldatafrom150nests(33MCand117FC) between2002and2007.Weestimatedclutchsizeasthenumberofeggspresenton theeighthdayofincubation,andbroodsizeasthenumberofnestlingspresent10 daysafterthefirsthadhatched.Wecalculatedoffspringsurvivalateachnestasthe proportionofeggsthatproduced10dayoldnestlings. To estimate offspring size, we measured body mass and tarsal length of approximately11dayoldnestlings(11.0±0.3days,mean±SE)in90nests(17MC and73FC)between2002and2004.Forthesenestsweobservedclutchsize,brood sizeathatchingandnumberofchicks10daysafterhatching.Thedifferentsample sizes between analyses are due to missing data: for each analysis we included the maximumnumberofneststoimprovestatisticalpower.

72 Dataprocessingandstatisticalanalyses Fromtheincubationvideofootagewenotedthetimewhentheparentarrivedatand leftthenestineachincubationbout.Wedefinedarrivalanddepartureaswhenthe parent completely entered the nest and left the nest chamber, respectively, and incubationtimewastheproportionoftimespentinsidethenestduringthethreehour observationperiod. Wecalculatedfeedingratesateachnestfromfeedingobservationsandvideo recordings. Nest visits without food delivery were rare (no food was delivered in approximately 2% of nest visits at a subset of nests), we therefore used the total number of nest visits as a measure of feeding behaviour. Since brood sizes were differentbetweennests,wecalculatedfeedingfrequencyperchickperhour. Wecontrolledforthepossibleconfoundingeffects of ambient temperature andwindspeedonparentalbehaviour(Conway&Martin2000)usingdatafroma meteorologicalstation(46º22’N,20º06’E,about5kmfromFehértó). WeusedGeneralLinearModels(GLMs)toexaminetheindependenteffects ofthesexofthecaregivingparent,clutchandbroodsize,ambienttemperatureand wind speed on incubation rates (arcsine transformed) and feeding rates. In initial modelstheyearofstudy,timeoftheday,andfirsteggdateswerealsoincluded.The latterwascalculatedasthenumberofdaysfrom1Apriluntilthedatethefirsteggof theclutchwaslaid. Thebodymassandtarsuslengthof11dayoldchickswereaveragedforeach brood,andweusedeithermeanbodymassormeantarsus length as a dependent variable to investigate the effect of care giving sex on offspring size using GLM. Modelsofoffspringsizeincludedthefollowingexplanatory variables: care giving sex, exact offspring age (in days), clutch size, number of chicks at hatching and broodsizeat10daysafterhatching.Theeffectsofcaringsexandinitialclutchsize on offspring survival were investigated using Generalised Linear Models with binomialerrordistribution. Assumptionsofstatisticaltestsweretestedpriortotheanalyses.Statistical analyses were carried out in R 2.6.1. (R Development Core Team 2005, Vienna, Austria).Nonsignificanttermswereeliminatedinastepwisemanneruntilthefinal modelswerereached.Wealsotestedforstatisticalinteractionsbetweencaregiving sex and the remaining explanatory variables in the models, since these would indicatedifferentialeffectsofcaringsexinregardtospecificexplanatoryvariables.

73 Weprovidestatisticsforexcludedvariablesbeforetheirexclusionfromthemodel. Mean ± SE and twotailed probabilities are given, and we rejected the null hypothesesat P<0.05. Ethicalnote WeusedstandardmethodsasdescribedinourFieldProtocol( www.bath.ac.uk/biosci/biodiversity lab/pdfs/PT_%20Field%20Guide_1_2.pdf)tosearchforandchecknests,trapandobservependuline tits (Szentirmai et al. 2005a, Chapter III ). Kiskunság National Park, Hungary, provided the permissionstocarryoutfieldwork(ref:5773/2002;3902/2003;1094/2004;2386411/2005;23864 23/2006;2386432/2007).Toavoidnestabandonment,weonlytrappedatnestswhichwereinwell advancedstages(atleastinstageC,seeFieldProtocol).Matedpendulinetitswereeithertrappedone dayafterpairing,oraftertheeightdayofincubation.Inbothtrappingmethods(mistnettingorthe Barbácsynesttrap),atrappingtriallastedforlessthen30minutes;iftrappingwasnotsuccessful,we repeatedthetrialthenextday. Penduline tits are tame and tolerate humans near their nest. Nevertheless, to minimize disturbance, the nests were observed using binoculars from at least 15m every other day to follow breedingstatusbasedonbehaviouroftheparent(s).Clutchsizewasdeterminedattheeightdayof incubationbycheckingnestcontentonceaftertheincubatingparentleftthenest.Baseduponthese protocolsandourextensivefieldworkexperience,webelievewerecordedthenaturalbehaviourand reproductivesuccessofEurasianpendulinetits. RESULTS Patternsofcareandclutchsize Out of 534 clutches, the female cared for 253 clutches (47.4%), the male for 72 clutches(13.5%),and209clutches(39.1%)weredesertedbybothparents,whereas biparentalcarehasneverbeenobserved.Femaleonlycarewasmorecommonthan maleonlycare(binomialtestusing325uniparentalclutchesand0.5expectation, P< 0.001). Females cared for larger clutches (5.8 ± 0.1 eggs, N = 164 clutches) than males(3.6±0.2eggs, N=50clutches; ttest: t212 =10.235, P <0.001).Clutchsize declinedoverthebreedingseason(leastsquareslinear regression: b = 0.356, t = 5.555, P<0.001).Sinceearlierstudiesfoundseasonaltrendinparentalcare(male cared clutches are initiated later than femalecared ones; see Persson & Öhrström 1989; Szentirmai et al. 2005a; Pogány et al. 2008), the different dates of nest initiations could be responsible for clutch size differences between the sexes. However, femalecared clutches remained significantly larger when first egg date wasincludedintheGLM(Table6.1).Thenonsignificantinteractiontermbetween caregivingsexandfirsteggdatesuggeststhattheseasonaldeclineinclutchsizewas

74 comparablebetweenmalecaredandfemalecaredclutches(Table6.1),thereforethis interactionwasnotincludedinthefinalmodel. Table 6.1 GeneralLinearModelofclutch size(responsevariable) in Eurasian penduline tits (214 clutches: 164 femalecared and 50 malecared clutches). All interactions between Care giving sex, YearandFirsteggdatewerenonsignificant,andthustheywereexcludedfromthefinalmodel( R2=

0.457, F7,206 =24.761, P<0.001). F DF P Explanatoryvariablesinthefinalmodel Year 6.585 5 <0.001 Firsteggdate 48.200 1 <0.001 Caregivingsex 92.200 1 <0.001 Figure 6.1 Incubation in Eurasian penduline tits in relation to ambient temperature ( N = 28 clutches: 9 male cared and 19 femalecared nests; least squareslinearregressions: b=0.734, t= 5.512, P<0.001).Filledsymbols:male only care, open symbols: femaleonly care.

Incubationbehaviourandchickfeeding Malesandfemalesdidnotdifferinthetimetheyspentonincubation,andwefound nodifferencebetweenthesexesinresponsetoanyexplanatoryvariables(Table6.2). Both males and females increased the proportion of timetheyspentincubating as ambienttemperaturedecreased(Fig.6.1,Table6.2). Similarly, there was no difference between males and females in brood feedingrates(Table6.2).Feedingratespernestlingdecreasedwithbroodsize(Fig. 6.2),andvariedbetweenyears.Nootherexplanatoryvariablewassignificant(Table 6.2).

75 Table6.2 GeneralLinearModelofincubationandfeedingbehaviour(responsevariables)inEurasian pendulinetits.Incubationdataarefrom28clutches(9malecaredand19femalecaredclutches:one femalewithextremebehaviourwasexcluded)andfeedingdataarefrom30clutches(10malecared and20femalecaredclutches).InteractionsbetweenCaregivingsexandotherexplanatoryvariables 2 werenonsignificant,andthusexcludedfromthefinalmodels(incubationtime, R =0.548, F1,26 = 2 31.471, P<0.001;feedingrate, R =0.460, F3,26 =7.394, P<0.001). Incubationtime(proportionoftimeinsidethe F DF P nest) Explanatoryvariablesinthefinalmodel Temperature 31.471 1 <0.001 Excludedvariables Caregivingsex 0.379 1 0.544 Windspeed 0.039 1 0.846 Clutchsize 0.415 1 0.526 Firsteggdate 0.241 1 0.628 Timeofday 1.968 1 0.173 Year 1.003 2 0.382 Feedingrate(feedsperchickperhour) Explanatoryvariablesinthefinalmodel Broodsize 6.509 1 0.017 Year 7.836 2 0.002 Excludedvariables Caregivingsex 0.084 1 0.774 Temperature 0.375 1 0.546 Windspeed 0.404 1 0.531 Firsteggdate 0.178 1 0.676 Timeofday 0.330 1 0.570 Offspringsurvivalandsize Femalecared clutches, originating from larger initial clutch size (see above), producedmorenestlings(3.6±0.1chicks, N=117nests)thanmalecaredones(2.6

±0.2chicks, N=33nests; ttest: t148 =3.645, P<0.001).However,therewasno differenceinoffspringsurvivalbetweenmalecaredandfemalecaredclutches,after controlling for year, initial clutch size and first egg date (Table 6.3). Offspring survival declined more steeply in response to initial clutch size in malecared clutches than in femalecared ones (as shown by a weakly significant care giving

76 sex*clutchsizeinteractionwhenanalysingthefulldataset;Fig.6.3,Table6.3).The latterinteraction,however,appearstobedrivenbyaninfluentialdatapointinMC clutch size of eight eggs, because by restricting the analysis to 16 eggs, the interactionisnolongersignificant(Table6.3). Figure 6.2 Feeding rates at Eurasian penduline tit nests in relation to brood size (leastsquareslinearregressions: b=0.303, t = 1.680, P = 0.104). Filled symbols: male onlycare,opensymbols:femaleonlycare.

Figure 6.3. Offspring survival in Eurasian penduline tits in relation to clutch size (least squares linear regression: b=0.293, t=3.725, P< 0.001). Offspring survival is the percentage of eggs that produced 11 day old nestlings, with the number of clutches given above each bar and +1 SEMshownbyerrorbars.Filledbar: maleonly care, shaded bar: female onlycare. There was no difference in nestling size between malecared and femalecared broods(Table6.4),although chicks’bodymassdecreased with first egg date and withbroodsizeathatching(Table6.4).Bothbodymassandtarsuslengthincreased withchickage,andweredifferentbetweenyears(Table6.4). DISCUSSION Eurasianpendulinetitsexhibitoneofthemostdynamicbreedingsystemsinbirds wherebyonlyonesex,usuallythefemale,providescaretotheclutchandbrood.This mayhaveevolvediffemalesprovidebetterparentalcarethanmales.Wetestedthis

77 hypothesisbycomparingpatternsandconsequencesofparentalcarebetweenmale cared nests and femalecared nests, but contrary to the predictions we found no differencesbetweenthesexesinincubationrate,nestlingfeedingrates,oroffspring sizeandsurvival. Table6.3 GeneralisedLinearModelwithbinomialerrorofoffspringsurvivalinEurasianpenduline tit clutches. Offspring survival was the proportion of eggs that produced 10day old nestlings. We providetwomodels:model1includesall150nestswherewecollectedsurvivaldataduringourstudy period(Offspringsurvival1:33malecaredand117femalecaredclutches)whereasinmodel2we restricted the dataset to those 110 nests that contained 16 eggs (see text; Offspring survival 2: 32 malecaredand78femalecaredclutches). Offspringsurvival1 χ2 DF P Explanatoryvariablesinthefinalmodel Clutchsize 5.295 1 0.021 Firsteggdate 9.940 1 0.002 Year 11.348 5 0.045 Caregivingsex 2.178 1 0.140 Caregivingsex*Clutchsize 3.861 1 0.049 Offspringsurvival2 χ2 DF P Explanatoryvariablesinthefinalmodel Clutchsize 9.596 1 0.002 Firsteggdate 6.820 1 0.009 Excludedvariables Year 7.771 5 0.169 Caregivingsex 0.954 1 0.329 Caregivingsex*Clutchsize 3.023 1 0.082 Why do female penduline tits provide care for more clutches than do males? We suggestthreeexplanations.First,thebenefitofdesertionmaybehigherforthemale than for the female. Even though in penduline tits either sex may increase its reproductive success by desertion (Szentirmai et al. 2007), the relative costs and benefitsofdesertionmaystillbedifferentformalesandfemales,sothatthenetgain maybehigherforthemale.Toinvestigatethisproposition,weneedtocomparethe Batemangradients of the sexes i.e. estimate the rate of reproductive success in relationtothenumberofmatesformalesandfemales,separately (Bateman1948; Arnold&Duvall1994;Andersson&Iwasa1996).

78 Second,evenifthebenefitsofdesertionaresimilarformalesandfemales, malesmaybebetteratmanipulatingfemalessothattheoutcomeofsexualconflictis in their favour (Gavrilets et al. 2001). For instance, recent field observations and experimentsshowedthatfemalependulinetitsprefermaleswithlargeblackfacial masks(Pogány&Székely2007;Kingmaetal.2008),andmalependulinetitswitha large mask deserted more often than males with a small mask ( Chapter IX ). Therefore,masksizemayactasamanipulativetraitbywhichmaleswithlargemask enticetheirpartnerto care–withanoutcome similar to differential allocation in which females are willing to care more for their young if an attractive (or high quality)malesiredthem(Burley1988;Sheldon2000).Malesmayalsodetectegg layingoftheirmates,andthisgivesthemtheupperhandindecidingfirstwhether carefortheclutchordesert(Valeraetal.1997). Third,malesmayprovidelesscarebecausetheyareunsureaboutpaternity (Queller1997).Usingmolecularmarkers,wearecurrentlyinvestigatingtherateof extrapairpaternityinpendulinetits;Schleicheretal.(1997)found6.9%ofextra pairpaternity(EPP)whereasoursinglelocusfingerprintingsuggests16%EPP,and nodifferencebetweenmaleonlyandfemaleonlyclutches(Mészárosetal.inprep). Maleandfemalependulinetitsspentcomparabletime on incubation, and theyfedtheiryoungatsimilarfrequencies.Incubationtimedidnotdifferalthough males incubated on average 40 % smaller clutches. Besides, and in contrast with otherstudies,thenumberofeggsdidnotinfluence incubation effort within either sex,suggestingthatincubationtimeinpendulinetitsisnotadjustedtoclutchsize (Haftorn & Reinertsen 1985; Dobbs et al. 2006). A possible explanation for this discrepancyisthatpendulinetitshavewellinsulatednests(Szentirmaietal.2005b) compared with many treehole (or nestbox) nesting investigatedby the aforementioned researchers. Moreover, penduline tits gain body mass during incubation, suggesting that incubation does not have an excessive energetic cost (Bleekeretal.2005).Similartofemales,malependulinetitsalsodevelopabrood patch during incubation (Cramp et al. 1993), and this further decreases the opportunityforparentalqualitydifferencesduringincubation.Broodsize,incontrast withincubationtime,constrainedperchickfeedingfrequency,howeverthedecrease wascomparablebetweenmalecaredandfemalecaredbroods.

79 Table6.4. GeneralLinearModelofbodymassandtarsuslengthof11dayoldnestlings.Datawas collectedin90clutches(17malecaredclutches/broodsand73femalecared).AllCaregivingsex* Explanatoryvariableinteractionswerenonsignificantandexcluded(finalmodels:bodymass, R2= 2 0.392, F5,84 =10.831, P<0.001;tarsuslength, R =0.469, F3,86 =25.273, P<0.001). Offspringbodymass F DF P Explanatoryvariablesinthefinalmodel Year 8.600 2 <0.001 Firsteggdate 5.121 1 0.026 Offspringage 19.464 1 <0.001 Broodsizeathatching 12.368 1 <0.001 Excludedvariables Caregivingsex 0.459 1 0.500 Initialclutchsize <0.001 1 0.987 Currentbroodsize 1.192 1 0.278 Offspringtarsuslength Explanatoryvariablesinthefinalmodel Year 29.069 2 <0.001 Offspringage 17.683 1 <0.001 Excludedvariables Caregivingsex 0.014 1 0.906 Firsteggdate 0.068 1 0.794 Initialclutchsize 0.018 1 0.893 Broodsizeathatching 0.025 1 0.876 Currentbroodsize 0.042 1 0.838 Wefoundnodifferencesinoffspringsurvival(norinaveragechicksizeandbody mass) between malecared and femalecared clutches, although the latter still producedmoreoffspringasaresultofsexdifferencesininitialclutchsize.Offspring survivaldecreasedwithadvanceofthebreedingseason,whichmayreflectseasonal changesinfoodavailability.Analternativeexplanationfortheseasonalvariationis providedbytheoptimalannualroutinehypothesis(McNamara&Houston2008),as parents may tradeoff parental efforts in favour of their own reserves before the autumnmigrationstarts.Inlinewiththeannualroutinehypothesis,clutchsizealso decreasedwithadvanceofthebreedingseason,asinmanyotherbirdspecies(Rowe et al. 1994). Sexes differed in offspring survival in response to initial clutch size

80 whenanalysingourfulldataset,however,thissexdifferenceappearedtobedriven byaninfluentialdatapointinmaleonlycaredclutchsizeofeight. Although male and female parental care was not different for both indirect anddirectmeasuresofparentalquality,itispossiblethatsomeconsequencesofthe caringsexmighthaveremainedhidden.Forinstance,qualityoffood(sizeortypeof prey)giventooffspringmighthavebeendifferentbetweenmaleonlyandfemale onlynests.Asaconsequence,recruitment(orlifetimereproductivesuccess)ofthe offspringcouldbedifferentbetweenmalecaredandfemalecaredbroods. Thesmallclutchsizesofmaleonly carednests areprobablyduetofemale desertionandthus‘incomplete’clutches(Persson&Öhrström1989).Thedeserted malethenhastwooptions:desertasresponse,orcarefortheclutch.Themaleswe investigated in this study took the second option. It would be very interesting to manipulate desertion behaviour experimentally by removing one parent randomly duringegglaying,andalsotomanipulateclutchsize.Theseexperimentsmayclarify whether males would be able to provide care for larger clutches comparable to femalesassuggestedbyourresults.Furthermore,itremainstobeexploredhowthe longtermcostsofcaremayvarybetweenmalesandfemales;ifcarereducesmale survivalmorethanthatoffemales,onewouldexpecttoseefemalebiasedparental careinpendulinetits. Inconclusion,ourresultsdonotsupporttheargument that femalebiased uniparentalcareinEurasianpendulinetitsisdue to females providing better care thanmales.Furtherstudiesmayrevealwhethertheobservedfemalebiasedcareis driven by sex difference in the benefits (or costs) of offspring desertion. We conjecture that in Eurasian penduline tits either the males have higher mating opportunity (and thus their reproductive output increases more steeply with desertion) than that of the females, or by providing care the males pay higher mortalitycostinfutureyearsthandofemales. ACKNOWLEDGEMENTS The research leading to these results has received funding from the European Community's Sixth FrameworkProgramme(GEBACO,FP6/20022006)undercontractno.28696.Thisresearchwasalso supported by the Hungarian Scientific Research Foundation (OTKA T031706 and T043390). Permission to work at Fehértó fishpond was provided by Kiskunság National Park (Hungary) and SzegedfishKft.(Hungary).WearegratefultoIstvánSzentirmai,GáborBakacsi,BélaTokody,Lídia Mészárosandallthefieldworkersfortheirassistance.WethankAndrásKosztolányi,ZoltánBarta andFreyaHarrisonfortheircommentswhichimprovedthemanuscript.Weatherdatawasprovided

81 by the Hungarian Meteorological Service. We also acknowledge the insightful comments of Ian Stewart,ananonymousReviewerandtheEditor.

82 CHAPTERVII THE INFLUENCE OF HABITAT STRUCTURE ON SEXUAL CONFLICT OVER CARE IN PENDULINE

TITS RenéE.vanDijk,ArjenE.Pilon,IstvánSzentirmai,TamásSzékely&Jan Komdeur Ardea96:311

Authors’contributions REvD :studydesign,datacollection,statisticalanalysis,manuscriptpreparation AEP :datacollection IS :studydesign,datacollection,manuscriptimprovement TS :studydesign,manuscriptimprovement JK :manuscriptimprovement

83 ABSTRACT Spatialandtemporaldistributionsofresourcesandhabitatsofteninfluencebreeding systems. These influences are particularly relevant in those species which exhibit variable breeding systems. We studied such a species, the Penduline Tit Remiz pendulinus .Thissmallpasserinebirdhassequentialpolygamybyboth sexes,and evidencesuggestsintensesexualconflictbetweenmalesandfemalesovercare.We estimatedhabitatstructurebyscoringthevegetationimportantfornestbuildingand foragingintheimmediatesurroundingsofthenest.Usingfourprincipalcomponents weshowthatsiteswithmoreabundantvegetationareoccupiedearlierthansiteswith sparse vegetation. However, habitat structure does not predict mating success or reproductive success, and it neitherpredicts whichparent (the male, the female or both)desertstheclutch.Wethereforesuggestthathabitatstructuredoesnothavea direct effect on reproductive success or on the resolution of sexual conflict in Penduline Tits. Specific aspects of habitats, such as food and nest material availability,remaintobetested.

84 INTRODUCTION The distribution and availability of resources often influence breeding systems in birds.Thedegreeofspatialhomogeneityofdistributionofresources,forinstance, influences the way males establish territories and subsequently the number of femalestheymayobtain(Verner1964;Verner&Wilson1966;Orians1969;Bennett &Owens2002).Abundantfoodoftenpromotespolygamy(Davies1991;Andersson 2005).However,thelinkbetweenfoodavailabilityandbreedingsystemislikelyto bemorecomplicatedthanoftenanticipated(Kosztolányietal.2006).Forinstance, interference competition, the competitive interaction between individuals over resources, appears to play an important role in the distribution of individuals (Kosztolányietal.2006;Vahl2006).Thesedistributionsinturn,mayaffectmate availability and thus the costs and benefits of desertion (Emlen & Oring 1977; Alataloetal.1981;Davies1989;Székelyetal.1999). One of the drivers of breeding system evolution is sexual conflict; this emerges if the evolutionary interests of males and females over reproduction are different(Davies1992;Birkhead&Parker1997;Houstonetal.2005;Thomasetal. 2007).Inspecieswherethereissexualconflictovercareprovisioning,suchasthe Dunnock Prunellamodularis (Davies1992,KentishPlover Charadriusalexandrinus Székelyetal.1999,ortheSnailKite Rostrhamussociabilis Beissinger1987),food abundance may play an important role in resolving this conflict. In polygamous species, for instance, high food availability may allow females to lay subsequent clutches,withmaleshavingtocarefortheyoung(Andersson2005).Furthermore, highfoodavailabilitymaypromotetheexistenceofsexualconflictasitpromotesthe sufficiency of uniparental care for the survival of offspring, opening up the possibility for one parent, either male or female, to desert. In the Snail Kite, for instance,matedesertionoccursmorefrequentlywhenfoodisabundant(Beissinger 1987).Whichparentdesertsmaydependonecologicalfactorsinspecieswithplastic expression of alternative breeding strategies (Emlen & Oring 1977; Davies et al. 1995;Székelyetal.1999;Wysocki2004;Magellan&Magurran2006).Forinstance, if there are many unpaired males available in a population, the female may more likely desert than the male, if either parent can carefortheoffspringonitsown. Similarly,iftherematingopportunitiesarebetterformales,malesaremorelikelyto desert. Hereweinvestigatewhetherhabitatstructure,asaproxymeasureforfood andnestmaterialavailability,influencestheoutcomeofsexualconflictoverparental

85 careinPendulineTits Remizpendulinus .Sexualconflictinthissmallpasserineis exhibitedbyparentalcarealwaysbeingcarriedoutbyoneparent,eitherbythemale (520%), or by the female (5070%). In addition, some 3040% of clutches is desertedbybothparentsduringegglaying(Persson&Öhrström1989).Thispattern ofparentalcaresuggestsintensesexualconflictovercare.Szentirmaietal.(2007) recentlyshowedthatbothmalesandfemalesgainedbydeserting,butbothpayacost if their mate does so. Furthermore, the process of desertion is rapid: biparental desertiontakesplacewithinoneoratmostwithintwodays,suggestinganarmsrace fordesertingfirst(ChapterIII ). Parentalcareiscostlyintermsofsurvival,energyandrematingopportunities (Dijkstraetal.1990;Webster1991;Székelyetal.1996;Magrath&Komdeur2003). Thereforeeachparentisexpectedtoshiftcaretoitsmate(Houstonetal.2005).One mayexpectthathabitatstructureinfluencestheobservedpatternofcare.Giventhat clutchescaredforbyfemalesaresignificantlylarger(5.8±1.3eggs)andarethus likelytohaveahigherenergydemandthanclutchescaredforbymales(3.5±1.4 eggs, ChapterIII ), femaleonly care is expected tobe moreprevalentinfoodrich habitats, whereas maleonly care may be more frequentinhabitatswithlowfood availability. Food rich habitats will be beneficial for both male and female: the femaleismorelikelytosuccessfullyraisetheyoung.Thiswouldofferthemalethe opportunitytodesert.However,ifthereislittlefoodavailable,thefemalemighttry topreemptdesertionbythemale,attemptingtoforce him to care (Lazarus 1990; Barta et al. 2002). We would thereforepredict that males would occupy foodrich habitatsfirstafterreturningfromtheirwinteringgrounds.Asimilarargumentcanbe madeinregardstonestmaterialavailability:femaleonlycareisexpectedinhabitats offering more nest material. Females are likely to care for males that spend more time on nest building and also for males that build large nests (Szentirmai et al. 2005a).Thisoffersthemalestheopportunitytodesertandavoidthecostsofparental care.Insum,malesareexpectedtooccupyhabitatsthathavedensevegetationand abundantnestmaterialfirst. METHODS Studyspecies The Penduline Tit is a small passerine (body mass about 910g), and has a widespreaddistributionacrossEuropeandAsia.Itexhibitssequentialpolygamyby both sexes, and both male and female may have up to six partners in a single

86 breedingseason(Persson&Öhrström1989;Houstonetal.2005;Szentirmaietal. 2007). We studied Penduline Tits in Hungary (see below). Penduline Tits were ringedwithauniquecombinationofthreecolourringsandonenumberedmetalring (Bleekeretal.2005).Standardmorphometricmeasurementsweretaken.Thesizeof theeyestripe(the‘mask’)ofthebirds,signallingattractiveness,wasmeasuredusing digitalphotographsandanalysedusingAdobePhotoshop7.0(Kingmaetal.2008). Intotaltherewere177and158nestsin2004and2005,respectively.Ofthe62males and44femaleswecolourringedin2004,onlythreemalesandonefemalewerere sighted in 2005. We searched the complete study area for new, unpaired, nest building males, and visited each active nest (i.e. in nestbuilding, egglaying, incubating,orfeedingphase)nearlyeveryotherday(ChapterIII ).Ateachnestthe following dates were recorded: (i) Nest initiation date. The exact date could be determined for nests found at the date of initiation of nestbuilding, when only a smallamountofmaterialiswovenaroundatwig(Crampetal.1993).Fornestsin laterstagesofdevelopmentthenestinitiationdate could be estimated using nests foundonthedayofnestbuildinginitiationasareference(Szentirmaietal.2005a). (ii)Dateofpairformation.Amalewasconsideredtobematedassoonasthepair was seen copulating near the nest, or building the nest together. (iii) Date of desertion. A nest was considered tobe desertedbyoneorbothoftheparentsifa maleorfemale(orboth)wasnotseenatthenestforatleast15minutesforatleast twoconsecutivenestchecks.A15minuteperiodappearstobeenoughtoestablishto presenceofabirdatitsnest(ChapterIII ).Matingtimewasdefinedasthenumberof daysittookamaletoattractamatefromthedateitstartedbuildingitsnest.Mating successwasdefinedaswhetherpairformationtookplaceornot.Datesaregivenas numberofdayssince1Marchineachyear. Habitatstructure Datawerecollectedin2004and2005inFehértó(1321ha)insouthernHungary(46 0 19’N,20 05’E).From7Mayto15Junein2004,andfrom18Mayto10Julyin 2005habitatstructurewasinvestigatedfor48and139nests,respectively.Fehértóis anextensivelyusedfishfarmconsistingoflargefishpondsseparatedbydikes.The reedbeds Phragmitesaustralis werealongthedikes,andPendulineTitsbuilttheir nests in Willows Salix spp ., Poplars Populus spp . and Russian Olives Eleagnus angustifolius –thereedsandthesetreeswereusedbothforforagingandsearching

87 for nest material (Cramp et al. 1993; Darolová & Krištofík 1993; Glutz von Blotzheim1993;Krištin1995;Grubbauer&Hoi1996;Szentirmai2005).Penduline TitsinourstudyareamainlyforagedonPoplars,WillowsandReed,asalsoreported by Krištin (1995) and Cramp et al. (1993), but rarely on Russian Olives (A. wa Kang’eri & D.M. Brinkhuizen, unpubl. data). In addition, nestling feeding rates seemed to increase with habitat structure, estimated as the number of trees and coverage of reed within 50m surrounding the nest (see below; A. wa Kang'eri & D.M.Brinkhuizen,unpubl.data).Theabovetreesandreedmadeupthevastmajority of vegetation in our study area. Elder Sambucus nigra and Black Locust Robinia pseudoacacia also occurred, but they were rarely used for nest building (R.E. van Dijkunpubl.data,Darolová&Krištofik1993).Theremainingvegetationinthearea may consist of grass or agricultural lands; both are unsuitable for foraging or collectionofnestmaterialbyPendulineTits.Therewas,however,variationinthe constitutionoftheabovevegetationsurroundingthedifferentnestsinourstudysite, varyingfromonlyafewtreeswithnomorethanfivepercent reed cover to small patchesofwoodsurroundedbywidereedbeds. Habitatstructurewasscoredwithinaradiusof50m around each nest. The minimumdistancebetweensimultaneouslyactivenestsisapproximately50m(Glutz von Blotzheim 1993). Within this radius we counted the number of live Poplars, WillowsandRussianOlives.Adistinctionbetweenlargeandsmalltreeswasmade asfollows:forPoplars,‘smallPoplar’:trunkcircumferenceat1.5mheight<60cm; ‘largePoplar’trunkcircumferenceat1.5m≥60cm;Poplarsshorterthan1.5mwere notcounted.ForWillowsweestimatedthepercentageofdaylightcoveredbyleaves, i.e . canopydensity,incombinationwiththeheightofthetreewasusedasfollows: ‘smallWillow’:canopydensity<50%,irrespectiveoftreeheight,orcanopydensity ≥50%andtreeheight≤6m;‘largeWillow’treeheight>6m.Twoobserverscarried out tree counts in 2004. In 2005 trees were counted by a third observer. Reed coverageintheaboveareawasestimatedbydrawingasketchofthevegetationfrom which coverage was estimated visually to 5% accuracy. All reed estimates were carriedoutbyoneobserverinbothyears. Dataanalyses Variablesdescribingthehabitatstructureweremulticollinear,wethereforecarried outaprincipalcomponentanalysis(PCA)toextractfourprincipalcomponents(PCs) usingvarimaxrotationwithKaisernormalisation.Thesefourcomponentstogether

88 explain81.2%ofthevarianceinhabitatstructure(Table7.1),andtheydidnotdiffer betweenthetwoyearsofstudy(MannWhitneyU; P>0.104, n =187).PC1mainly accountsforthenumberofPoplars,PC2forthenumberofRussianOlives,PC3for thenumberofWillows,andPC4mainlyaccountsforreedcoverage(Table7.1). Table 7.1. Factorloadingsofeachvariable,eigenvaluepercomponent and percentage of variance explainedbyeachcomponentoftheprincipalcomponentanalysis a,b . PC1 PC2 PC3 PC4 Reedcoverage 0.085 0.002 0.091 0.977 ** LargeWillows 0.099 0.148* 0.781 ** 0.125 SmallWillows 0.002 0.045 0.863 ** 0.014 LargePoplars 0.916 ** 0.010 0.032 0.010 SmalePoplars 0.882 ** 0.059 0.142 0.097 LargeRussianOlives 0.083 0.875 ** 0.081 0.192* SmallRussianOlives 0.032 0.897 ** 0.023 0.186* Eigenvalue 1.643 1.597 1.392 1.052 %varianceaccountedfor 23.5 22.8 19.9 15.0 a * Correlationissignificantatα=0.05 ** Correlationissignificantatα=0.001 bAbsolutevaluesoffactorloadings>0.7areinbold. WeusedthesePCsasindependentvariables,andmalebehaviour,e.g.datewhena malestartedbuildingitsnest,andreproductivesuccessasresponsevariables(Table 7.2).IfweassumethatthefirstreturningPendulineTitoccupiesthehigherquality territoriesfirst,thenoneexpectsanegativeassociationbetweenthePCsanddateof nestbuilding (Aebischeretal.1996;Currieetal.2000;Eckerle&Thompson2006). Toavoidpseudoreplication,onlyonerandomlyselectednestofcolourringed maleswasincludedinthedataset–exceptintheanalysesofnestbuildingwhenthe firstnestofeachindividualmalewasincluded–andthecompositionofpairswas always different, unless otherwise stated. Unringed males were excluded from the analyses. A potential effect of pseudoreplication of nestsites cannot be excluded. However, given the sample sizes for each separate test and the fact that the data originatefromtwoyears,thiseffectislikelytobesmall.Moreover,severalnestsare rarelybuiltinexactlythesamenestsite,i.e .thesametree,withinayear(R.E.van Dijk&I.Szentirmai,pers.obs.).Betweenyearsthisispossible,buthabitatstructure

89 islikelytochangeforagivennestsiteatagiventimeintheseasonbetweenyears. Data on mating time were normalised using a log(x+1) transformation. Analyses wereperformedusingSPSS14.0.0forWindows.Weprovidemean±SD. Table7.2. Descriptivestatisticsofresponsevariables. mean±SD range n Dateofnestbuildinginitiation 92.7±21.3 34–132 56 Malemasksize(cm 2) 1.36±0.25 0.80–1.79 41 Matingtime(days) 8.3±7.2 0–35 46 Numberofeggs 4.2±1.9 1–8 46 Numberofchicks 3.7±1.6 1–7 29 Hatchingsuccess(%) 68.9±21.2 33.3–100.0 33 RESULTS Habitatstructureinfluencedthedatemalesstartednestbuildingatagivennestsite (Table 7.3). This was mainly accounted for by PC1 (Fig. 7.1), suggesting that habitatscontainingalargernumberofpoplarsareselectedfirstbymales.Theslopes forPC1,PC3andPC4werenegative(unstandardisedregressioncoefficientsβ= 12.398, 2.622, and 0.446, respectively). The slope for PC2 was positive (β = 0.139).AlthoughtheindividualeffectsofPC2,PC3andPC4,werenotsignificant( P >0.232),overall,nestsiteswereoccupiedearlierwithincreasingvaluesforhabitat structure. Table7.3. RegressionANOVAsinvestigatingtheeffectofhabitatstructure(expressedasfourPCs; see Table 7.1) on date of nestbuilding initiation, male mask size, mating time and reproductive success.Separatemodelswerecreatedforeachresponsevariabletomaximisesamplesizes(seeTable 7.2). F P Dateofnestinitiation 4.858 0.002 Malemasksize 0.391 0.814 Matingtime 1.080 0.379 Numberofeggs 0.463 0.762 Numberofchicks 1.077 0.390 Hatchingsuccess 1.096 0.378

90 125

100

75 since 1March since 50

25 Date of nest initiation; number of days days of number initiation; nest of Date

-1.00 0.00 1.00 2.00 3.00 4.00 PC1

Figure7.1. WithanincreasingPC1,mainlyaccountedforbythenumberofPoplars,nestsiteswere occupiedearlierintheseason(LeastSquaresRegression;unstandardisedregressioncoefficientβ= 12.921, F =18.483, r2= 0.255, n =56nests, df =1, P<0.001).

Habitatswithahighervegetationdensitywerenotoccupiedbymoreattractivemales (Table 7.3), which have larger mask sizes (Kingma et al. 2008). Also, habitat structuredidnotpredictreproductivesuccess,asmeasuredbythenumberofeggsat theeighthdayafterstartofincubation,thenumberofnestlingsatthetenthdayafter hatching,andhatchingsuccesscalculatedasthepercentageofoffspringthatsurvived fromeggtotendaysoldnestling(Table7.3). At 114 out of 187 nests included in this study across two years the male attractedafemaletoitsnestandegglayingwasinitiated(2004:36outof48nests, 2005:78outof139nests).Wedidnotfindanyeffectofhabitatstructureonmating time(Table7.3),noronmatingsuccess(Table7.4a). Noneofthehabitatstructurevariablespredictedwhether(a)thefemaleor(b) themalewasmorelikelytocareordesert(Table7.4band7.4c). DISCUSSION Consistent with our predictions, we show that habitats consisting of a denser vegetationstructureintheimmediatesurroundingsofthenestwereoccupiedearlier intheseason.Similarresultshavebeenreportedforotherbirdspecies(Aebischeret al.1996;Currieetal.2000;Eckerle&Thompson2006).However,habitatstructure did not affect reproductive success of Penduline Tits (see also

91 Table 7.4. Binary logistic regression models of (a) mating success ( n = 70 nests), (b) female care strategy ( n = 41 nests), and (c) male care strategy ( n = 41 nests) in response to habitat structure. Desertion by the female is defined as femaleonly desertion and biparental desertion; similar for desertionbymale.Inbothmodelscarewaslabelled‘0’anddesertion‘1’.Allmodelsadequatelyfit thedata(HosmerLemeshowgoodnessoffit;(a)χ2 =6.217, df =8, P =0.623;(b)χ2 =2.615, df =8, P =0.956;(c)χ2 =14.979, df =8, P =0.060).Predictedeffectsizesandstandarderrorsaregiven. Modeleffectestimate(±SE) Wald P (a) PC1 0.243±0.236 1.062 0.303 PC2 0.405±0.366 1.227 0.268 PC3 0.029±0.283 0.010 0.919 PC4 0.108±0.300 0.129 0.719 (b) PC1 0.032±0.478 0.004 0.947 PC2 0.100±0.328 0.093 0.761 PC3 1.476±2.709 0.297 0.586 PC4 0.555±0.386 2.073 0.150 (c) PC1 0.537±0.525 1.048 0.306 PC2 0.231±0.345 0.449 0.503 PC3 0.404±0.424 0.909 0.340 PC4 0.435±0.502 0.752 0.386 Darolová & Hoi 1996), nor did it influence the outcome of sexual conflict over nestling provisioning in our study population. The latter result contradicted our expectations: we would expect that the relatively small maleonly cared clutches require less food than the larger femaleonly cared clutches. We would therefore expect more male care in habitats with less suitable vegetation (Krištin 1995). However,thedifferenceinnumberofnestlingsbetweenmaleandfemaleonlycared clutcheswasnotsignificant(2.7±1.1nestlingsformaleonly( n =7nests)versus 3.8±1.5nestlingsinfemaleonly( n= 7,39nests,respectively);MannWhitneyU= 79.500, P =0.074).Thisnonsignificantdifferenceinnumberofnestlingsmaypartly explainwhyPendulineTitsdidnotadjustclutchsizeandtypeofparentalcare(male care,femalecareorbiparentaldesertion)tohabitatstructure,giventhatthenestling

92 phaseiswhenfoodavailabilityislikelytobemostcrucialinPendulineTits(Bleeker etal.2005).However,itshouldbenotedthatthesamplesizeformaleonlycared nests was small and that the difference in number of nestlings was close to significance. Also, although there was some variation in hatching success (Table 7.3),therewasnoeffectofhabitatstructureonhatchingsuccess.Thissuggeststhat foodwassufficientlyavailableforlargerbroodsbeingraisedbyoneparentonly.The variation in hatching success may have been due to other factors than habitat structure, such as parental qualities. Nestling survival, calculated as percentage of nestlingsthatsurvivedfromdayofhatchingtilltendaysafterhatching,ishighinour population(78.7%±24.3%,R.E.vanDijk,I.Szentirmai,T.Székely,unpubl.data). This again suggests that food is generally sufficiently available. These results on reproductive success versus habitatstructureareconsistentwiththesuggestion for BlueTits Cyanistescaeruleus thatfoodlimitationduringthenestlingperiodmight not be the primary force shaping the reproductive output, and that in food rich habitats potential effects on reproductive success are much less pronounced (Tremblayetal.2003). Wedidnotfindaneffectofhabitatstructureon either mating success or matingtime.Alineofargumentssimilartothatdescribed above for reproductive successandprovisioningmaybefollowedhere.Iffoodandnestmaterialis generally veryabundant,thenamaleinavegetationrichhabitatwillnothaveapronounced mating benefit over a male in a habitat with slightly less vegetation. The idea of generallyabundantfoodandnestmaterialresourcesfadingoutapotentialeffecton matingsuccessandbreedingbiologyissupportedby the factthatuniparentalcare appearstobesufficientforthesurvivaloftheoffspringandbythelowterritoriality ofthespecies.However,otherpossibleexplanationsforourfailuretofindaneffect ofhabitatstructureonthePendulineTit’sbreedingbiologyshouldnotbeexcluded. For instance, (i) food and nest material availability may vary among habitats with similarvegetationstructure.Amoredirectquantificationoffoodand/ornestmaterial availabilitymayfindsupportforourhypotheses.(ii) We did not find an effect of habitatstructureonthebreedingbiologyofPendulineTitswithinonepopulation.It maybeinterestingtocomparepopulationsbreedingatdifferentsites,withapotential forlargervariationinhabitatstructure. Althoughwedidnotfindanyinfluenceofhabitatstructureonthebreeding systemofPendulineTitswithinthetwoyearsofstudy,onanevolutionarytimescale theimpactmayhavebeenprominent(Daviesetal.1995).Althoughwedonothave

93 precise measurements on food availability, food in our study area seems to be generallyabundant(R.E.vanDijk,I.Szentirmai,andT.Székelypers.obs .).Sucha highfoodavailabilitymayhavepromotedtheevolutionofsexualconflictovercare provisioning and subsequent polygamy in this species (Davies 1991; Andersson 2005), since it will facilitate the survival of offspring with uniparental care only. Incidentally, a closely related species of the Eurasian Penduline Tit, the Cape Penduline Tit Anthoscopus minutus (Sibley & Ahlquist 1995), lives in a poorer habitat,theSouthAfrican‘fynbos’,anditexhibitsfacultativecooperativebreeding, radicallydifferentfromtheEurasianPendulineTits(R.E.vanDijkandT.Székely pers.obs.).Inthefutureitwillbeinterestingtocarryoutphylogeneticcomparative analyses among closely related species, e.g . including Remizidae and Paridae, to investigatetheinfluenceofhabitatstructureonbreedingsystemevolution.Usinga detailed phylogeny one may be able to distinguish between two evolutionary trajectories:(i)sexualconflictevolvedinfoodrichhabitats,or(ii)speciesexhibiting sexualconflictspreadintofoodrichhabitats.Togetherwithcasestudiessuchasthe onewepresenthere,thismayhelptounravelthecausesbehindvariablebreeding systemsatdifferenttaxonomiclevels(Daviesetal.1995).Furthermore,experimental manipulationoffoodand/ornestmaterialavailabilitywillbeamoredirectapproach totestitsimportanceinresolvingsexualconflictovercare. ACKNOWLEDGEMENTS WethankDušanBrinkhuizenandArnowaKang’eriforcollectingdataonhabitatstructurein2004. KiskunságNationalParkandSzegedfishLtd.kindlypermittedustocarryoutfieldworkinFehértó, Hungary. We are grateful to Ken Kraaijeveld and one anonymous reviewer for their constructive commentsonourmanuscript.ThestudywasfinanciallysupportedbyaStudentshipoftheUniversity of Bath, the Marco Polo Fonds and the Groninger Universiteitsfonds to REvD, and grants to TS (Hungarian Scientific Foundation OTKA T031706, T043390, The Royal Society 15056 and the BBSRCBBS/B/05788).

94 CHAPTERVIII PARENTAL CARE STRATEGIES IN EURASIAN PENDULINETITARENOTRELATEDTOBREEDING DENSITIESANDMATINGOPPORTUNITIES RenéE.vanDijk,DušanM.Brinkhuizen,TamásSzékely&JanKomdeur submittedmanuscript Authors’contributions REvD :studydesign,datacollection,statisticalanalyses,manuscriptpreparation DMB :datacollection,statisticalanalyses,manuscriptimprovement TS :manuscriptimprovement JK :studydesign,manuscriptimprovement

95 ABSTRACT Breedingdensitymayinfluencebreedingsystemsinvariousmanners.Forinstance, thenumberofpotentialmatesmayinfluencethemating system and parental care strategies. The breeding system of Eurasian penduline tits, Remiz pendulinus, involvessequentialpolygamybybothsexesanduniparentalcarebyeithermaleor female.Additionally,aboutonethirdofclutchesisdesertedbybothparents.Mating opportunitiesandbreedingbehaviourwerestudiedattwopopulations:alowdensity population(TheNetherlands)andahighdensitypopulation(Hungary).Weexpected that higher breeding density is associated with higher incidence of polygamy. However, despite the substantial differences in breeding density and mating opportunitiesbetweenHungaryandTheNetherlands,therewasnodifferenceinthe frequencyofparentalcaretypes.Wefurtherinvestigatedtheplasticityofpenduline tit’sbreedingsystemusingdatafromfivebreedingpopulationsinEurope,andfound thatcarepatternswerenotdifferentbetweenthesepopulations.Weconcludethatthe typeofparentalcareisnotrelatedtolocalbreedingdensity.Longdistancedispersal ofpendulinetitsmaymixthegenepool,sothatlocal adaptation cannot possibly occur.Alternatively,proximatemechanismsofbreedingsystemvariation(e.g.gene expression)maybenonflexibleandthusnotadjustedtolocalconditions.

96 INTRODUCTION Population size and density may influence various aspects of breeding systems. Populationdensitiesmay beassociatedwitharange of ecological and lifehistory variables,includingcompetitionfornestsitesand nest material (e.g. Kokko et al. 2004;Alonzo&Sheldon2009),andapotentialforextrapaircopulations(Widen& Richardson2000;Komdeur2001;Mougeot2004).Thesemayallaffecttheprocess ofdecisionmakingformalesandfemalesastohowmuchtoinvestintorearinga brood. An increased rate of extrapair copulationsmay make males moreprone to deserttheoffspring,asthegeneticsharetheyholdintheoffspringatagivennestis potentiallylowerthanforthefemales(Queller1997; ChapterII ;butseeHouston& McNamara2002). Also,thenumberofpotentialmatesmayvaryacrosspopulations,andlikely increaseswithpopulationsizeanddensity(Owens2002;Forsgrenetal.2004;Kokko &Rankin2006;McGrawetal.2009).Assumingthatpopulationdensitiesdirectly affect mating opportunities, this may have a pronounced effect on breeding behaviour of species with diverse breeding systems that involve alternative strategies.Matingopportunitiesappeartoplayanimportantroleindeterminingthe outcomeofsexualconflictovercareinspecieswhereoneorbothparentsmaydesert (Székely et al. 1999; McNamara et al. 2000; Pilastro et al. 2001; Houston et al. 2005). As such, given that various strategies often have different reproductive payoffs mating opportunities should have a major impact on an individual’s reproductive output (Smith & Sandell 2005; Szentirmai et al. 2007; Kokko & Jennions2008;Maan&Taborsky2008;Olsonetal.2008; ChapterV ). Theoretical models, field observations and comparativestudiessuggest that mating opportunities do influence sexual conflict over care. First, both dynamic optimization and gametheoretic models suggest that mating opportunity should influence parental care (Houston et al. 2005). For instance, improved mating opportunityforonesexinducesmoredesertion(McNamaraetal.2000;Webbetal. 2002). Second, field studies show that the frequency of polyandrous females increases with the number of males available in several avianpopulations (Davies 1992; Pilastro et al. 2001). Third, a comparative study on birds suggested that familiesshowingfemaleonlycarecharacterisespeciesinwhichpopulationdensities are high and remating opportunities for both sexes are abundant, whereas those showingmaleonlycarecharacterisespecieswithlowpopulationdensitiesandlow frequency of mating opportunities (Owens 2002). One explanation for this pattern

97 maybethatininternallyfertilisingspecies,suchasbirds,themalesgenerallyhave theopportunitytodesertearlierthanfemalesasthefemalesstillhavetolaytheeggs aftercopulation(Trivers1972;Kokko&Jennions2008). Males in a high density populationwillhavetheopportunitytofindanewpartner,whereasinalowdensity population it may be difficult for males to find a female which is in the right reproductivephase.Whethertheabovepatternsstandwithinspecieshasonlyrarely been studied before (Székely et al. 1999; Kosztolányi et al. 2006) and the relationshipbetweenecologicalvariables,breedingdensityandparentalcareislikely more complex than a mere association mediated through mating opportunities (Leisleretal.2002;Kosztolányietal.2006;Alonzo&Sheldon2009;Eldegard& Sonerud2009). The Eurasian penduline tit, Remiz pendulinus , has an unusually diverse breedingsystemamongbirds,inwhichsequentialpolygynyandpolyandryregularly occur(Persson&Öhrström1989;Szentirmaietal.2007).Parentalcareiscarriedout byasingleparentonly,eitherbythemale(at520%ofnests),orbythefemale(45 70%). The deserting parent abandons the clutch before incubation commences. Additionally,3040%ofclutchesisnaturallydesertedbybothparents.Thedeserting parentmayincreasehis/herreproductivesuccessbyrematingwhilethefulltaskof incubation and brood rearing is left to its mate (Persson & Öhrström 1989; Szentirmaietal.2007).Biparentalcareisrareanditonlyoccursforabriefperiod during nestling feeding (Schroth & Helbig 1985; Franz 1989; Schönfeld 1989; Schönfeld1994;O.Persson,pers.comm.).Biparentalcarehasnotbeenobservedin ahighdensitypopulationinHungary(Szentirmaietal.2007; ChapterIII ). Here we test whether variability in breeding densities and mating opportunitiesareassociatedwithdifferentbreedingstrategies.Weinvestigatedthe species’ breeding system by comparing low density population (The Netherlands) withahighdensitypopulation(Hungary).Firstly,weexpectedbiparentaldesertion tobemorefrequentinahighdensitypopulation,becausetheopportunitytofinda newpartnerandthusenhancereproductivesuccesswillbebetterforbothmalesand females,i.e.ahigherincentivetodesert.Similarly, giventhatbiparentalcaredoes occuroccasionally,aspartofthespecies’breedingsystemwewouldexpectthisto be more common in low density populations with lower mating opportunities for malesandfemales.Inthelattercase,biparentalcaremaybea‘bestoutofabadjob’ strategyforbothparentstostayandcarefortheoffspring.Secondly,wepredicted thathighmatingopportunitiesforfemalesareassociatedwithmorefemaledesertion.

98 Penduline tits are widespread throughout central and southern Europe (Burfield&vanBommel2004);thereforewealsoinvestigatedtheplasticityofthe breeding system by comparing the pattern of parental care strategies across five differentpopulations. MATERIALANDMETHODS WestudiedthebreedingbiologyofEurasianpendulinetitsinTheNetherlandsandin Hungary between 29 April 2006 and 1 August 2006. Penduline tits in The Netherlands were observed in six wetland areas (Foxhol: N 53°10'12.51", E 6°41'45.54"; De Groeve: N 53°17'16.75", E 6°50'13.82"; Veenhuizerstukken: N 53°00'43.02", E 6°59'00.89"; Kollummerwaard: N 53°19'32.90", E 6°11'44.07"; Rijnstrangen: N 51°53'07.03", E 6°02'25.37"; Ketelmeer: N 75 52°34'48.41", E 5°48'58.30").Theseareaswereseparatedbyaminimumandmaximumdistanceof 16.2kmand78.9kmrespectively.Allsixareasweresimilarinstructure,containing various water bodies, reed beds and trees (mainly willow Salix spp. and poplar Populusspp. ).Ineachoftheseareasplussurroundingareasnearby,weattemptedto findallnests.NestsinbothTheNetherlandsandinHungarywererepeatedlyvisited duringnestbuilding,pairformation,incubationandnestlingfeeding.NestsinThe Netherlands were visited weekly, whereas in Hungary nests were visited at least everyotherday.Observationsatthenestwereperformedusingbinocularsand/ora telescopeforatleastfifteenminutespervisitinHungaryandforatleastonehourper visitinTheNetherlands.Fifteenminutesaresufficienttorecordthepresenceofboth parents( ChapterIII ).NestsinTheNetherlandscouldnotbevisitedasregularlyasin Hungaryforlogisticreasons. Wecollecteddataonbreedingbehaviourfrom16nestsinthesixareasinThe Netherlands, and at 60 nests in Hungary, which were all studied at an extensive fishpondsystem,Fehértό(1321ha),insouthernHungary(seedetailsinBleekeretal. 2005).Fehértόconsistsofanumberofpondswhichareseparatedbydikesaligned byreedbeds.Pendulinetitsusedthetreesonthedikes(mainly willow Salixspp ., poplar Populusspp. ,andRussianolive Eleagnusangustifolius )asnestsitesandasa resource for nest building material and food ( Chapter VII ). Breeding in both the Dutch and the Hungarian populations was asynchronous, so potential new mates wereavailablethroughoutthebreedingseason. Aparentwasconsideredtohavedesertedtheclutchifitwasnotseenatthe nestforatleasttwoconsecutivevisits(Szentirmaietal.2005a).Thetypeofparental

99 care(maleonly,femaleonly,orbiparentaldesertion)wasdeterminedforeachpair thatproducedaclutch.IntheHungarianpopulationbirdswereindividuallycolour ringed,whereasinTheNetherlandsbirdswerenotringedduetotimedeficiency.We attemptedtomakeadistinctioninTheNetherlands between individual males and between individual females by taking digital photographs and using individual plumagecharacteristics(Kingmaetal.2008),supportedbydigitalphotographs.At fourteenoutofsixteennestswebelievethemalesweredifferent,whereasonemale eachbuiltanadditionalnest.Femalesaredifficulttodistinguishindividually,butwe havenoevidencethatonefemalewasinvolvedinmorethanoneattempt;although thelatterseemsunlikely,giventhesizeofthepopulationsinTheNetherlandsand distancesbetweentheareas.Severalmalesandfemaleswereinvolvedinmorethan onenestinHungary(Pogányetal.2008)althoughforthepresentstudywerandomly selectedonenestforeachindividualmaleorfemale. We estimated breeding density by counting the number of nests within a radiusof942maroundeachfocalnestwhereapairwaspresentandegglayinghad taken place. We chose this cutoff point because this was the median distance betweennestsofindividuallymarkedfemalesinsouthernHungary(Mészárosetal. 2006).WeanticipatethatusingalargerradiusforthepopulationinTheNetherlands wouldproducealowerpopulationdensityandlowermatingopportunities,making ourcurrentresultsconservative.Weperformedamultinomiallogisticregressionto test if parental care types can be predicted based on breeding densities, where countrywasenteredasafactor.Dataincludedinthismodelprovidedanadequatefit (Pearson’sgoodnessoffit: χ2=30.71,DF=36, p=0.718). We estimated female mating opportunities for pairs of which date of pair formation and date of desertion were known. For these pairs we determined the numberofunpairedmaleswithina942mradiusaroundthenestduringtheperiod thatthepairwastogether(i.e.theperiodfrompairformationuntildesertionbyone or both of the parents). We did not estimate mating opportunities for the males, because observations of unmated females are exceedingly rare. In addition, we compiled data on parental care in Germany, Sweden and Austria from published sources(Persson&Öhrström1989;Franz1991). RESULTS Twentyfour and 158 nests were found in The Netherlands and Hungary, respectively,ofwhichat16(67%)and60(38%)pairformationandegglayinghad

100 taken place, respectively. The proportion of nests where pair formation and egg layinghadtakenplaceoutofthetotalnumberofnestsdifferedsignificantlybetween thetwopopulations(Pearson χ2=7.05;DF=1, p<0.001). BreedingdensitywassignificantlylowerinTheNetherlands(mean±SD;1.2 ±0.5nestsperkm 2)thaninHungary(5.0±2.1nestsperkm 2; U=2.00, p <0.001, N =76nests),andthefemalematingopportunitieswereabouttentimeslowerinThe Netherlands(0.05±0.12unpairedmalesperkm 2;Figure8.1)thaninHungary(0.47 ±0.37unpairedmales).However,theproportionsofthethreetypesofparentalcare, i.e. maleonly care, femaleonly care and biparental desertion, were not different betweenTheNetherlandsandHungary( Z =479.50, p =0.994, N=76nests;Figures 8.1and8.2)andtheywereunrelatedtobothbreedingdensity(Table8.1)andfemale matingopportunities( U =24.00, p =0.442, N =16nests; U =137.00, p =0.258, N = 38nests,respectively).

Figure8.1Matingopportunities(numberofunpairedmalesper1km 2aroundeachnestwherepair formationandegglayinghadtakenplace)aredifferentbetweenthependulinetitpopulationsinThe NetherlandsandHungary( U=94.00, p <0.001,N=54).Theplotsindicatetheinterquartilerange, theminimumandmaximumandoutliersaregivenby○.Thepiechartsindicatetheproportionsof parentalcareinTheNetherlandsandHungary( N=76nests).Shaded=femaleonlycare,white= maleonlycare,andblack=biparentaldesertion.

101 Incubationandfeedingwasperformedbyasingleparentatallnests,andbiparental care was not observed in either population. Consistently with these results, the patterns ofparental care were not significantly different across fivepopulations in Europe(Pearsonχ2=11.7,DF=8, p=0.16,Figure8.2). DISCUSSION TheresolutionofsexualconflictoverparentalcareinEurasianpendulinetitsdoes notseemtobeinfluencedbydifferentbreedingdensitiesandmatingopportunities. Our study clearly shows that within a single species there was no significant differenceinparentalcarebehaviourbetweenthelowdensity(TheNetherlands)and highdensity (Hungary) populations, despite the fact that mating opportunities for females were significantly different between the two countries. Although some variationinpatternofparentalcaremaybepresent,theoverallbreedingsystemof ourstudyspeciesis consistentacrosspopulations inEuropeincludingthestriking frequency of biparental desertion (some 3040% in all populations), regardless of populationdensity.Thisisincontrastwithotherstudieswheredifferencesintypeof parental care are explained by the number of available mates (Davies 1992; BalshineEarn&Earn1998;Székelyetal.1999;Pilastroetal.2001;Owens2002), whichispresumablyoftendirectlyassociatedwithnestingdensity.Weacknowledge thattheseresultsmightbeconfoundedbyotherfactorsorvariablesthatvaryacross thepopulationsincludedinthisstudy,suchashabitat quality, predation rates and climate. However, the consistency of the pattern of parental care across the five populationsinEuropesuggeststhatthesevariablesmayaffectthedecisiontocareor todeserttoaminorextentonly.Wealsonotethatthehabitatsinwhichthevarious populationsoccurareallverysimilar.Allpopulationsbreedinreedmarshesalong lakesorrivers.Additionally,thevariationinhabitatstructurewithintheHungarian populationofEurasianpendulinetitsisnotassociatedwiththedecisiontocareor desert( ChapterVII ).Withregardstomatingopportunities,however,wenotethatwe only included these for the females. If mating opportunities would have a similar effect on males as on females, i.e. males would have a similar reproductive advantagefromrematingasfemales,thenthepotentialeffectofmatingopportunities onparentalcaremayhavebeenblurredinourstudy,sinceourpredictionswouldnot hold.However,thisseemsunlikelygiventheknownsexdifferenceinreproductive benefitsfromdesertioninEurasianpendulinetits(Szentirmaietal.2007;Chapter V).

102 Table8.1 Resultsofthemultinomiallogisticregressionmodelofparentalcarestrategyinresponseto breedingdensityandsite(HungaryversusTheNetherlands)inEurasianpendulinetits( N=76nests, DF=1).Thereferencecategoryisbiparentaldesertion.Predictedeffectsizesandstandarderrorsare given. Carestrategy Modeleffectestimate(±SE) Wald p Femaleonlycare Site 2.353±1.912 1.515 0.218 Breeding 0.031±0.137 0.051 0.821 density Site*Breeding 2.098±1.390 2.279 0.131 density Maleonlycare Site 0.920±3.185 0.084 0.773 Breeding 0.000±0.181 0.000 0.999 density Site*Breeding 1.646±2.509 0.430 0.512 density Figure 8.2 Parental careinfivepopulations of Eurasian penduline tits in Europe (Pearson χ2=11.7,DF=8, p= 0.16). The ‘nests’ on the yaxis refer to the nests at which pair formation and egg laying had taken place (mean ± 95% confidence intervals; Germany: Franz, 1991; Austria: Franz, 1991; Sweden: Persson and Öhrström, 1989). Shaded = femaleonly care,white=maleonly care, and black = biparentaldesertion.

103 Eurasian penduline tits show a clear seasonal pattern in parental care behaviour: thereismorefemalecareinthebeginningofthebreeding season, whereas males care more towards the end of the breeding season (Persson & Öhrström 1989; Szentirmaietal.2005a).Adecreaseinmatingopportunitiesforthemaleoverthe breedingseasonwassuggestedtobethemostlikely explanation for this seasonal pattern,withmorefemalesincubatingorfeedingoffspringtowardsthe endofthe breeding season. Under that explanation mate availability would influence the resolution of sexual conflict over care in Eurasian penduline tits (Persson & Öhrström1989).Ourresultsdonotsupportthisview.However,thequestionwhether thesedifferencesinmatingopportunitiesmayhaveaffectedthebreedingsystemof Eurasian penduline tits on an evolutionary timescale remains unclear. Eurasian penduline tits started to inhabit The Netherlands only recently (van den Berg & Bosman1999)anditmaybethatdensitydependentselectionpressureshavehadno timetodevelopchangesinbreedingbehaviour.Itseemsthatpatternsofparentalcare are fixed and this may suggest a genetic basis rather than a density dependent, environmental,effectondesertionbehaviour.Thespecies’migratorybehaviourmay alsoplayanimportantroleastowhatextentlocalselectiveforcescaninfluencethe breeding system. High dispersion rates may lead to an increased gene flow and possiblyannihilatelocalselectionpressures(Mayr1963;Garantetal.2005;Price 2008). A study on consistency in desertion behaviour of Eurasian penduline tits showed that females were consistent in their desertion behaviour. Male desertion behaviourwasfoundtobehighlyrelatedtoseasonality,anditwassuggestedthat fixed genetic effects may be responsible for the decisions over care in females (Pogány et al. 2008). The latter, a fixed genetic effect,might alsobetrueforthe seasonalityofadecisionovercarebymales,ratherthanadirecteffectofavailability ofpotentialmates. Thelackofsupportfortheideathattheresolutionofsexualconflictovercare maydependonmatingopportunitiesisalsocorroboratedbythefactthatwedidnot findanycaseofbiparentalcareinthelowdensitypopulationsinTheNetherlands. Although we cannot entirely exclude the existence of biparental care, it at least seemsextremelyrareandassuchhardtointerpretaspartofthespecies’breeding system. Although we did not find any effect of breeding density on the Eurasian pendulinetit’sbreedingsystem,inTheNetherlandswedidfindahigherproportion ofnestswherepairformationandegglayinghadtakenplacecomparedtoHungary.

104 ThuspendulinetitsinTheNetherlandsappearmoresuccessfulinpairformationand clutch production. This may indicate that birds are less choosy in a low density situationandmalesarelessinclinedtoabandontheirnestbeforetheyhaveattracted apartner.Thusmatingopportunitiesmay,tosomeextent,playaroleinmouldingthe species’matingsystem. Finally,fromaconservationpointofview,itisworthnotingthatwiththe inflexibility of the penduline tit’s breeding system it is not unlikely that with decreasingnumbersofpotentialnewpartnersadeclineinpopulationsizewillsuffer from a positive feedback loop: with a decreasing number of potential mates, the breedingsuccessmay rapidlydecreasegiventhatthe benefits of desertion largely disappear (Szentirmai et al. 2007). This will potentially result in fewer available matesinfuturebreedingseasonsspeedinguptheprocessofadeclineinnumbers even further. In recent years the number of penduline tits appear to be declining across the edge of the distribution in Europe (Sweden: O. Persson, Italy: P. Tout, Germany: I. Todte, Spain: F. Valera, pers. comm.; The Netherlands: Netwerk

EcologischeMonitoring SOVON ,CBS ,www.sovon.nl). Futureworkmayincludeexperimentalmanipulation of breeding densities. We envisage this will be very difficult to carry out in the field, thus a captive population may reveal how breeding density or the availability of potential mates influencesadecisiontocareordesertfortheoffspring.Furthermore,investigating geneticdiversityamongpopulationsmayprovideabetterunderstandingondispersal patternsandlevelsofgeneflowwithinthisspecies. Radiotracking of individuals may be a helpful tool to establish migration routes and dispersal patterns across populations.TowhatextentdoesgeneflowtakeplacebetweenEuropeanbreeding areas?Furthermore,investigatingpendulinetitsinrelativelyisolatedhabitatsfound in, for instance, the Middle East and Kazakhstan where penduline tits have been presentformuchlongerthaninTheNetherlands(Crampetal.1993),i.e.havehad more time to evolve a more adaptive breeding system, may provide us with new information on the impact of mating opportunities on (1) the outcome of sexual conflict,or(2)theevolutionofbreedingsystemswithinspecies. ACKNOWLEDGEMENTS Wewouldliketothankallthefieldworkersthathelpeduscollectingthedata.Wearegratefultothe people who provided us with information on nesting locations in The Netherlands, in particular MartijnBakker,RommertCazemierandMichelGeven.WearethankfultoDieterFranz(Germany) andOlofPersson(Sweden)forsharingtheirdataonGerman/AustrianandSwedishpopulations.Ido

105 Pen and Michael Magrath provided us with valuable statistical advice, and Dick Visser kindly prepared figure 2 for us. Kiskunság National Park and Szegedfish Ltd. gave us the permissions to workatFehértó(2386423/2006).Theresearchleadingtotheseresultshasreceivedfundingfromthe European Community’s Sixth Framework Programme (FP6/20022006) under contract n. 28696. Further financial support came from grants to TS (Hungarian National Science Foundation OTKA (T043390),RoyalSocietyJointProject(15056),andtheLeverhulmeTrust(RF/2/RFG/2005/0279)), andfromaUniversityofBathstudentshiptoREvD.

106 CHAPTERIX SEXUAL CONFLICTPREDICTSMORPHOLOGY AND BEHAVIOURINTWOSPECIESOFPENDULINETITS RenéE.vanDijk,ÁkosPogány,JanKomdeur,PennLloyd,andTamásSzékely Manuscript Authors’contributions REvD :studydesign,datacollection,statisticalanalyses,manuscriptpreparation ÁP :studydesign,datacollection,manuscriptimprovement JK :manuscriptimprovement PL :datacollection,manuscriptimprovement TS :studydesign,manuscriptimprovement

107 ABSTRACT The evolutionary interests of males and females rarely coincide over reproduction (sexualconflict),andtheseconflictinginterestsinfluencemorphology,behaviourand speciation in various organisms. We examined the consequences of variation in sexual conflict in two closelyrelated passerine birds with contrasting breeding systems: the Eurasian penduline tit Remiz pendulinus (EPT) that has a highly polygamousbreedingsystemwithsexuallyantagonisticinterestsoverparentalcare, andthesociallymonogamousCapependulinetit Anthoscopus minutus (CPT). We derived four a priori predictions from sexual conflict theory, and tested these predictionsusingdatacollectedinCentralEurope(EPT) and South Africa (CPT). Firstly,wepredictedthatEPTsexhibitmoresexuallydimorphicplumagethanCPTs due to more intense sexual selection. Secondly, we expected more attractive EPT males to provide less care than duller males. Thirdly, since song is a sexually selected trait in many birds, male EPTs were expected to exhibit more complex songsthanCPTmales.Finally,intensesexualconflictinEPTwasexpectedtolead tolownestattendanceasanindicationofsexuallyantagonisticinterests,whereaswe expectedmorecooperationbetweenparentsinCPT.Consistentwithourpredictions EPTsexhibitedgreatersexualdimorphisminplumageandmorecomplexsongthan CPTs,andmoreattractiveEPTmalesprovidedlesscarethandullerones.Finally, EPT parents attended the nest less frequently and less simultaneously than CPT parents.Theseresultsprovidesupportforsexualconflicttheory,andareconsistent withthenotionthatEPTsattempttoforcetheirpartnertoworkharder.

108 INTRODUCTION Reproduction has long been viewed as a cooperative exercise between male and female partners. Yet, the evolutionary interests of males and females are often different(sexualconflict,Parker1979).Onlyintherarecaseofsemelparity,orwhen thereisfullandlifelongmonogamyofthepairmemberswilltheoptimumamountof careprovidedbeequalforbothparents(Lessells2006; ChapterII ).Onlyrecently, however,haveresearchersstartedtoexploretheimplicationsofsexualconflicton speciation,breedingsystems,andevolutionofvariouslifehistorytraits(Gavriletset al. 2001; Arnqvist & Rowe 2005; Hosken & Snook 2005; Houston et al. 2005). Sexualconflictisapotentevolutionaryforcethatmaymouldmorphology(Arnqvist & Rowe 2002a) and behaviour (Chapman et al. 2003), and promote speciation (Arnqvistetal.2000).Forinstance,behaviouraltraits of dung fly Sepsis cynipsea populationsundergoingmoreintensesexualconflictdivergedtoagreaterextentthan flies under more relaxed conflict, resulting in different levels of reproductive isolation(Martin&Hosken2003).Extrapaircopulationsinmonogamouspasserines may also result from sexually antagonistic evolution. The negative selection for directbenefitsfromextrapaircopulationsforfemalesappearstobegreaterthanthe positive selection for indirect benefits, which supports the notion that extrapair copulationsreflectprezygoticsexualconflict(Arnqvist&Kirkpatrick2005). Conflictsbetweenparentsovercare(postzygoticsexualconflict,Royleetal. 2002) emerge via a tradeoff between parental effort and alternative mating opportunitiesforeachparent.Asaresult,eachparentmaytrytoavoidthecostsof careandshiftthosecoststoitspartner(Lessells1999;Houstonetal.2005).This mayhappenthroughacontinuousadjustmentofparental effort in response to the mate’s current effort (best response rule, Houston & Davies 1985), or through a discretedecisiontoeithercarefortheoffspringortodesertthepartnerandoffspring (MaynardSmith1977;Székelyetal.1996).Conflictovercaretypicallyoccurswhen thereisanopportunitytoreduceparentalcontribution.For example,aparentmay desertthebroodwhenoneparentissufficienttosuccessfullyraisetheoffspring(Bart &Tornes1989;Székelyetal.1996).Thismayoccurwhenresourcesareplentiful (Beissinger&Snyder1987)orwhenoffspringrequirelittlecare,asisoftenthecase withprecocialyoung(Wisenden1994;Olsonetal.2008).Bydeserting,theparent may benefit from finding a new mate and breeding again, thereby enhancing its reproductivesuccess(Pilastroetal.2001;Szentirmaietal.2007; ChapterII ;butsee: Grüter & Taborsky 2005). As such, sexual conflict over care likely promotes

109 polygamous breeding (Davies 1989; McNamara et al. 2000; Magrath & Komdeur 2003; Székely et al. 2006), since with increasing levels of polygamy, variance in reproductive success increases. Thus, more polygamous breeding systems are associatedwithmoreintensesexualselectionthanmonogamoussystems(Björklund 1990;Wiklund&Forsberg1991;PérezBarberíaetal.2002;GonzalezVoyeretal. 2008). Subsequently, sexual selection is expected to act stronger in species experiencinggreaterconflict. Herewetestapriori predictionsofsexualconflicttheoryabouttheimpactof sexual conflict on morphology and behaviour by comparing two closely related species of penduline tits (Gill et al. 2005; Alström et al. 2006): the sequentially polygynandrousEurasianpendulinetit Remizpendulinus (henceforthEPT)andthe socially monogamous Cape penduline tit Anthoscopus minutus (henceforth CPT). Our main objective is to elucidate the potential impact of sexual conflict on the evolutionoftraits,whichmayeventuallyfacilitatespeciation(vanDijketal.unpubl. data). The EPT is a small passerine (body mass about 9g) with a widespread distribution across Europe and Central Asia. Intense conflict between parents is indicatedbyseveralstudiesthatshowedthatparentalcareiscarriedoutbyasingle parentonly,andboththemaleandthefemaleendeavourtodesertbeforetheother (Persson&Öhrström1989;Szentirmaietal.2007; ChapterIII ).Inaddition,about one third of clutches is deserted naturally by both parents; a pattern consistent between five European populations (Persson & Öhrström 1989; Franz 1991; Schleicher et al. 1997; Szentirmai et al. 2007; Chapter VIII ). Both polygyny and polyandry are common, since the desertedparents oftenobtainnewmates,sothat bothsexesmaymatewithuptosixpartnersinasinglebreedingseason.Bydeserting theclutchbothmalesandfemalesenhancetheirownreproductivesuccess,whereas caringreducesreproductivesuccessinbothsexes(Szentirmaietal.2007;Fig.9.1). Incontrast,theCPT(bodymassabout6g,endemictosouthernAfrica) issocially monogamous,andparentscooperatetoincubatetheeggsandrearthebroodtogether, sometimesassistedbyhelpersatthenest(Harrap&Quinn1996;Dean2005).The pairusuallystaystogetherthroughoutandsometimesacrossbreedingseasons(Lloyd P,vanDijkRE,PogányÁunpubl.data). Firstly,giventhatEPTisfrequentlypolygamousandthuslikelyexperiences alargervarianceinreproductivesuccess,wepredictedmoreintensesexualselection

110 inEPTthaninthesociallymonogamousCPT.Thisisexpectedtoresultinastronger sexualplumagedimorphismandmorecomplexsonginEPTthaninCPT. Secondly, wetestedthepredictionthatmaleEPTswith a large eyestripe, which signals male attractiveness (Pogány & Székely 2007; Kingma et al. 2008), desertthenestatahigherfrequencythanlessattractive males, thus imposing the costs of parental care on their mate. We expected attractive males to desert more frequentlythanlessattractivemales,sinceattractivemaleslikelyprocurenewmates after desertion. As such, more attractive males should derive greaterbenefits from desertiontooffsetthepotentialcostofbiparentaldesertion.Femalesmatedtomore attractivemales,however,facethecostsofcareand/orreducedreproductivesuccess (Szentirmaietal.2007;Fig.9.1). Finally,followingpredictionsfromsexualconflicttheory(e.g. Houstonetal. 2005),weexpectedthatinEPT,inwhichnestdesertion is common, parents will attemptshiftingthecostsofcaretotheirmate.Specifically,wepredictedEPTpairs toattendthenestlessfrequentlyandlesssynchronouslyduringtheegglayingphase thaninCPT.GiventheintenseconflictinEPT,aparentmayabstainfrombuildinga nestexpectingitsmatetomakeuptheshortfall.InthecooperatingCPTwepredicted synchronousnestattendanceandnestbuildingbybothparents.Nestsofbothspecies aresophisticatedstructures(seebelow)andbuiltbybothsexes.

Figure9.1 SexualconflictinEurasianpendulinetits(afterSzentirmaietal.2007)

111 METHODS Studysitesanddatacollection WestudiedEPTsbetweenAprilandAugustinfiveconsecutive breeding seasons (20032007) in a reed marsh at a 1321ha fishpond system, Fehértó, in southern Hungary (46º19’N 20º6’E), where approximately 6090 males and 4550 females bredeachyear.WestudiedeightandsixbreedingpairsofCPTinSeptember2006 and2007,respectively,incoastalscrublandatthe 572ha Koeberg Nature Reserve near Cape Town, South Africa (33º40’S 18º26’E). The low number of monitored nestsinCPTcomparedtoEPTisduetothelowerpopulationdensityinCPT,as largeterritoriesareusedbyfamilygroups(Dean2005).Bothspeciesbuildsimilar, domednests,initiatedbythemale.InEPTmalesareunpaired,whereasmostCPT malesarepairedattheonsetofbuilding.Thenestisfinishedandmaintainedjointly bybothmaleandfemaleafterpairformationinbothspecies.Theegglayingphaseis initiatedatasimilarstageofnestbuilding,i.e.whentheparentsstartbuildingthe entrancetubetothenest. Wesearchedbothstudyareasfornestbuildingpenduline tits, and visited eachnestabouteveryotherdaytodeterminewhichparentattendedthenest( Chapter III ).AteachEPTnestwerecordedthedateofpairformation.Weconsideredamale tobematedassoonasthepairwasseencopulatingnearthenestorwhenmaleand femalewereseentobuildthenesttogether.Fortimeinseasonweusedadateformat asthenumberofdayssince1Aprilineachyear.Wetrappedandbandedbirdswith onenumberedmetalbandfromtheHungarianOrnithologicalInstitute(EPT)orthe SouthAfricanBirdRingingScheme(CPT),andauniquecombinationofthreecolor bands(A.C.Hughes,Middlesex,UK).Threedigitalphotographsweretakenofeach sideofthebird’sheadusinganOlympusFE100andaFujifilmFinePixA203digital camera. In all photographs we kept a ruler in the background as a reference to measurethesizeofthe eyestripes.Thebirdswerehandheldtouchingtheground andthecamerawaspositionedatanapproximatelyfixeddistance(about20cm)from the bird to standardise aberrations. The area of the eyestripe (to the nearest 0.01 cm 2),signalingattractivenessinEPT(Pogány&Székely2007;Kingmaetal.2008), wasquantifiedfromthedigitalphotographsusingAdobePhotoshop7.0.Wetookthe averageofthethreemeasurementsforthesizeoftheeyestripe. Thesongof16maleEPTswasrecordedin2006for127.5±48.4min(mean± SD)atarandomlyselectedtimeofdaybetween06:28and17:50(CET),using a Marantz PMD 660 portable digital recorder with a Sennheiser ME66 directional

112 microphone.UsingthesameequipmentasforEPT,werecordedthesongof9CPT males (recording time 220.9min ± 94.3min). All recordings for CPT were made duringthemorning(06:20–11:30UTC).Forbothspecies,intheanalysesweonly included song recordings from mated males. Sonograms of the recordings were createdandanalyzedusingAudacityv.1.2.6andAvisoftSASLabLightv.3.74. Toinvestigatenestattendanceduringnestbuilding,whichcontinuesthrough thelayingperiod,wefilmednestsin2006and2007inbothEPTandCPTusinga timelapsevideocamera(Sonydigitalhandycam,DCRHC44E) storing one frame everyfiveseconds.InCPTweknewpreciselythedatewhenthefirsteggwaslaid, andnestattendanceofparentswasrecordedduringthesecondandthirddaysofegg laying(547min±82minperday, N =7pairs).InEPTegglayingdateswereoften not known, therefore we recorded nest attendance from after pair formation and duringegglayingforEPT(329min±184minperday, N = 21 pairs), i.e. a more extended period than for CPT. The period before egglaying involves more nest buildingthanmaintenance.Weanticipatethatthiswouldnotinfluenceourresults, since theparents are expected to spend more time atthenestduringnestbuilding thanduringnestmaintenance,whichwouldresultin more nest attendance in EPT thaninCPT.Thepatternwepredictedandfoundisoppositetothis(seeResults). Recordings were analyzed frame by frame using MATLAB v. 6.5 (256240 and 96632framesintotalforEPTandCPT,respectively), codingnestattendance(i.e. presenceofbirdonorinsidethenest)as:(i)maleonly,(ii)femaleonly,(iii)joint nestattendancebymaleandfemale,or(iv)bothparentsabsent. To distinguish male and female parents from intruders we used individual differences in plumage (Cramp et al. 1993; Kingma et al. 2008), behaviour (e.g. femalesaremoreoftenandforlongerperiodsinsidethenestthanmales;intruders are often on the outside of the nest and build very little), and color bands. Ambivalent records, i.e. when the identity of an individual was ambiguous, were excluded(7.1%and4.8%oftotalrecordsofEPTandCPT,respectively).Asnest desertion takes place during egglaying in EPT, we only included predesertion records. Dataanalyses We used binary logistic regression models with backward elimination to predict parentalcarestrategy(maleorfemaleasresponsevariable;care/desert)atthefirst clutch of EPT in response to the size of the male eyestripes. The initial model

113 includedyearasacategoricalcovariateandmatingdateasacontinuouscovariate. Neither covariate contributed significantly to themodel ( P >0.255),sobothwere removedfromthefinalmodel.Thefinalmodelprovidedanadequatefittobothmale strategy (HosmerLemeshow goodnessoffit; χ2=10.289,df = 8, P=0.245),and femalestrategy(χ2=6.400,df =8, P=0.603). AllCPTsvideotapedwerecolorbanded.Theanalysesfornestattendanceby CPTsincludedonemalethatwasrecordedattwonestsinconsecutiveyearswitha differentfemale,soweincludedtheseastwodata.Outofthe21EPTnestsfilmed, onemaleand18femaleswerenotcolorbanded.Adultreturningratesbetweenyears arelow(5%formales,2%forfemales; ChapterVII ),thereforeitisunlikelythatwe observed the same unbanded individuals in different years. Additionally, of eight unbandedfemalesin2006andthetenin2007,threeandsixbredsimultaneously, respectively,andwecanthusbecertainthatthesearedifferentindividuals.Forthe remaining nine females we cannot exclude the possibility of pseudoreplication, althoughwesuspectitisunlikelygiven(i)thesizeofourbreedingpopulationand (ii)thatthecompositionofpairswasnearlyalwaysdifferent(outof194pairsthat producedaclutch,onlysixpairsremainedtogether and produced a second clutch between2002and2007).Pseudoreplicationintheplumageanalyseswasavoidedby randomlychoosingonemeasurementperindividual. Toexaminethedegreeofsynchronyinnestattendancebymaleandfemale, i.e.maleandfemalebeingtogetheratthenestsimultaneously,wefirstcalculatedthe time that the male and female can be expected to spend together at the nest by chance,bymultiplyingthetotalpercentagenestattendancebythemale,i.e.male only attendance plus attendance by male and female together, with the total percentagenestattendancebythefemale.Wethencomparedthedifferencebetween observedandexpectedpatternsofnestattendancebybothspeciesusingaGeneral LinearModel(GLM).AGLMwasalsousedtocomparethetotalproportionoftime theparentsspentatthenest,i.e.thesumofmaleonly,femaleonlyand jointnest attendance,betweenthetwospecies.BothGLMsincludedyearasafactorandthe firstdayoffilmingasacovariate,althoughneithercontributedsignificantlytoeither ofthemodels( P >0.138)sotheywereexcludedfromthefinalmodels.Daylengths aredifferentbetweenHungary(15h46min±0h11 min, Budapest) and South Africa (11 h 41 min ± 0 h 12 min, Cape Town) and to test whether this might confoundourresultsweestimatedtheabsolutetimetheparentsattendedthenestper dayasthepercentageoftimespentatthenestxdaylength(daylengthsforboth

114 studysitescollectedfromhttp://www.timeanddate.com).Wethencomparedwhether theabsolutetimespentatthenestbybothparentsisdifferentbetweenEPTandCPT. Weprovideeffectsizes(Cohen1988)andpoweranalyses,and appliedthe asymptotic relative efficiency when estimating power of MannWhitney Utests (Lehmann1975).IfthepowerofthestatisticswasrelativelylowforCPT(i.e.1β≤ 0.5), we provide the sample size that would be required to find a statistical significant difference between the two groups given Cohen’s effect size d of the underlyingdataofCPTandpower1β=0.8( Nrequired ), andtherequiredsamplesize giventheeffectsize d inEPTandpower1β=0.8( Nd,1β).Allstatisticalanalyses wereperformedusingSPSS14.0.0(SPSSInc.,USA),exceptpoweranalyses,which werecarriedoutinR(RDevelopmentCoreTeam2005).Weprovidemean±SD, andtwotailedprobabilities.

(a) (b)

(c) (d) Figure9.2Thesizeoftheeyestripeof(a)maleand(b)femaleEurasianpendulinetits,and(c)male and(d)femaleCapependulinetits. RESULTS Plumage InEPT,theeyestripeofmaleswassignificantly(28%)largerthanthatoffemales, whereas in CPT the size of the eyestripe was not different between males and females (Fig. 2; sex: F = 9.881, P = 0.002; species: F = 295.358, P < 0.001; interactionsexxspecies: F =10.290, P =0.002, N =206individuals;Table9.1). Male EPTs with large eyestripes deserted their firstclutchmoreoftenthanthose

115 Table9.1 Masksizeofmaleandfemalependulinetits. d =Cohen’seffectsize,1β=power.The samplesizerequiredforastatisticallysignificantdifferenceisprovidedforCPTgiventheeffectsize d oftheunderlyingdataofCPTandthepower1βsetat0.8( Nrequired ),andgiventheeffectsize d in

EPTandthepower1βsetat0.80( Nd,1β)(seeCohen1988).

Males Females P d 1β Nrequired Nd, 1β (cm 2) (cm 2) EPT 1.29±0.23 0.93±0.20 t=8.419 <0.001 1.594 >0.99 (N =155) (N=34) CPT 0.13±0.02 0.14±0.03 Z=0.627 0.531 0.034 0.05 13581 8 (N =9) (N=8) with small and thus less attractive eyestripes (Fig. 9.3; binary logistic regression model;modeleffectestimate±SE=2.647±1.226,Wald=4.661, df =1, P =0.031, N = 121 males). Females, however, did not care more often for clutches of males withlargeeyestripes(0.222±0.786,Wald=0.080, df = 1, P = 0.778, N = 121 males).

2.00

1.80

1.60

1.40

1.20

Male eye-stripe size (cm2) size eye-stripe Male 1.00

0.80

Male desertion Male care

Figure9.3 EyestripesofdesertingmaleEurasianpendulinetits( N=104)arelargerthanthecaring ones( N=17).Boxplotsshowmedian,interquartilerange,outliersandextremecases. Song FromthesongrecordingsofEPTatotalof2229syllableswasanalyzed.Addingall recordingsfromallmalestogether,thetotalnumberofdifferentsyllablessunginthe

116 population(‘repertoiresize’)inEPTdidnotincreaseafter46%ofthetotaltimeof recordings(2100min).Additionally,afterthefirst52%ofrecordedsyllables(i.e. the firsthourofrecordingfromall16males)weobtained 14 out of the 16 different syllableswerecordedintotal(i.e. 88%).Alldifferentsyllablessungbyanindividual malewereobtainedafter71%±24%ofthetotalnumberofsyllablesrecordedper individual. We may have underestimated the repertoire size for individual males, althoughthiswouldonlymakeourresultsmoreconservative(seebelow).Thesong recordedfromCPTcontainedatotal1918syllables.Wedidnotfindvariationinthe numberofdifferentsyllablessungbyCPT,soweareconfidentthatweobtainedthe full repertoire size for CPT. The song output at the nest was not significantly differentbetweenspecies:EPTmalessang62.8±32.0( N =16males)syllablesper hour,whereasCPTmalessang54.0±42.8( N =9males)syllablesperhour( t = 0.581, P =0.567, N =25males, d =1.461,1β=0.92).EPTsused8.3±2.8different syllables( N=16males),whereassongwasinvariablymonosyllabicinCPT(Fig. 9.4;onesample ttestwithtestvalue=1; t=10.474, P <0.001, d =3.029,1β> 0.99).

Figure9.4Repertoiresize,i.e. themeannumberofdifferentsyllablessungbyeachmale,inEurasian andCapependulinetit.Barsrepresentmean±SD. Nestattendance Eurasian and Cape penduline tits differed significantly in the frequency of synchronousnestattendancebymaleandfemale(Fig.9.5;MannWhitneyU; Z =±

117 3.902, P <0.001, N=28pairs, d =2.949,1β>0.99).Thisresultwascorroborated bycomparingtheabsolutetimespentatthenestbymaleandfemalejointly(EPT: 115s±162s,CPT:2343s±864s;MannWhitneyU; P <0.001). Comparingtheexpectedversus observedtimesatthenestbybothparents,we foundasignificanteffectofspecies( F =20.366, P<0.001, N =28, η2=0.439,1β= 0.99):EPTparentsspentsignificantlylesstimetogetheratthenestthanexpectedby chance(Fig.9.5;0.20%versus 3.23%oftime,respectively; Z =±4.015, P<0.001, N = 21 EPT pairs, d = 2.898, 1β > 0.99), whereas in CPT the expected versus observed times were not different (Fig. 9.5; 5.56% versus 5.05% of time, respectively; Z=±0.845, P=0.398, N=7CPTpairs, d =0.329,1β=0.09, Nrequired

=146, Nd, 1β=4). EPTsspentsignificantlylesstimeatthenest(36.0±9.9%, N =21pairs)than CPTs(49.4±15.7%, N =7pairs; F =7.075, P =0.013, η2=0.214,1β=0.726).

10.0

8.0

6.0

4.0

2.0 Synchronous nest attendance (%) nest attendance Synchronous 0.0

Eurasian

Figure9.5Expected(blackboxes)andobserved(shadedboxes)synchronousnestattendancebymale andfemaleEurasianandCapependulinetits.Boxplotsshowmedian,interquartilerange,outliersand extremecases. DISCUSSION Penduline tits (Remizinae) are emerging as one of the model systems in investigations of parental conflict (Persson & Öhrström 1989; Arnqvist & Rowe 2005;Szentirmaietal.2007;McGrawetal.2009; ChapterII)andherewefound

118 supportforseveralapriori predictionsflowingfromsexualconflicttheory.Firstly, wefoundsubstantialsexualplumagedimorphisminEPT,butnotinCPT.Secondly, wefoundthatEPTmaleshadamorecomplexsong(i.e. a larger song repertoire) thanCPTmales.Theseresultstogethersuggestthatsexualconflictmaydrivethe evolutionofplumagedimorphismandcomplexityofsongthroughintensifiedsexual selection.Werealisethatthepowertodetectasignificant difference between the sexesofCPTinsizeoftheeyestripeislow,andweacknowledgethatthismayhave confounded this result. However, the sample size required to detect a sexual dimorphisminthesizeofthe eyestripeinCPT,given the effect size and power

(Nrequired ),isunrealisticallylarge(13581),yetwithoursamplewewouldhavebeen abletodetectasexdifferenceineyestripesizeinCPTifithadbeenofasimilar intensity as in EPT ( Nd,1β; Table 9.1). Therefore male and female CPTs appear factuallymonomorphicinthesizeoftheeyestripe.Additionally,wenotethatmales and females can easily be distinguished in the field in EPT, but not in CPT (see various field guides), and we thus suspect our results would be robust even with muchlargersamplessizes. Thirdly, we found that EPT females mated to attractive males were more likelytobedesertedbytheirpartner.However,thesefemalesdonotcaremoreoften fortheoffspringaftermaledesertionthanfemalesmatedtolessattractivemales.The lattercouldbeinterpretedasretaliationbythefemalestoavoidbeingexploitedby the males, and may partly explain the existence of biparental desertion: if an attractivemaledeserts,afemalemaystilldesert,despitethelossoftheeggs(seealso ChapterIII ).Thissomehowcontradictsthepredictionofthedifferentialallocation hypothesis(Burley1986;Sheldon2000).Nevertheless,femalesmatedtoattractive males pay additional costs of reproduction compared to females mated to less attractivemales:afemalemayobtainbothdirectandindirectbenefitsfromattractive males,yetthesefemalespaythefullcostsofcaringor,incasetheydeserttoo,their effortsinvestedinnestbuildingandegglaying,appeartobeinvain.Inaddition, indirectbenefitsaregenerallyassumednottooffsetthedirectmaleimposedcosts, resultinginindirectbenefitsbeingoflittleimportanceintheevolutionofsexually antagonistic traits (Cameron et al. 2003; Arnqvist & Kirkpatrick 2005; Chapman 2006).Thus,thefitnessofafemaleisprobablyreducedwhenmatedtoanattractive male,consistentwiththepredictionofsexuallyantagonisticcoevolution(Chapman etal.2003;Szentirmaietal.2007).ThispointstothedilemmaofEPTfemales:by choosinganattractivemateshemayactuallylose(Chapmanetal.2003).

119 Our prediction that the intensity of sexual selection increases with more polygamous breeding systems (Björklund 1990; Andersson 1994; Székely et al. 2007) was supported by our results with regards to the differences in plumage dimorphismandsongcomplexity,butisinconsistentwithourresultthatfemalespay acostofmatingtoanattractivemalerelativetomatingwithalessattractivemale. Ourresults,inadditiontoKingmaetal.(2008)showing that female reproductive success(numberofnestlingsandtheirsurvival)tendtodecreasewiththeirmate’s attractiveness,suggestthatmalesmaymanipulatetheirpartnervia sexuallyselected traits. Sexualconflictmaybeassociatedtoaprocessofmanipulationbyonepartner and resistance by the other. This potentially affects the evolution of various traits (Chapmanetal.2003;Lessells2006),andmayalsoexplainthedifferenceinsexual dimorphismandsongcomplexitybetweenthetwospeciesofpendulinetit.Evidence for this arms race between male and female partners derives from precopulatory sexualconflictwheremalesareharmfultofemalesduringcopulation(Crudgington & SivaJothy 2000; Arnqvist & Rowe 2002a; Arnqvist & Rowe 2002b; Lessells 2006).Malesmay,forinstance,causegenitaldamagetothefemale(Crudgington& SivaJothy 2000), or force the female to mate at a suboptimal rate (Arnqvist & Nilsson2000;Arnqvist&Rowe2002a).Thereisgoodevidencedemonstratingthat femalesmaypaysubstantialfitnesscostsofmating,suchasreducedlongevityand/or offspringproduction(Gavriletsetal.2001;Arnqvist&Rowe2005;Fiumeraetal. 2006). Males may also try to exploit the female’s perception system during mate choice and parental investment. Exploitation of females may be most successful through exaggerated sexually selected traits in males, such as ornaments or song. Femalesareexpectedtocounteradaptthroughmoreselectivematechoice(Gavrilets et al. 2001; Chapman et al. 2003; Arnqvist & Rowe 2005) leading to female resistancetomatingandtheevolutionofexaggeratedmaledisplaytoovercomethis resistance(‘sexuallyantagonisticcoevolution’,Dawkins&Krebs1978;Holland& Rice 1998; Chapman et al. 2003). In that light, the evolutionary driving force of preference is resistance to maleimposed costs, rather than gaining benefits from matingwithpreferredmales,asdescribedunderclassicsexualselection(Holland& Rice1998;Gavriletsetal.2001;Chapmanetal.2003).Mediatedbythisdynamic process of manipulation and resistance, sexual conflict may have a pronounced influenceontheevolutionofbothmorphologicalandbehaviouraltraits:MaleEPTs may try to manipulate their partner via elaborate plumage and song. This, in

120 conjunctionwithresistancebythefemale,mayhaveledtotheexaggerationofthose traitsinEPT,butnotinCPT. An alternative explanation for the elaboration of traits in EPT may be the higherpopulationdensitythaninCPT.Severalauthorshavesuggestedthathigher populationdensitymaypromotegreatersexualselectionbyincreasingcompetition formates(e.g . Kvarnemo&Ahnesjö1996;Owens2002),butthegeneralityofthis mechanism has been challenged (Kokko & Rankin 2006; Head et al. 2008). Breedingdensityitselfisnotaselectiveprocess,butratheranenvironmental trait that amplifies or deamplifies sexual conflict. To separate the potential of breedingdensityfromsexualconflict,oneneedstocomparedifferentpopulationsof thesamespeciesatdifferentbreedingdensitiesandinvestigatelocaladaptations. Finally,wefoundthattheextentofcooperationinthebreedingsystemwas reflectedinparentalbehaviour,quantifiedasthetimespentonnestattendance.As expected, we found that EPT parents not only spend less time overall on nest attendancethanCPT,buttheyalsowereatthenestlesssynchronously.Thelatter wasalsotruewhenwecomparedtheestimatedabsolutetimetheparentsspentjointly atthenest,confirmingthatthedifferenceindaylengthbetweenourtwostudysites doesnotalterourresults.TheseresultssuggestthatEPTparentsappeartoavoideach otheratthenest,inordertoforcethepartnertodothework.Theenergysavedmay thenbeinvestedinanextreproductiveboutinEPT,whereasinCPT,wherethereare feweropportunitiesforfuturereproduction,parentswouldbenefitfrommoreintense mutual cooperation at a given nest. An alternative explanation for the observed patterninEPTisroledivisionsothatEPTpartnersmaytakeoverthejobofnest buildingfromeachotherratherthanactivelyavoidingeachotheratthenest.This wouldalsoresultinlesstimespenttogetheratthenest,albeitthatthisshouldbe interpretedasamorecooperativebehaviourasopposedtoavoidanceduetoconflict. Thefactthatthetotaltimespentonnestattendance(totalfrequencyofindividual andjointattendance)islowerinEPTthaninCPT,however,corroboratestheidea thattheyactivelytrytoavoideachother,ratherthantakingovereachother’sworkas acooperativeeffort(seeRoyleetal.2002). Furthermore, the mate guarding hypothesis (Kempenaers et al. 1995; Birkhead1998;Møller&Ninni1998)isunlikelytoexplainthedifferenceinjoint nest attendance between the two species: due to frequent mate change and dense breedingpopulationinEPT,onewouldpredictmoreintensemateguardinginEPT thaninCPT.However,wefoundtheoppositepattern.

121 To conclude, our results are consistent with the predictions from sexual conflict theory, and suggest sexual conflict may influence the evolution of morphological and behavioural traits in penduline tits. Nevertheless, we also acknowledgealternativeselectiveprocessesthatmayinfluencethesetraitsbyacting themselvesoractingwithsexualconflict.Toestablishthegeneralityoftheseresults andtotestalternativehypotheses,weneedphylogeneticcomparativestudiesusing the appropriate framework. We are currently working on the first comprehensive phylogenetichypothesesforRemizinae(vanDijketal,inprep.),whichwillserveas backboneforfutureanalyses(Harvey&Pagel1991;Freckletonetal.2002;Thomas & Székely 2005). Detailed data from the field, collected from multiple, closely related species exhibiting a variety of breeding systems in various habitats will further advance this field. The diverse breeding systems of penduline tits are therefore an excellent model system to understand how sexual conflict and cooperationmayhaveshapedthemorphology,behaviour,ecologyandevolutionof organisms. ACKNOWLEDGEMENTS The work was supported by the European Community’s Sixth Framework Programme [FP6/2002 2006] under contract n. 28696; a University of Bath studentship to REvD; the SchureBeijerinck Poppingfonds of the Royal Netherlands Academy of Sciences [SBP/JK/200753 to REvD]; the HungarianSouth African Intergovernmental TÉT [OMFB00564/2006 to TS, AP, and PL]; the HungarianNationalScienceFoundationOTKA[T043390toTS];aRoyalSocietyJointProjectgrant [15056toTS];andtheLeverhulmeTrust[RF/2/RFG/2005/0279toTS].Wearegratefultoallpeople whohelped with the fieldworkinHungaryoverthe years.WethanktheKiskunság NationalPark, SzegedfishLtd.(Hungary),andESKOM(SouthAfrica)forpermissiontocarryoutfieldworkatthe fieldsites.WealsothankJohanvanderDennenforwritingtheMATLABscripttoanalyzethetime lapsevideorecordings,andSanderBotforanalyzingEPTsong.

122 CHAPTERX CONCLUSIONSANDFUTUREDIRECTIONS SEXUAL CONFLICT OVER CARE IN PENDULINE TITSANDBEYOND RenéE.vanDijk

123 Shouldaparentcareforitsoffspring,orshoulditleavethecareprovisioningtoits mate?Thisquestionliesinsomeofthecorethemes in sociobiology, behavioural ecologyandhumansocialbehaviour.Theanswer,asIargueinthisthesis,depends onasuiteofsocialandnonsocialvariables.Ishowhowsexualconflictovercare maybeinfluencedbythebehaviourofthepartner,theattractivenessofthemate,and the environment ( Chapters III – VIII ). I evaluate these results predominantly in a temporal, ecological context, i.e . how do these variables influence a decision over parental care in a given breeding season. However, I argue that environmental variables have also played a role in an evolutionary context, i.e. they may have influencedtheevolutionofthependulinetits’diversebreedingsystems.In Chapter IX I present some of the potential evolutionary consequences on behavioural and morphologicaltraitsofabreedingsystemwithintensesexualconflictovercare. InthisfinalchapterIfocusonfivemajorresultsofmythesis(seeTable10.1): i. theprocessofclutchdesertionisrapidinEurasianpendulinetits( ChaptersIII andIV ); ii. parentsappeartoconcealandnotbehaviourallysignaltheirintentiontodesert theclutch( ChaptersIIIandIV ); iii. the pattern of parental care strategies is consistent with predictions based on reproductivepayoffsusingagametheoreticanalysis( ChapterV ); iv. parental care strategies of Eurasian penduline tits are not confounded by sex differences in parental quality ( Chapter VI ), and are unrelated to either habitat structure( ChapterVII )orbreedingdensity( ChapterVIII ); v. sexual conflict appears to have important ramifications on behavioural and morphologicaltraitsinEurasianandCapependulinetits( ChapterIX ).

1.Theprocessofclutchdesertion

How does a decision about parental care depend on the partner? Various behaviouralandmorphologicaltraitsareexpectedtoinfluencesocialinteractionof parents.HereIfocusonadichotomousdecision:carefortheoffspringordesert.In thissocialcontext,anumberoftradeoffsisexpectedtoplayarole,suchas: should a parent ‘plan ahead’ and save resources thatcanbeinvestedinfuture reproduction if he/she is going to desert, or should the concealment of the intentiontodesertbefavoured?

124 Table10.1Mainconclusionsofmythesisworkinregardstothetwomajorquestionsof ChapterI . Chapter Howdoparentsdecideover Theevolutionaryramificationsof parentalcare? sexualconflict III,IV nestdesertionisarapidprocess parents do not signal their inEurasianpendulinetits intentiontodesert nest desertion depends on the behaviourofthepartner males desert either in early morning or late afternoon, whereasfemalesdesertanytime oftheday V parents are not caught in the both sexes benefit from Prisoner’sDilemma,butplaythe desertion, rather than providing coordinationgame parental care, in terms of a large part of variation in reproductivepayoffs parental care is based on reproductivepayoffs VI males provide as effective males care for smaller clutches parentalcareasfemales than females in Eurasian pendulinetits VII the structure of habitat does not predictparentalcare VIII patterns of parental care are not different between highdensity and lowdensity populations (Hungary versus The Netherlands) IX more attractive males are likely breeding systems with intense todeserttheclutch sexual conflict are associated femalesmatedtoattractivemales withlargersexualdimorphismin do not provide more care than plumage than in a cooperative females mated to nonattractive systems males

125 Chapter Howdoparentsdecideover Theevolutionaryramificationsof parentalcare? sexualconflict IX intense sexual conflict is associated with a complex song repertoire penduline tits exhibiting intense sexual conflict attempt to shift thecostsofparentalcaretothe partner, whereas cooperative speciesdonot should a female mated with an attractive male put up with the risk of being deserted,orwouldshebebetteroffwithalessattractivemalethatmayrearthe offspring? I envisage that a process of manipulation by one parent, and the subsequent resistancebytheotherparent,mayleadtoanevolutionary cycle (Chapman et al. 2003):malesmaydevelopattractivetraitstomanipulatethefemaleintoproviding morecarefortheoffspring.Thisisbeneficialforthemale,butwillreducefitnessof thefemalegiventhatthesemalesunlikelytocareforheryoung(Arnqvist&Rowe 2005;Fiumeraetal.2006).Femalesthenareexpectedtoovercomethismanipulation bybeingmoreselectiveamongmalesandresistingthecourtshipsofattractivemales (Gavriletsetal.2001;Chapmanetal.2003;Arnqvist&Rowe2005;Fig.10.1). Inmythesis,Ihaveshownhowparentsmaydealwith the aforementioned tradeoffs,andhowthesemayinfluencetheresolutionofintensesexualconflictover careusingEurasianpendulinetitsasamodelspecies.In ChaptersIIIandIV,Iargue thatparentsmaybenefitfromconcealingtheirintentiontodesert.Thepatternofcare in Eurasian penduline tits in itself implies that a decision of parental care is not independentofthepartner,sincebiparentalcaredoes not occur (McNamara et al. 2002).Ifitwerefullyindependent,biparentalcarewouldemergebychance(inthe rangeofabout214%ofnests).Szentirmaietal.(2007)havepointedoutthatitisin the best interest of both parents to desert: both parents benefit in terms of reproductive success when they desert, rather than care for the offspring (see also ChapterV ).Thisimpliesthatbothparentsattempttodesertatthemajorityofnests. Thelikelyresultisthatthetimingofdesertionbecomesofutmostimportancefor

126 Figure 10.1 The proposed antagonistic coevolutionary process of manipulation and resistance. Manipulationofthefemalebythemale,e.g. exploitingthefemale’sperceptionbias,likelyreduces the fitness of the female. This will subsequently enhance the female’s resistance against this manipulation, bybeingmoreselectiveamongmales,whichwillnegativelyaffectthemale’sfitness. Thelatter willthenselectfor moreintense manipulativetraitsin malestoovercome herresistance (baseduponDawkins&Krebs1978;Holland&Rice1998;Chapmanetal.2003). bothparents:desertingtooearly(ortoolate)willhaveimportantimplicationsfor bothparents(see ChapterIII),nottheleasttheriskofbeingdesertedbythepartner (Lazarus1990;McNamaraetal.2002).Thelatterwillhaveaprofoundimplication onthedecisionmakingprocessofthedesertedparent,sincecaringfortheoffspring resultsinreducedreproductivesuccess(Szentirmaietal.2007, ChapterV )andthe alternativeofbiparentaldesertioncausestheeffortinvestedinthecurrentbroodto havebeeninvain.Therefore,bargainingoverwhodesertsfirstisexpectedduringa short time window when the female lays her eggs. In Chapter III and IV , using detailed behavioural observations, I showed that neither vocal nor nest building behaviourpredictswhichparentisgoingtodesertthenest.Bothstudiesalsopoint outthattheprocessofdesertionisrapid,since(i)thetimingofdesertionisnearly alwaysaroundthethirddayofegglaying,(ii)eitherparentmaydesertfirst,and(iii) atbiparentallydesertednestsbothparentsdesertedwithinoneortwodays. Ifdesertionhasthehighestpayoffforbothsexes,thismayexplainthelackof cooperationbetweenparentsinthebreedingsystemofEurasianpendulinetits.Such asituationwhere,ingametheoreticalterms,defectionappearstobethedominant strategy, is exemplified by the Prisoner’s Dilemma. I tested the hypothesis that Eurasian penduline tits play the Prisoner’s Dilemma in Chapter V. Using the seasonal reproductive payoffs for a given strategy, I concluded that desertion, although a beneficial strategy for both parents, is not the dominant parental care strategy.Thismakesintuitivesense,becausethiswouldresultinbiparentaldesertion

127 beingthedominantparentalcarestrategyinwhichcasenooffspringwouldsurvive. Hence, desertion is the most successful strategy, but only in case of unilateral desertion,i.e.oneparentstaysbehindandcaresfortheoffspring.Thisisasituation knownamonggametheoreticiansasthecoordinationgame.Thesemodelsarewidely usedbygametheoreticiansand ChapterV isoneofthefewempiricalexplorationsof theseinfluentialgamemodels. ChapterValsopointsoutthatalargeproportionofthevariationinparental care can be predicted from the strategydependent reproductive payoffs. Applying payoff dominance in a gametheoretic approach, i.e. those cases where there is no directpayoffdominanceareresolvedinacoordinationgame,Ifoundproportionsof maleonly care, femaleonly care and biparental desertion that are similar to the observedproportionsofcareinourstudypopulations.Thisisincongruencewithmy suggestionthatthereislittleroomfornegotiationsoverparentalinpendulinetits:by and large the conflict is resolved directly via the expected payoffs. These results suggestthat,althoughnegotiationsbetweentheparentsmayplayanimportantrolein resolvingconflicts(McNamaraetal.1999),thismayonlybetrueinthosecasesthat arenotdirectlyresolvedthroughtheexpectedpayoffs. If the expectedpayoffs for bothplayersarecounteringeachother,thismayleadtofailednegotiations.Inthe context of parental care, the latter may include biparental desertion in Eurasian pendulinetitsandlittleegrets, Egrettagarzetta (Fujioka1989). Extrapair paternity and eggdumping can influence reproductive success, althoughinthisthesisIdidnotincludethese.Provisionaldatasuggestthat,although extrapaircopulationsdooccurinEurasianpendulinetitssuchthatabout36.5%of nestscontainatleastoneextrapairyoung,parentagedoesnotseemtobeassociated with parental care decisions (Mészáros, LA, van Dijk, RE, van der Velde, M, Komdeur,J,Székely,T&Szabad,J.unpubl.data). Conflicting results exist from otherpasserinebirdsastohowparentageandparentalcarearerelatedtoeachother. Forexample,malereedbuntings, Emberizaschoeniclus ,reducedtheircontribution toparentalcarewiththenumberofextrapairoffspringintheirnests(Dixonetal. 1994).However,astudythatreplicatedthelatterworkinadifferentpopulationof thesamespeciesfoundnoevidenceofreducedpaternalcare(Bouwmanetal.2005). The complex breeding system of Eurasian penduline tits bears striking similaritiestothedunnock, Prunellamodularis .Bothspeciesexhibitvariablemating andbreedingsystemswithinapopulationandthisappearstobearesultdrivenbythe antagonistic interests of males and females (Davies & Houston 1986): Both in

128 penduline tits and in dunnocks, mating up with multiple partners enhances the reproductive success of the multiply mating parents, but decreases the amount of parentalcareatagivennestatacosttothereproductivesuccessofthepartner(see Fig.2.1,Fig.10.2). Figure 10.2 Sexual conflict over mating in the dunnock. Both males and females benefit in terms of reproductive success from obtaining multiple mates, yet the reproductive success of eachsexdecreases withthelevelofpolygamy oftheother.Reproductiveoutputis,onaverage, about equal for males and females in case of monogamy or polygynandry, although in polygynandry the reproductive success for males depends on whether the male is the dominant(α)orthesubordinate(β).Theoptimal matingsystemofmalesisamirrorimageofthat offemales(afterDavies&Houston1986). There are, however, also some important differences between the two species: dunnocks,ratherthanattemptingtodeserttheoffspringandshiftingallparentalcare tothemate,benefitfromcooperatingwithmultiplepartners.Bothsexesattemptto recruit several mates: the females do this to gain help in raising her offspring, whereasmalesgainifmultiplefemalesandforeignmalesfeedhisoffspring.Thus, the conflict in dunnocks appears tobe over mating, whereas in penduline tits the conflictisovercare.Also,inthedunnockpaternity appears to have an important influenceontheamountofcareamaleshouldinvest,suchthatpaternityappearsto be associated with the breeding system (Davies 1992), whereas in penduline tits cuckoldrydoesnotseemtoberelatedwiththeparentalcarestrategy(Mészáros,LA, vanDijk,RE,vanderVelde,M,Komdeur,J,Székely,T&Szabad,J.unpubl.data). Inthedunnockvariousmatingsystems(polyandry,monogamy andpolygynandry) mayoccursimultaneously(Davies1992),whereasinpendulinetitspolyandry and polygynyoccurlargelysequential.Afinal,importantdifferencebetweenthetwo species can be found in the association of food availability with the breeding system.Daviesand Lundberg(1984)showedthatthe ability of males to control accesstofemalesdependedonsizeofthefemale’srange.Thelatterwasinfluenced by food availability, so that when food patches were dense, both naturally and

129 experimentally, female ranges were small and thus easily monopolised by males. This,inturn,openeduptheopportunityformalestogainaccesstomultiplefemales andthuspolygynyandpolygynandrycouldemerge.Iffoodresourceswerelimited, femalerangesincreasedandsodidthelevelpolyandry.Soitappearsthatthehard workparentshavetodelivertofindsufficientfoodfortheoffspringmaydrivethe occurrenceofthediversebreedingsystem. Inpendulinetits,however, I arguethat theabundantfoodresourcesinconjunctionwiththegoodinsulativecapacitiesofthe nest (Szentirmai et al. 2005b) has facilitated uniparental care, so that one of the parentsmayabscondfromparentalcareandfindanewpartner( ChapterVII ). Different parental abilities of males and females may also influence care patterns. A sex difference in parental quality can be expected to exist for several reasons.Firstly,reproductionisphysiologicallyadifferentprocessforthetwosexes. Theegglayingwindowoffemalesmaybeanimportantconstraintonthetimingof femalenestdesertion(see ChapterIV)andmayhaveimplicationsforthefemale’s body reserves (see Bleeker et al. 2005). Secondly, males run the risk of being cuckolded and may thus benefit from mating with multiple females instead of allocating resources into providing parental care for a given brood (Trivers 1972; Davies & Houston 1986; Queller 1997; Kokko & Jennions 2008). Thirdly, the varianceinreproductivesuccessisoftenhigherformalesthanforfemales(Queller 1997;Kokko&Jennions2003).Femalesarethusexpectedtohaveevolvedtowards enhanced efficacy of parental care provisioning (Erckmann 1983; Eckert & Weatherhead1987)andshouldthusbeselectedtoprovideparentalcare.Males,on theotherhand,generallybenefitmorefromrematingthanfemales,i.e.theBateman gradientissteeper formalesthanforfemales(Bateman1948;Andersson& Iwasa 1996)andthusmalesareselectedtocompeteformates. In all populations of penduline tits in Europe studied to date, females consistently care more often (4570% of nests) than males (520% of nests), and femalescarefor,onaverage,largerclutches(Persson&Öhrström1989; ChaptersVI andIX;AppendixI ). ChapterVIexploredwhetherthepreponderanceoffemaleonly caremaybeduetofemalesbeingmoreefficientparentsthanmales.However,the resultsdidnotsupportthisexpectation,becauseparentalcareprovidedbymaleand female penduline tits was not different, nor was offspring survival. Although the latter results need experimental testing, I conclude that the parental quality hypothesis cannot explain how the sexual conflict over parental care in Eurasian pendulinetitsisresolved.Thelatterresultisincongruencewiththesuggestionthat

130 parentalcaremaylargelyconsistofpayoffbasedstrategies:thesexdifferenceinthe reproductivepayoffslikelyisamajordriverbehindthesexdifferenceinproportion ofparentalcarestrategies(Szentirmaietal.2007; ChapterV).

2.Environmentandparentalcare How does the environment influence a decision about parental care? One of the centralideasinbehaviouralecologyisthatresourcesinfluencematingsystemsand parental care (Verner & Wilson 1966; Emlen & Oring 1977; Davies 1991). An obviousresourceisfood.Iffoodresourcesareplentiful,theoffspringaremorelikely to survive. Rich resources, however, may also allow a single parent to raise the offspringunassisted(Bart&Tornes1989;Székelyetal.1996;Olsonetal.2008; Eldegard & Sonerud 2009), opening up the opportunity for one of the parents to desertandenhanceitsreproductiveoutput(Beissinger&Snyder1987;Pilastroetal. 2001;Szentirmaietal.2007).Giventhefitnessbenefits,foodavailabilityisoneof thekeydeterminantsofhabitatquality. However, both food availability and habitat quality are hard to assess accuratelyinthefield.AsaproxyIthususedthevegetationstructureofthehabitat toaccountforhabitatqualityvariabilitythatmayinfluenceparentalcaredecisions (Chapter VII ).Vegetationstructuremayalsobeassociatedwiththeavailabilityof nestmaterial,whichmayalsoinfluencethedecisionaboutparentalcareasnestsize andnestbuildingbehaviourhavebeenshowntoplayaroleinthis(Hoietal.1994; Szentirmaietal.2005a,butsee ChapterIII andIV ).Ifoundthathabitatstructure wasnotassociatedwiththeparentalcareinEurasianpendulinetits,andsuspectthat theoverallhighfoodabundancemayexplainthis:aroundeachnestplentyoffood andnestmaterialisavailable.Onanevolutionarytimescale,however,abundantfood resourcesmayhavebeenoneofthedriversoftheEurasianpendulinetit’svariable breedingsystem.Thelatterpropositionissupportedbyrecentdataonthebreeding systemsofotherpendulinetitspecies(Remizinae)andtheirhabitats(see ChapterIX andAppendix IV ,vanDijk,RE,Pogány,Á&Székely,T,unpubl.data). Previous studiesinotherspecieshavefoundsupportforthepropositionthatfoodabundance may promote less cooperation between the sexes and thus increase levels of polygamy(Davies&Lundberg1984;Leisleretal.2002;Eldegard&Sonerud2009). A recent example illustrating such a relation between food availability and breeding system, is from the Tengmalm’s owl, Aegolius funereus : when food

131 resources were abundant (both naturally and after experimental food supplementation) more, female uniparental, desertion took place and the females desertedtheoffspringearlier(Eldegard&Sonerud2009).However,althoughmany studiesfindsomeeffectoffoodavailabilityonbreedingsystem,thegeneralityofthis association and the exact mechanism behind it are not clear and requires further research(e.g. Kosztolányietal.2006;Linetal.2006; ChaptersVIIandVIII ). Matingopportunitymayalsohaveaprofoundinfluenceontheresolutionof sexualconflictovercareandthesubsequentreproductiveoutput.In ChapterVIIII investigatedthisbycomparingthebreedingsystemofEurasianpendulinetitsacross Europe,includingahighdensitypopulationinHungaryandasparserpopulationin TheNetherlands.Populationdensitycanbeexpectedtoinfluencematingsystemsin variousways,althoughtheavailabilityofmatesispossiblythemostprofoundone. Moreover, the strategy of deserting with a very low chance of remating and reproducing again seems to diminish the proposed fitness benefits of desertion drastically (Szentirmai et al. 2007; Chapter V). I concluded that, contrary to the expectation, the breeding system of Eurasian penduline tits is remarkably stable across different populations with different breeding densities throughout Europe. Given the magnitude differences in breeding densities between the sites, this has importantimplicationsonourunderstandingofhowinflexiblebreedingsystemsmay bebetweenpopulations.Onanevolutionarytimescalethehighbreedingdensitiesas observedinCentralEurope,possiblydrivenby the abundant food resources, may have enhanced the evolution of the variable breeding system as high mating opportunitiesconveyafitnessbenefit(Szentirmaietal.2007; ChapterV).However, oncethepopulationstartedtodecline,orindividualshavedispersedtolowdensity areas, the breeding system may suffer from a positive feedback loop setting constraints on the success of the species ( Chapter VIII ). Understanding how the environmentmaydrivethesuccessofaspecieswithagivenbreedingsystemmay thusbeimportantfromaconservationpointofviewaswell.

3.Theevolutionaryramificationsofsexualconflict

Howdoessexualconflictoverparentalcareinfluencetheevolutionofbehaviourand morphology? Sexualconflictisexpectedtobe apowerfulevolutionary force that mayshapetheevolutionofbehaviourandmorphologyandmaypromotespeciation (Arnqvist et al. 2000; Martin & Hosken 2003, but see: Bacigalupe et al. 2007;

132 Wilkinson & Birge 2009). Evidence for these predictions, however, mainly stems fromprezygoticsexualconflict,i.e.thedifferentinterestsofmalesandfemalesover mating(Martin&Hosken2003). ChaptersIII,IV, V (see above) and inparticular ChapterIXprovidedexamplesofhowsexualconflictoverparentalcareprovisioning may impact upon behaviour and morphology of penduline tits. I have shown that Eurasianpendulinetitparentsappeartoavoideachotheratthenestsoastoforce theirpartnertoattendthenestmoreoften( ChapterIX ).Additionally,sexualconflict overcareisexpectedtobeassociatedwithintensesexualselection(Björklund1990; Andersson 1994; Székely et al. 2007) due to a higher variance in reproductive successthaninacooperativelybreedingspeciessuchastheCapependulinetit.In accordancewiththisconjecture,IshowedthatEurasianpendulinetitsexhibitmore sexualdimorphisminplumage,andhaveamorecomplexsongthanCapependuline tits.Allapriori predictionsderivedfromsexualconflicttheorythatItested(seee.g. Chapmanetal.2003andHoustonetal.2005)weresupportedinthisstudy.Ithus conclude that sexual conflict over care may have important ramifications on the evolutionofmorphologyandbehaviour.Thisisanovelandimportantadditionto similarresultsstemmingfromsexualconflictovermatingpublishedinearlierstudies (e.g. Arnqvist&Rowe2002b;Anthesetal.2008;Pizzari&Bonduriansky2009). Althoughwecurrentlydonothaveevidenceforaprocessofmanipulationof thefemale’sperceptivebiasthroughexaggeratedmaleornaments(seeFig.10.1),the fact that more attractive males in Eurasian penduline tits desert more often is consistentwiththisidea:femalesmatedtoattractivemalespayasubstantialcostby being deserted by their mate. Females are thus expected to evolve to be more selective among males, driving the evolution of male ornamentation. Another possibility is that females may retaliate against exploitation through this male manipulationbynotcaringmoreoftenthanaveragefortheoffspringsiredbymore attractivemales( ChapterIX ).TherapidsequentialdesertionIfoundatbiparentally desertednestsisconsistentwiththisnotion( ChapterIII&IV ),sincequickdesertion mightbeacounterstrategytoavoidbeingexploited. Why would females select attractive males if their reproductive success would thereby be suppressed? Also, why would attractive males desert if they anticipate that their partner will unlikely care? One possible answer to this conundrummaybethat,althoughtheseasonalreproductivesuccessoffemalesmay besuppressedwhenmatedtoattractivemales(Chapmanetal.2003;Kingmaetal. 2008; ChapterIX ),thefemalemaygainindirectbenefitsthroughmoremanipulative

133 maleoffspring.Inthelatterscenarioonewouldexpectthat,iffemalesbiasthesex ratiooftheoffspring,amalebiasedsexratiowouldoccurintheoffspringsiredby attractivemales,althoughthisdoesnotappeartobethecase( AppendixI ;seealso: Cameronetal.2003;Arnqvist&Kirkpatrick2005;Chapman2006).

4.Futuredirections

Theprocessofclutchdesertion I suggest three major directions to further understand the process of desertion. Firstly, we need experimental manipulations. Experiments may be aimed at the differenttraitsIhaveinvestigatedinmythesis:randomremovalofthemaleorthe femalewillprovideinsightintohowthedecisionaboutparentalcaredependsonthe presenceofthepartner,whilstcontrollingfortheeffectofindividualmatequality.I predictthatremovalofarandomparentduringegglayingwillincreasethetendency fortheexperimentallydesertedpartnertostaybehindandtakeupparentalcare(see ChaptersIIIandIV).Additionally,suchanexperimentwillprovideinsightintohow thefuturebenefitsmaydependonindividualtraits.Matingtimes,forinstance,are expected to be longer for the randomly, experimentally removed parent than for thosethatdesertednaturallyifattractivenessoftheparentinfluencesthebenefitsof desertion,asIsuggestedin ChapterIX . Experimentalmanipulationofclutchsizewillallowustotestifmalesand femalesareonaverageequallyabletoraisetheoffspringoflargeclutches. Chapter VItestedthispropositioninacorrelativemanner,althoughthemalesthatdecideto carefortheoffspringmayprovidebettercarethananaveragemaleinthepopulation. Experimental manipulation of clutch size and following the care patterns of manipulatedversuscontrolclutcheswouldpreemptthisshortcoming. Secondly,furthertheoreticalworkisnecessarytounderstandhowdifferent variables may underlie mating and parental decisions building upon Chapter V. Using a statedependent game theoretic model, parameterised with data collected fromthefield,suchasonbodycondition(Bleekeretal.2005)ormaleattractiveness (Pogány &Székely2007;Kingmaetal.2008; Chapter IX ),itwillbepossibleto achieve a more accurate estimate of the proportions of payoffbased reproductive strategies.Theoreticalmodelsarealsoneededtoanalysethetimingofdesertion:why dobothmalesandfemalesdesertthenestwhenabout three eggs have been laid? Incorporatingthebenefitsandrisksofdesertingat different times may model the

134 theoreticallyoptimaltimingofdesertion.Animportantriskfactorformaleswillbe thelossofpaternityifhedesertstooearly(butsee:Magrathetal.2009).Suchrisks canalsobeparameterisedusingdatacollectedfromthefield. Thirdly,abetterunderstandingofthemechanismsthatdrivetheprocessof clutchdesertionwillprovideimportantinsightsintophysiologicalandgeneticbases ofparentalcare.Iproposecarryingouthormonalassaysinmalesandfemalesduring theegglayingperiod,i.e .theperiodduringwhichdesertiontakesplace.Thisshould reveal which hormones are involved in the likely complex neuroethological pathways that influence care behaviour (see AdkinsRegan 2005). Experimental manipulation of hormones, on the other hand, has important benefits: it not only provides insight into which hormones may play a role in the process of clutch desertion,itwillalsoallowustoinvestigatetheinteractionbetweentheparents.How does a change in behaviour of one parent influence the behaviour of the other? Subcutaneous hormone implants, for instance blocking testosterone receptors or dispensingvasoactiveintestinalpeptide(VIP)toenhanceamale’sinclinationtocare fortheoffspringratherthantodesert,havebeenusedinotherspeciesinadifferent context and would seem a promising avenue to follow (Badyaev & Duckworth 2005). Finally, we need to further our knowledge of the genetic basis of parental behaviour.Monitoringayearroundresidentpopulationwouldhelptoinvestigatethe heritabilityofparentalcareand,possiblywiththeuseofcrossfosteringexperiments, itwouldallowustoaddresswhetheroffspringraisedinmaleonlycarenestsis,for instance,morelikelytoprovidemaleonlycareinthesubsequentbreedingseason, whereasoffspringraisedbythefemaleonlymaybemorelikelytoadoptfemaleonly care.Theseexperimentscanteaseaparttheinfluencesofthesocialandnonsocial environmentversus thegeneticbasesofparentalcare,althoughafullunderstanding will only emerge when nature and nurture are merged. Additional benefits of a residentpopulationwouldbetheabilitytoinvestigateageeffectsonparentalcare, andtowhatextentindirectbenefitsformalesandfemalesmaydrivesexualselection inpendulinetits.Bothhavesofarbeenimpossiblegiventhelowadultreturningrates betweenyears(see ChapterVII). Environmentandparentalcare Ienvisageexperimentalmanipulationsofenvironmentalresourcesarenecessaryto testhowthesemayinfluencetheresolutionofsexualconflictaboutparentalcare.In

135 the field this will not be straightforward, although captive populations may offer opportunitiesforexperimentalsupplementationoffoodand/ornestmaterial,andto simulatetheabsenceoravailabilityofpotentialfuturepartnersinvestigatinghowthis influenceshowmalesandfemalesdecidetocareforortodeserttheoffspring.

Figure 10.3 Distribution of penduline tits (Remizina e, 13 species, 5 genera, Madge 2008). The , Auriparus flaviceps , often included within the Remizinae subfamily Madge 2008, is not displayed on this map. It occurs in the South of theUSAandintheNorthofMexico.However, recentmolecularsequencessuggestthattheverdin,thetithylia( Pholidornisrushiae )andthefire cappedtit( Cephalopyrusflammiceps )shouldnotbeincludedwithintheRemizinae (vanDijk,RE, Irestedt, M, Ericson, P and Székely, T, unpublished data). The grey, continuous ellipses of distribution indicate the species that exhibit biparental care only. The species surrounded by a dashed,blackellipsemayexhibituniorbiparentaldesertion.Notethatthebreedingbiologyofthe majorityofthespeciesispoorlydescribed(Harrap&Quinn1996). Theevolutionaryramificationsofsexualconflict Weneedcomparativestudiestofurtherourknowledgeoftheramificationsofsexual conflictoverbreedingsystemsatvariouslevels.Detailedstudiesofcloselyrelated species will be invaluable. Penduline tits are excellent study systems for these purposes:theyexhibitafullrangeofbreedingsystemsfromintensesexualconflict overparentalcarewithpolygamybybothsexesinEurasianpendulinetits,through uniparental, femaleonly care in Chinese penduline tits, Remiz consobrinus (van Dijk, RE, Pogány, Á, & Székely, T, unpubl. data), to facultative cooperative breeding in Cape penduline tits ( Chapter IX; Appendix II, IV ). Additionally,

136 pendulinetitsoccurindifferenthabitats,rangingfromreedmarsheswithabundant foodthroughtodry,coastalscrublandinSouthAfricaandoasesintheGobidesertin China(Harrap&Quinn1996; ChapterIX ; AppendixIV ;vanDijk,RE,Pogány,Á& Székely,T,unpubl.data;Fig.10.3).Thissubfamilywillallowustoinvestigate(i) how different intensities of sexual conflict are associated with behaviour and morphologyand(ii)howdifferentbreedingsystemsmayhaveevolvedasdrivenby various environmental characteristics. Including several species as discussed in ChapterIX willalsoallowustotestmyresultsbasedupontwospeciesofpenduline tits,andtocontrolstatisticallyforpotentiallyconfoundingvariables. Achallengingprojectistosuperimposetheimpactofsexualconflictatthe behaviouralandmorphologicallevelontoaphylogenetictree(vanDijk,RE,Irestedt, M,Ericson,P&Székely,T,unpubl.data)willallowustoinvestigatetherateof evolutionofvarioustraits,ratesofdiversificationwithinaconfinedgroupofspecies, anddeterminewhichtraitsarelikelytodrivespeciation.Thelattermaysubsequently beexperimentallytestedinthefield. Takentogether,thetamebehaviour,theaccessiblebreedingecologyandthe amenabilityofpendulinetitsofferlotsofopportunitiesforexperimentalstudies. I alsofeelthatintensestudyofaresidentpendulinetitpopulationcanaddresssomeof thekeyevolutionaryissues,suchasintensityofselection andheritability oftraits associated withbreedingsystems. Finally,phylogeographic analyses of Remizinae willlikelyadvancenotonlyunderstandingofbreedingsystems,butalsotheactions ofsexualconflictandparentalcooperationinthewild.

137 REFERENCES AdkinsRegan, E. 2005. Hormones and animal social behavior. Princeton: PrincetonUniversityPress. Aebischer,A.,Perrin,N.,Krieg,M.,Studer,J.&Meyer,D.R. 1996.Theroleof territory choice, mate choice and arrival date on breeding success in the Savi's Warbler Locustella luscinioides . Journal of Avian Biology , 27, 143 152. Alatalo, R. V., Carlson, A., Lundberg, A. & Ulfstrand, S. 1981. The conflict between male polygamy and female monogamy: the case of the pied flycatcher, Ficedulahypoleuca . AmericanNaturalist , 117, 738753. Alonzo,S.H.&Sheldon,B.C. 2009.Populationdensity,socialbehaviourandsex allocation. In: Social behaviour: genes, ecology and evolution (Ed. by Székely,T.,Moore,A.J.&Komdeur,J.).Cambridge:CambridgeUniversity Press. Alonzo, S. H. & Warner, R. R. 2000. Dynamic games and field experiments examiningintraandintersexualconflict:explainingcounterintuitivemating behavior in a Mediterranean wrasse, Symphodus ocellatus . Behavioral Ecology , 11, 5670. Alström,P.,Ericson,P.G.P.,Olsson,U.&Sundberg,P. 2006.Phylogenyand classificationoftheaviansuperfamilySylvioidea. Molecular Phylogenetics andEvolution , 38, 381397. Andersson,M. 1994. Sexualselection .Princeton,NewJersey:PrincetonUniversity Press. Andersson, M. 2005. Evolution of classical polyandry: three steps to female emancipation. Ethology , 111, 123. Andersson,M.&Iwasa,Y. 1996.Sexualselection. TrendsinEcology&Evolution , 11, 5338. Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P. D. & Nowak, M. A. 2009. Evolution of cooperation by phenotypic similarity. Proceedings of the NationalAcademyofSciences(USA) , 106, 85978600. Anthes,N.,Schulenburg,H.&Michiels,N.K. 2008.Evolutionarylinksbetween reproductive morphology, ecology and mating behavior in opisthobranch gastropods. Evolution , 62, 900916. Arnold,S.J.&Duvall,D. 1994.AnimalmatingsystemsAsynthesisbasedon selectiontheory. AmericanNaturalist , 143, 317348. Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. 2000. Sexual conflict promotes speciation in insects. Proceedings of the National Academy of Sciences(USA) , 97, 1046010464. Arnqvist, G. & Kirkpatrick, M. 2005. The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapaircopulationbehaviorinfemales. AmericanNaturalist , 165, S26S37. Arnqvist,G.&Nilsson,T. 2000.Theevolutionofpolyandry:multiplematingand femalefitnessininsects. AnimalBehaviour , 60, 145164. Arnqvist,G.&Rowe,L. 2002a.Antagonisticcoevolutionbetweenthesexesina groupofinsects. Nature , 415, 787789. Arnqvist, G. & Rowe, L. 2002b. Correlated evolution of male and female morphologiesinwaterstriders. Evolution , 56, 936947. Arnqvist,G.&Rowe,L. 2005. SexualConflict .Princeton,NewJersey:Princeton UniversityPress.

138 Axelrod,R.&Hamilton,W.D. 1981.Theevolutionofcooperation. Science , 211, 13901396. Bacigalupe,L.D.,Crudgington,H.S.,Hunter,F.,Moore,A.J.&Snook,R.R. 2007.Sexualconflictdoesnotdrivereproductiveisolation in experimental populationsofDrosophilapseudoobscura. Journal ofEvolutionaryBiology , 20, 17631771. Badyaev,A.V.&Duckworth,R.A. 2005.Evolutionofplasticityinhormonally integratedparentaltactics:Anexamplewiththehousefinch.In: Functional avianendocrinology (Ed.byDawson,A.&Sharp,P.J.),pp.375386.New Delhi,India:NarosaPublishingHouse. Balshine, S., Kempenaers, B. & Székely, T. 2002. Introduction. Philosophical TransactionsoftheRoyalSocietyLondonBBiologicalSciences , 357, 237 240. BalshineEarn, S. 1997. The benefits of uniparental versus biparental mouth broodinginGalileeStPeter'sfish. JournalofFishBiology , 50, 371381. BalshineEarn,S.&Earn,D.J.D. 1997.Anevolutionarymodelofparentalcarein St.Peter'sFish. JournalofTheoreticalBiology , 184, 423431. BalshineEarn,S.&Earn,D.J.D. 1998.Ontheevolutionarypathwayofparental care in mouthbrooding cichlid fish. Proceedings of the Royal Society of LondonSeriesB , 265, 22172222. Bart,J.&Tornes,A. 1989.Importanceofmonogamousmalebirdsindetermining reproductive success: evidence for house wrens and a review of male removalstudies. BehavioralEcologyandSociobiology , 24, 109116. Barta,Z.,Houston,A.I.,McNamara,J.M.&Székely,T. 2002.Sexualconflict aboutparentalcare:theroleofreserves. AmericanNaturalist , 35, 15041519. Bateman,A.J. 1948.IntrasexualselectioninDrosophila. Heredity , 2, 349368. Beissinger, S. R. 1987. Mate desertion and reproductive effort in the snail kite. AnimalBehaviour , 35, 15041519. Beissinger,S.R.&Snyder,N.F.R. 1987.Matedesertioninthesnailkite. Animal Behaviour , 35, 477487. Bennett,P.M.&Owens,I.P.F. 2002. Evolutionary Ecology of Birds. Oxford: OxfordUniversityPress. Berglund,A.&Rosenqvist,G. 2003.Sexrolereversalinpipefish. Advancesinthe StudyofBehavior , 32, 131167. Birkhead,T.R. 1998.Spermcompetitioninbirds. Reviewsofreproduction , 3, 123 129. Birkhead,T.R.,Cunningham,E.J.A.&Cheng,K.M. 1996.Theinsemination windowprovidesadistortedviewofspermcompetitioninbirds. Proceedings oftheRoyalSocietyofLondonSeriesB , 263, 11871192. Birkhead,T.R.&Møller,A.P. 1992. Sperm competitioninbirds:evolutionary causesandconsequences. London:AcademicPress. Birkhead,T.R.&Parker,G.A. 1997.Spermcompetitionandmatingsystems.In: Behavioural ecology: an evolutionary approach (Ed. by Krebs, J. R. & Davies,N.B.),pp.121145.Oxford:BlackwellScientificPublications. Björklund, M. 1990.Aphylogeneticinterpretationofsexualdimorphisminbody size and ornament in relation to mating system in birds. Journal of EvolutionaryBiology , 3, 171183. Bleeker, M., Kingma, S. A., Szentirmai, I., Székely, T. & Komdeur, J. 2005. Body condition and clutch desertion in penduline tit Remiz pendulinus . Behaviour , 142, 14651478. Bourne, G. R. 1998.Amphisexualparentalbehaviorofaterrestrial breeding frog Eleutherodactylusjohnstonei inGuyana. BehavioralEcology , 9, 17.

139 Bouwman,K.M.,Lessells,C.M.&Komdeur,J. 2005.Malereedbuntingsdonot adjust parental effort in relation to extrapair paternity. Behavioral Ecology , 16, 499506. Brosnan,S.F.&deWaal,F.B.M. 2003.Monkeysrejectunequalpay. Nature , 425, 297299. Burfield,I.&vanBommel,F. 2004. BirdsinEurope:populationestimates,trends andconservationstatus. Cambridge:BirdLifeInternational. Burkart,J.M.,Fehr,E.,Efferson,C.&vanSchaik,C.P. 2007.Otherregarding preferences in a nonhuman primate: Common marmosets provision food altruistically. ProceedingsoftheNationalAcademyofSciences(USA), 104, 1976219766. Burley,N. 1986.Sexualselectionforaesthetictraitsinspecieswithbiparentalcare. AmericanNaturalist , 127, 415445. Burley, N. 1988. The differential allocation hypothesis an experimental test. AmericanNaturalist , 132, 611628. Burley, N. T. & Johnson, K. 2002. The evolution of avian parental care. Philosophical Transactions of the Royal Society London B Biological Sciences , 357, 241250. Cameron, E., Day, T. & Rowe, L. 2003. Sexual conflict and indirect benefits. JournalofEvolutionaryBiology , 16, 10551060. Chapman,T. 2006.Evolutionaryconflictsofinterestbetweenmalesandfemales. CurrentBiology , 16, R744R754. Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. 2003. Sexual conflict. TrendsinEcologyandEvolution , 18, 4147. Charmantier,A.,Keyser,A.J.&Promislow,D.E.L. 2007. First evidence for heritable variation in cooperative breeding behaviour. Proceedings of the RoyalSocietyofLondonSeriesBBiologicalSciences, 274, 17571761. Charpentier, M. J. E., Van Horn, R. C., Altmann, J. & Alberts, S. C. 2008. Paternal effects on offspring fitness in a multimale primate society. ProceedingsoftheNationalAcademyofSciences(USA), 105, 19881992. CluttonBrock,T.H. 1991. Theevolutionofparentalcare .Princeton,NewJersey: PrincetonUniversityPress. CluttonBrock,T.H.,Russell,A.F.,Sharpe,L.L.,Young,A.J.,Balmforth,Z. &McIlrath,G.M. 2002.Evolutionanddevelopmentofsexdifferencesin cooperativebehaviorinmeerkats. Science , 297, 253256. Cohen,J. 1988. Statisticalpoweranalysisforthebehavioralsciences .Hillsdale,NJ: LawrenceEarlbaumAssociates. Conway, C. J. & Martin, T. E. 2000. Effects of ambient temperature on avian incubationbehavior. BehavioralEcology , 11, 178188. Craig, J. L. 1984. Are communal pukeko caught in the prisoner's dilemma? BehavioralEcologyandSociobiology , 14, 147150. Cramp, S., Perrins, C. M. & Brooks, D. M. 1993. Handbook of the birds of Europe, the Middle East and North Africa The Birds of the Western Palearctic .Oxford:OxfordUniversityPress. Crudgington,H.S.&SivaJothy,M.T. 2000.Genitaldamage,kickingandearly death.Thebattleofthesexestakesasinisterturninthebeanweevil. Nature , 407, 855856. Currie,D.,Thompson,D.B.A.&Burke,T. 2000.Patternsofterritorysettlement andconsequencesforbreedingsuccessintheNorthernWheatear Oenanthe oenanthe . Ibis , 142, 389398. Darolová, A. & Hoi, H. 1996. The importance of nest predation and food availabilityinpendulinetits. Foliazoologica , 45, 237246.

140 Darolová,A.&Krištofík,J. 1993.GrößenundFormenvariabilitätbeiNesternder Beutelmeise(Remizpendulinus). Biológia(Bratislava) , 48, 593597. Davies,N.B. 1989.Sexualconflictandthepolygamythreshold.AnimalBehaviour , 38, 226234. Davies, N. B. 1991. Mating systems. In: Behavioural ecology: an evolutionary approach (Ed. by Krebs, J. R. & Davies, N. B.), pp. 263294. Oxford: BlackwellScientificPublications. Davies, N. B. 1992. Dunnock behaviour and social evolution . Oxford: Oxford UniversityPress. Davies,N.B.,Hartley,I.R.,Hatchwell,B.J.,Desrochers,A.,Skeer,J.&Nebel, D. 1995.Thepolygynandrousmatingsystemofthealpineaccentor, Prunella collaris .I.Ecologicalcausesandreproductiveconflicts.AnimalBehaviour , 49, 769788. Davies,N.B.&Houston,A.I. 1986.Reproductivesuccessofdunnocks, Prunella modularis , in a variable mating system. II. Conflicts of interest among breedingadults. JournalofAnimalEcology , 55, 139154. Davies,N.B.&Lundberg,A. 1984.Fooddistributionandavariablematingsystem in the Dunnock, Prunella modularis . Journal of Animal Ecology , 53, 895 912. Dawkins,R. 1976. Theselfishgene .Oxford:OxfordUniversityPress. Dawkins,R. 1980.Goodstrategyorevolutionarilystablestrategy?In: Sociobiology: beyond nature/nurture? (Ed.byBarlow,G.W.&Silverberg,J.),pp.331 361.WashingtonDC:AAAS. Dawkins, R. & Carlisle, T. R. 1976. Parental investment, mate desertion and a fallacy. Nature , 262, 131133. Dawkins,R.&Krebs,J.R. 1978.Animalsignals:Informationormanipulation?In: Behavioural Ecology (Ed.byKrebs,J.R.&Davies,N.B.),pp.282309. Oxford:BlackwellScientific. deHeij,M.E.,vandenHout,P.J.&Tinbergen,J. M. 2006. Fitness cost of incubationingreattits( Parusmajor )isrelatedtoclutchsize. Proceedingsof theRoyalSocietyofLondonSeriesB , 273, 23532361. Dean,W.R.J. 2005.CapependulinetitAnthoscopusminutus.In:RobertsBirdsof SouthernAfrica (Ed.byHockey,P.A.R.,Dean,W.R.J.&Ryan,P.G.),pp. 736737.CapeTown,SouthAfrica:JohnVoelkerBirdBookFund. Dijkstra, C., Bult, A., Bijlsma, S., Meijer, T. & Zijlstra, M. 1990. Brood size manipulations in the Kestrel ( Falco tinnunculus ): effects on offspring and adultsurvival. JournalofAnimalEcology , 59, 269286. Dixon,A.,Ross,D.,O'Malley,S.L.C.&Burke,T. 1994. Paternal investment inversely related to degree of extrapair paternity in the Reed Bunting. Nature , 371, 698700. Dobbs,R.C.,Styrsky,J.D.&Thompson,C.F. 2006.Clutchsizeandthecostsof incubationinthehousewren. BehavioralEcology , 17, 849856. Doebeli, M. & Hauert, C. 2005. Models of cooperation based on the Prisoner's DilemmaandtheSnowdriftgame. EcologyLetters , 8, 748766. Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. 2008. Winners don't punish. Nature , 452, 348351. Eckerle,K.P.&Thompson,C.F. 2006.Matechoiceinhousewrens:nestcavities trumpmalecharacteristics. Behaviour , 143, 253271. Eckert, C. G. & Weatherhead, P. J. 1987. Male characteristics, parental quality and the study of mate choice in the Redwinged blackbird ( Agelaius phoenicus ). BehavioralEcologyandSociobiology , 20, 3542.

141 Eldegard,K.&Sonerud,G.A. 2009. Female offspring desertion and maleonly care increase with natural and experimental increase in food abundance. ProceedingsoftheRoyalSocietyofLondonSeriesB , 276, 17131721. Emlen,S.T.&Oring,L.W. 1977.Ecology,sexualselectionandtheevolutionof matingsystems. Science , 197, 215223. Erckmann,W.J. 1983.Theevolutionofpolyandryinshorebirds:Anevaluationof hypotheses.In: Socialbehavioroffemalevertebrates (Ed.byWasser,S.K.), pp.113168.NewYork:AcademicPress. Fink,S.,Excoffier,L.&Heckel,G. 2006.Mammalianmonogamyisnotcontrolled by a single gene. Proceedings of theNationalAcademy of Sciences (USA) , 103, 1095610960. Fiumera,A.C.,Dumont,B.L.&Clark,A.G. 2006.Naturalvariationinmale induced 'costofmating' and allelespecific association with male reproductive genes in Drosophila melanogaster. Philosophical Transactions oftheRoyalSocietyLondonBBiologicalSciences , 361, 355361. Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. 2004. Unusually dynamicsexrolesinafish. Nature , 429, 551554. Franz,D. 1989.Paarungssystemundfortpflanzungsstrategiederbeutelmeise.PhD dissertation.Nürnberg:UniversityofErlangen. Franz, D. 1991.PaarungsystemundFortpflanzungstrategieder Beutelmeise Remiz pendulinus . JournalfürOrnithologie , 132, 241266. Franz, D. & Theiss, N. 1983. Brutbiologie und Bestandsentwicklung einer farbberingtenPopulationderBeutelmeise Remizpendulinus . Verhandlungen derOrnithologischeGesellschaftBayern , 23, 393442. Franz, D., Theiss, N. & Graff, H. 1987. Weibchen der Beutelmeise Remiz pendulinus brütet in einer Saison zweimal erfolgreich an zwei mehr als 200km voneinander entfernten Brutplätzen. Journal für Ornithologie , 128, 241242. Freckleton, R. P., Harvey, P. H. & Pagel, M. 2002. Phylogenetic analyses and comparative data: a test and review of evidence. AmericanNaturalist , 160, 712726. Fujioka, M. 1989. Mate and nestling desertion in coloniallittle egrets. Auk , 106, 292302. Garant,D.,Kruuk,L.E.B.,Wilkin,T.A.,McCleery,R.H.&Sheldon,B.C. 2005.Evolutiondrivenbydifferentialdispersalwithinawildbirdpopulation. Nature , 433, 6065. Gavrilets, S., Arnqvist, G. & Friberg, U. 2001. The evolution of female mate choicebysexualconflict. ProceedingsoftheRoyalSocietyofLondonSeries BBiologicalSciences , 268, 531539. Gill,F.B.,Slikas,B.&Sheldon,F.H. 2005.Phylogenyoftitmice(Paridae): II. SpeciesrelationshipsbasedonsequencesofthemitochondrialcytochromeB gene. Auk , 122, 121143. GlutzvonBlotzheim,U.N. 1993. HandbuchderVögelMitteleuropas .Wiesbaden: AULAVerlagGmbH. GonzalezVoyer, A., Fitzpatrick, J. L. & Kolm, N. 2008. Sexual selection determinesparentalcarepatternsincichlidfishes. Evolution , 62,20152026. Griggio,M.,Matessi,G.&Pilastro,A. 2004.ShouldIstayorshouldIgo?Female brood desertion and male counterstrategy in rock sparrows. Behavioral Ecology , 16, 435441. Griggio,M.&Pilastro,A. 2007.Sexualconflictoverparentalcareinaspecieswith femaleandmalebrooddesertion. AnimalBehaviour , 74, 779785.

142 Grubbauer,P.&Hoi,H. 1996.Femalependulinetits( Remizpendulinus )choosing high quality nests benefit by decreased incubation effort and increased hatchingsuccess. Ecoscience , 3, 274279. Grüter,C.&Taborsky,B. 2005.Sexratioandthesexualconflictaboutbroodcare inabiparentalmouthbrooder. BehavioralEcologyandSociobiology , 58, 44 52. Haftorn,S.&Reinertsen,R.E. 1985.Theeffectoftemperatureandclutchsizeon the energetic cost of incubation in a freeliving blue tit (Parus caeruleus). Auk , 102, 470478. Hammock, E. A. D. & Young, L. J. 2005. Microsatellite instability generates diversityinbrainandsociobehavioraltraits. Science , 308, 16301634. Harrap,S.&Quinn,D. 1996. Tits, Nuthatches & Treecreepers. London, United Kingdom:ChristopherHelm. Harrison, F., Barta, Z., Cuthill, I. C. & Székely, T. submitted. Conflict and cooperationbetweenparentsovercare:ametaanalysis. Harsanyi, J. C. & Selten, R. 1988. A general theory of equilibrium selection in games .Cambridge:MITPress. Harvey,P.&Pagel,M.D. 1991. Thecomparativemethodinevolutionarybiology . Oxford:OxfordUniversityPress. Hatchwell, B. J. 2007. Avian reproduction: role of ecology in the evolution of cooperativebreeding. CurrentBiology , 17, R845R847. Head, M. L., Lindholm, A. K. & Brooks, R. 2008. Operational sex ratio and density do not affect directional selection on male sexual ornaments and behaviour. Evolution , 62, 135144. Heinsohn, R. G. & Packer, C. 1995. Complex cooperative strategies in group territorialAfricanlions. Science , 269, 12601262. Helbing, D. & Yu, W. 2009. The outbreak of cooperation among successdriven individualsundernoisyconditions. ProceedingsoftheNationalAcademyof Sciences(USA) , 106, 36803685. Hinde,C.A. 2006.Negotiationoveroffspringcare?apositiveresponsetopartner provisioningrateingreattits. BehavioralEcology , 17, 612. Hinde,C.A.&Kilner,R.M. 2007.Negotiationswithinthefamilyoverthesupply ofparentalcare. ProceedingsoftheRoyalSocietyofLondonSeriesB , 274, 5360. Hoi,H.,Schleicher,B.&Valera,F. 1994.Femalematechoiceandnestdesertion in penduline tits, Remizpendulinus :theimportanceofnestquality. Animal Behaviour , 48, 743746. Holland, B. & Rice, W. R. 1998. Perspective: Chaseaway sexual selection: Antagonisticseductionversusresistance. Evolution , 52, 17. Hosken,D.J.&Snook,R.R. 2005.Howimportantissexualconflict? American Naturalist , 165, S1S4. Houston,A.I.&Davies,N.B. 1985.Theevolutionofcooperationandlifehistory in the dunnock Prunella modularis . In: Behavioural Ecology: Ecological consequencesofadaptivebehaviour (Ed.bySibley,R.M.&Smith,R.H.), pp.471487.Oxford:BlackwellScience. Houston, A. I. & McNamara, J. M. 1999. Models of adaptive behaviour: an approachbasedonstate .Cambridge:CambridgeUniversityPress. Houston,A.I.&McNamara,J.M. 2002.Aselfconsistentapproachtopaternity andparentaleffort. PhilosophicalTransactionsoftheRoyalSocietyLondon BBiologicalSciences , 357, 351362. Houston,A.I.,Székely,T.&McNamara,J.M. 2005.Conflictbetweenparents overcare. TrendsinEcology&Evolution , 20, 3338.

143 Hugie,D.M.&Lank,D.B. 1997.Theresident'sdilemma:afemalechoicemodel for the evolution of alternative mating strategies in lekking male ruffs (Philomachuspugnax ). BehavioralEcology , 8, 218225. Jensen,K.,Call,J.&Tomasello,M. 2007.Chimpanzeesarerationalmaximizersin anultimatumgame. Science , 318, 107109. Johnsen,A.,Pärn,H.,Fossøy, F.,Kleven,O.,Laskemoen,T.&Lifjeld,J.T. 2008.Isfemalepromiscuityconstrainedbythepresenceofhersocialmate? An experiment with bluethroats Luscinia svecica . Behavioral Ecology and Sociobiology , 62, 17611767. Johnstone, R. A. & Hinde, C. A. 2006. Negotiation over offspring care how shouldparentsrespondtoeachother'sefforts? BehavioralEcology , 17, 818 827. Keller,L.&Chapuisat,M. 2002.Eusocialityandcooperation.In: Encyclopediaof LifeSciences(ELS) .Chichester:JohnWiley&Sons,Ltd. Kempenaers, B., Verheyen, G. R. & Dhondt, A. A. 1995. Mate guarding and copulation behaviour in monogamous and polygynous blue tits: do males follow a bestofabadjob strategy? Behavioral Ecology and Sociobiology , 36, 3342. Kilner,R.M. 2002.Parentoffspringandsiblingconflict.In: EncyclopediaofLife Sciences(ELS) .Chichester:JohnWiley&Sons,Ltd. Kingma,S.A.,Szentirmai,I.,Székely,T.,Bókony,V.,Bleeker,M.,Liker,A.& Komdeur, J. 2008. Sexual selection and the function of a melaninbased plumage ornament in polygamous penduline tits Remiz pendulinus . BehavioralEcologyandSociobiology , 62, 12771288. Kokko, H. 1998. Should advertising parental care be honest? Proceedings of the RoyalSocietyofLondonSeriesBBiologicalSciences , 265, 18711878. Kokko,H.,Harris,M.P.&Wanless,S. 2004.Competitionforbreedingsitesand sitedependent population regulation in a highly colonial seabird, the commonguillemot Uriaaalge . JournalofAnimalEcology , 73, 367376. Kokko, H. & Jennions, M. 2003. It takes two to tango. Trends in Ecology & Evolution , 18, 103104. Kokko,H.&Jennions,M.D. 2008.Parentalinvestment,sexualselectionandsex ratios. JournalofEvolutionaryBiology , 21, 919948. Kokko, H. & Rankin, D. J. 2006. Lonely hearts or sex in the city? Density dependenteffectsinmatingsystems. PhilosophicalTransactionsoftheRoyal SocietyLondonBBiologicalSciences , 361, 319334. Komdeur, J. 1992. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the seychelles warbler. Nature , 358, 493495. Komdeur,J. 2001.MateguardingintheSeychelleswarblerisenergeticallycostly andadjustedtopaternity risk. ProceedingsoftheRoyalSocietyofLondon SeriesB , 268, 21032111. Komdeur,J.,Burke,T.&Richardson,D.S. 2007.Explicitexperimentalevidence for the effectiveness of proximity as mateguarding behaviour in reducing extrapair fertilization in the Seychelles warbler. Molecular Ecology , 16, 36793688. Komdeur,J.,Huffstad,A.,Prast,W.,Castle,G.,Mileto,R.&Wattel,J. 1995. Transfer experiments of Seychelles warblers to new islands changes in dispersalandhelpingbehavior. AnimalBehaviour , 49, 695708. Kosztolanyi,A.,Cuthill,I.C. &Szekely,T. 2009. Negotiation between parents over care: reversible compensation during incubation. Behavioral Ecology , 20, 446452.

144 Kosztolányi,A.,Székely,T.,Cuthill,I.C.,Yilmaz,K.T.&Berberoglu,S. 2006. Ecologicalconstraintsonbreedingsystemevolution:theinfluenceofhabitat onbrooddesertioninKentishplover. Journal ofAnimalEcology , 75, 257 265. Krištin, A. 1995. The diet and foraging ecology of the Penduline Tit ( Remiz pendulinus ). Foliazoologica , 44, 2329. Kroll,S.&Shogren,J.F. 2008.Domesticpoliticsandclimatechange:international publicgoodsintwolevelgames. CambridgeReviewofInternationalAffairs , 21, 563583. Kuntner,M.,KraljFiser,S.,Schneider,J.M.&Li,D. 2009.Matepluggingvia genitalmutilationinnephilidspiders:anevolutionaryhypothesis. Journalof Zoology , 277, 257266. Kvarnemo, C. & Ahnesjö, I. 1996. The dynamics of operational sex ratios and competitionformates. TrendsinEcologyandEvolution , 11, 404408. Langmore, N. E. & Kilner, R. M. 2007. Breeding site and host selection by Horsfield's bronzecuckoos, Chalcites basalis. Animal Behaviour , 74, 995 1004. Lazarus,J. 1990.Thelogicofmatedesertion. AnimalBehaviour , 39, 672684. Legge,S. 1996.CooperativelionsescapethePrisoner'sDilemma. TrendsinEcology andEvolution , 11, 23. Lehmann, E. L. 1975. Nonparametrics. Statistical methods based on ranks. San Francisco:HoldenDay. Leisler, B., Winkler, H. & Wink, M. 2002. Evolution of breeding systems in acrocephalinewarblers. Auk , 119, 379390. Lessells,C.M. 1999.Sexualconflictinanimals.In: Levelsofselectioninevolution (Ed.byKeller,L.),pp.7599.Princeton,NJ:PrincetonUniversityPress. Lessells, C. M. 2006.Theevolutionaryoutcomeofsexualconflict. Philosophical TransactionsoftheRoyalSocietyLondonBBiologicalSciences , 361, 301 317. Lessells,C.M.&Parker,G.A. 1999.Parentoffspringconflict:thefullsibhalfsib fallacy. Proceedings of the Royal Society of London Series B , 266, 1637 1643. Liker,A. 1995.Monogamyinprecocialbirds:areview. OrnisHungaricae , 5, 114. Lin, Y. K., Keane, B., Isenhour, A. & Solomon, N. G. 2006. Effects of patch qualityondispersalandsocialorganizationofprairievoles:Anexperimental approach. JournalofMammalogy , 87, 446453. Linville,S.U.,Breitwisch,R.&Schilling,A.J. 1998.Plumagebrightnessasan indicatorofparentalcareinnortherncardinals. AnimalBehaviour , 55, 119 127. Luce, R. D. & Raiffa, H. 1957. Games and decisions: introduction and critical survey .NewYork:Wiley. Maan,M.E.&Taborsky,M. 2008.Sexualconflictoverbreedingsubstratecauses femaleexpulsionandoffspringlossinacichlidfish. BehavioralEcology , 19, 302308. MacColl, A. D. C. & Hatchwell, B. J. 2003. Heritability of parental effort in a passerinebird. Evolution , 57, 21912195. Maclean,R.C.&Brandon,C. 2008.Stablepublicgoodscooperationanddynamic socialinteractionsinyeast. JournalofEvolutionaryBiology , 21, 18361843. Madge,S.C. 2008.FamilyRemizidae(Pendulinetits).In: Handbookofthebirdsof the world (Ed. by del Hoyo, J., Elliott, A. & Christie, D. A.), pp. 5275. Barcelona:LynxEdicions.

145 Magellan,K.&Magurran,A.E. 2006.Habitatusemediatestheconflictofinterest betweenthesexes. AnimalBehaviour , 72, 7581. Magrath,M.J.L.&Komdeur,J. 2003.Ismalecarecompromisedbyadditional matingopportunity? TrendsinEcologyandEvolution , 18, 424429. Magrath,M.J.L.,Vedder,O.,vanderVelde,M.&Komdeur,J. 2009.Maternal effectscontributetothesuperiorperformanceofextrapairoffspring. Current Biology , 19, 792797. Mank, J. E. & Avise, J. C. 2006. The evolution of reproductive and genomic diversity in rayfinned fishes: insights from phylogeny and comparative analysis. JournalofFishBiology , 69, 127. Manser,M.B.,Madden,J.R.,Kunc,H. P., English, S. & CluttonBrock, T. 2008. Signals of need in a cooperatively breeding mammal with mobile offspring. AnimalBehaviour , 76, 18051813. Martin, O. Y. & Hosken, D. J. 2003. The evolution of reproductive isolation throughsexualconflict. Nature , 423, 979982. Maynard Smith, J. 1977. Parental investment: a prospective analysis. Animal Behaviour , 25, 19. MaynardSmith,J.&Price,G.R. 1973.Thelogicofanimalconflict. Nature , 246, 1518. Mayr,E. 1963. Animalspeciesandevolution. Cambridge:HarvardUniversityPress. McDonald,D.B. 2007.Predictingfatefromearlyconnectivityinasocialnetwork. ProceedingsoftheNationalAcademyofSciences(USA), 104, 1091010914. McGraw,L.,Székely,T.&Young,L.J. 2009.Pairbondsandparentalbehaviour. In: Social behaviour: genes, ecology and evolution (Ed. by Székely, T., Moore,A.J.&Komdeur,J.).Cambridge:CambridgeUniversityPress. McNamara, J. M., Barta, Z., Fromhage, L. & Houston, A. I. 2008. The coevolutionofchoosinessandcooperation. Nature , 451, 189192. McNamara, J. M., Barta, Z. & Houston, A. I. 2004. Variation in behaviour promotescooperationinthePrisoner'sDilemmagame. Nature , 428, 745748. McNamara,J.M.,Gasson,C.E.&Houston,A.I. 1999.Incorporatingrulesfor respondingintoevolutionarygames. Nature , 401, 368371. McNamara,J.M.&Houston,A.I. 2008.Optimalannualroutines:behaviourin the context of physiology and ecology. Philosophical Transactions of the RoyalSocietyofLondonB , 363, 301319. McNamara,J.M.,Houston,A.I.,Székely,T.&Webb,J.N. 2002.Doparents makeindependentdecisionsaboutdesertion? AnimalBehaviour , 64, 147149. McNamara,J.M.,Székely,T.,Webb,J.N.&Houston,A.I. 2000.Adynamic gametheoreticmodelofparentalcare. JournalofTheoreticalBiology , 205, 605623. McNamara,J.M.&Weissing,F.J. 2009.Evolutionarygametheory.In: Social behaviour:genes,ecologyandevolution. (Ed.bySzékely,T.,Moore,A.J.& Komdeur,J.).Cambridge:CambridgeUniversityPress. Mészáros,A.L.,Kajdocsi,S.,Szentirmai,I.,Komdeur,J.&Székely,T. 2006. Breedingsitefidelityinpendulinetit Remizpendulinus inSouthernHungary. EuropeanJournalofWildlifeResearch , 52, 3942. Milinski,M. 1987.TITFORTATinsticklebacksandtheevolutionofcooperation. Nature , 325, 433435. Mock, D. W. & Parker, G. A. 1997. The evolution of sibling rivalry . Oxford: OxfordUniversityPress. Møller,A.P.&Ninni,P. 1998.Spermcompetitionandsexualselection:ameta analysisofpaternitystudiesofbirds. BehavioralEcologyandSociobiology , 43, 345358.

146 Moreira,P.L.,Lopez,P.&Martin,J. 2006.Femoralsecretionsandcopulatory plugsconveychemicalinformationaboutmaleidentityanddominancestatus in Iberian rock lizards (Lacerta monticola). Behavioral Ecology and Sociobiology , 60, 166174. Mougeot, F. S. 2004. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Animal Behaviour , 67, 10671076. Nakagawa,S.,Gillespie,D.O.S.,Hatchwell,B.J.&Burke,T. 2007.Predictable malesandunpredictablefemales:sexdifferenceinrepeatability ofparental care in a wild bird population. Journal of Evolutionary Biology , 20, 1674 1681. Noë, R. 1990. A Veto game played by baboons: a challenge to the use of the Prisoner's Dilemma as a paradigm for reciprocity and cooperation. Animal Behaviour , 39, 7890. Noë,R. 2006.Cooperationexperiments:coordinationthroughcommunicationversus actingaparttogether. AnimalBehaviour , 71, 118. Nowak,M.A.&May,R.M. 1992.Evolutionarygamesandspatialchaos. Nature , 359, 826829. Ohtsuki, H. & Iwasa, Y. 2007. Global analyses of evolutionary dynamics and exhaustivesearchforsocialnormsthatmaintaincooperationby reputation. JournalofTheoreticalBiology , 244, 518531. Olson,V.A.,Liker,A.,Freckleton,R.P.&Székely,T. 2008.Parentalconflictin birds: comparative analyses of offspring development, ecology and mating opportunities. ProceedingsoftheRoyalSocietyofLondonSeriesB , 275, 301 307. Orians, G. H. 1969.Onthe evolutionofmatingsystemsinbirds and mammals. AmericanNaturalist , 103, 589603. Osorno, J. L. 1999. Offspring desertion in the Magnifcent Frigatebird: are males facingatradeoffbetweencurrentandfuturereproduction? JournalofAvian Biology , 30, 335341. Öst, M., Clark, C. W., Kilpi, M. & Ydenberg, R. 2007. Parental effort and reproductive skew in coalitions of brood rearing female common eiders. AmericanNaturalist , 169, 7386. Owens,I.P.F. 2002.Maleonlycareandclassicalpolyandryinbirds:phylogeny, ecology and sex differences in remating opportunities. Philosophical TransactionsoftheRoyalSocietyLondonBBiologicalSciences , 357, 283 293. Parker,G.A. 1979.Sexualselectionandsexualconflict.In: Sexualselectionand reproductivecompetitionininsects (Ed.byBlum,M.S.&Blum,N.A.),pp. 123166.NewYork:AcademicPress. Parker, G. A., Royle, N. J. & Hartley, I. R. 2002. Intrafamilial conflict and parental investment: a synthesis. Philosophical Transactions of the Royal SocietyLondonBBiologicalSciences , 357, 295307. Pennisi,E. 2005.Howdidcooperativebehaviorevolve?Science , 309, 93. PérezBarbería, F. J., Gordon, I. J. & Pagel, M. 2002. The origins of sexual dimorphisminbodysizeinungulates. Evolution , 56, 12761285. Persson, O. & Öhrström, P. 1989. A new avian mating system: ambisexual polygamy in the Penduline Tit Remiz pendulinus . Ornis Scandinavica , 20, 105111. Pilastro,A.,Biddau,L.,Marin,G.&Mingozzi,T. 2001.Femalebrooddesertion increases with number of available mates in the Rock Sparro. Journal of AvianBiology , 32, 6872.

147 Pizzari,T.&Bonduriansky,R. 2009.Sexualbehaviour:conflict,cooperationand coevolution. In: Social behaviour: genes, ecology and evolution (Ed. by Székely,T.,Moore,A.J.&Komdeur,J.).Cambridge:CambridgeUniversity Press. Pogány, Á. & Székely, T. 2007. Female choice in the penduline tit Remiz pendulinus :theeffectsofnestsizeandmalemasksize. Behaviour , 144, 411 427. Pogány,Á.,Szentirmai,I.,Komdeur,J.&Székely,T. 2008.Sexualconflictand consistencyofoffspringdesertioninEurasianpendulinetit Remizpendulinus . BMCEvolutionaryBiology , 8, 242. Price, T. 2008. Speciation in birds . Greenwood Village, Colorado, USA: Roberts andCompanyPublishers. Queller, D. C. 1997. Why do females care more than males? Proceedings of the RoyalSocietyofLondonB , 264, 15551557. Reynolds,J.D. 1996.Animalbreedingsystems. TrendsinEcology&Evolution , 11, A68A72. Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. 2002. Evolutionary transitions in parental care and live bearing in vertebrates. Philosophical TransactionsoftheRoyalSocietyofLondonB , 357, 269281. Robinson, G. E., Grozinger, C. M. & Whitfield, C. W. 2005. Sociogenomics: Sociallifeinmolecularterms. NatureReviewsGenetics , 6, 257U16. Rowe, L., Ludwig, D. & Schluter, D. 1994. Time, condition, and the seasonal declineofavianclutchsize. AmericanNaturalist , 143, 698772. Royle,N.J.,Hartley,I.R.&Parker,G.A. 2002.Sexualconflictreducesoffspring fitnessinzebrafinches. Nature , 416, 733736. Schleicher,B.,Hoi,H.,Valera, F.&HoiLeitner, M. 1997. The importance of different paternity guards in the polygynandrous penduline tit ( Remiz pendulinus ). Behaviour , 134, 941959. Schönfeld, M. 1989. Beitraege zur biologie der beutelmeise, Remiz pendulinus . Apus , 7, 4987. Schönfeld, M. 1994. Die Beutelmeise. : Die Neue Brehm Bücherei, Westarp Wissenschaften,Magdeburg. Schroth,M.&Helbig,A. 1985.DieBeutelmeise( Remizpendulinus ),Brutvogelin derUntermainebene. VogelundUmwelt , 3, 339343. Schwagmeyer,P.L.,Mock,D.W.&Parker,G.A. 2002.Biparentalcareinhouse sparrows:negotiationorsealedbid? BehavioralEcology , 13, 713721. Schwanck, E. & Rana, K. 1991. Malefemale parental roles in Sarotherodon galilaeus (Pisces:Cichlidae). Ethology , 89, 229243. Selten,R. 1983.Evolutionarystabilityinextensivetwopersongames. Mathematical SocialSciences , 5, 269363. Sharp,S.P.,Simeoni,M.&Hatchwell,B.J. 2008.Dispersalofsiblingcoalitions promotes helping among immigrants in a cooperatively breeding bird. ProceedingsoftheRoyalSocietyBBiologicalSciences, 275, 21252130. Sheldon, B. C. 2000. Differential allocation: tests, mechanisms and implications. TrendsinEcologyandEvolution , 15, 397402. Sheldon,B.C. 2002.Relatingpaternitytopaternalcare. PhilosophicalTransactions oftheRoyalSocietyLondonBBiologicalSciences , 357, 341350. Sibley,C.G.&Ahlquist,J.E. 1995. Phylogenyandclassificationofbirdsastudy inmolecularevolution .NewHaven&London:YaleUniversityPress. Smith, H. G. & Härdling, R. 2000. Clutch size evolution under sexual conflict enhancesthestabilityofmatingsystems. ProceedingsoftheRoyalSocietyof LondonSeriesB , 267, 21632170.

148 Smith,H.G.&Sandell,M.I. 2005.Thestarlingmatingsystemasanoutcomeof thesexualconflict. EvolutionaryEcology , 19, 151165. Sokal,R.R.&Rohlf,F.J. 1995. Biometry:theprinciplesandpracticeofstatistics inbiologicalresearch .NewYork:Freeman. Steinegger, M. & Taborsky, B. 2007. Asymmetric sexual conflict over parental careinabiparentalcichlid. BehavioralEcologyandSociobiology , 61, 933 941. Stevens,J.R.&Hauser,M.D. 2004.Whybenice?Psychologicalconstraintson theevolutionofcooperation. TrendsinCognitiveSciences , 8, 6065. Stutt,A.D.&SivaJothy,M.T. 2001.Traumaticinseminationandsexualconflict inthebedbug Cimex lectularius . ProceedingsoftheNationalAcademyof Sciences(USA) , 98, 56835687. Székely,T.,Cuthill,I.C.&Kis,J. 1999.BrooddesertioninKentishplover:sex differencesinrematingopportunities. BehavioralEcology , 10, 185190. Székely, T. & Lessells, C. M. 1993.MatechangebyKentishplovers Charadrius alexandrinus . OrnisScandinavica , 24, 317322. Székely,T.,Lislevand,T.&Figuerola,J. 2007.Sexualsizedimorphisminbirds. In: Sex, size, and gender roles. Evolutionary studies of sexual size dimorphism. (Ed.byFairbairn,D.J.,Blanckenhorn,W.U.&Székely, T.), pp.2737.NewYork:OxfordUniversityPressInc. Székely,T.,Thomas,G.H.&Cuthill,I.C. 2006.Sexualconflict,ecology,and breedingsystemsinshorebirds. Bioscience , 56, 801808. Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. 1996. An evolutionary approach to offspring desertion in birds. In: Current Ornithology (Ed.byNolan,V.J.&Ketterson,E.D.),pp.271330:Plenum Press. Szentirmai,I. 2005.SexualconflictinPendulineTit Remizpendulinus. PhDthesis. In: DepartmentofEthology .Budapest(Hungary):EötvösLorándUniversity. Szentirmai,I.,Komdeur,J.&Székely,T. 2005a.Whatmakesanestbuildingmale successful? Male behaviour and female care in penduline tits. Behavioral Ecology , 16, 9941000. Szentirmai, I., Székely, T. & Komdeur, J. 2007. Sexual conflict over care: antagonisticeffectsofclutchdesertiononreproductivesuccessofmaleand femalependulinetits. JournalofEvolutionaryBiology , 20, 17391744. Szentirmai,I.,Székely,T.&Liker,A. 2005b.Theinfluenceofnestsizeonheat loss of Penduline Tit eggs. Acta Zoologica Academiae Scientiarum Hungaricae , 51, 5966. Tallamy, D. W. 2001. Evolution of exclusive paternal care in arthopods. Annual ReviewofEntomology , 46, 139165. Thomas,G.H.&Székely,T. 2005.Evolutionarypathwaysinshorebirdbreeding systems: Sexual conflict, parental care, and chick development. Evolution , 59, 22222230. Thomas, G. H., Székely, T. & Reynolds, J. D. 2007. Sexual conflict and the evolution of breeding systems in shorebirds. Advances in the Study of Behaviour . Tremblay,I.,Thomas,D.W.,Lambrechts,M.M.,Blondel,J.&Perret,P. 2003. Variation in Blue tit breeding performance across gradients in habitat richness. Ecology , 84, 30333043. Trivers,R.L. 1972.Parentalinvestmentandsexualselection.In: SexualSelection andtheDescentofMan (Ed.byCampbell,B.),pp.136179.Chicago:Aldine Press. Trivers,R.L. 1974.Parentoffspringconflict. AmericanNaturalist , 14, 249264.

149 Trivers,R.L.&Willard,D.E. 1973.Naturalselectionofparentalabilitytovary thesexratioofoffspring. Science , 179, 9092. Vahl, W. K. 2006. Interference competition among foraging waders. PhD thesis. Groningen,TheNetherlands:UniversityofGroningen. Valera, F., Hoi, H. & Schleicher, B. 1997. Egg burial in penduline tits, Remiz pendulinus: Its role in mate desertion and female polyandry. Behavioral Ecology , 8, 2027. vandenBerg,A.B.&Bosman,C.A.W. 1999. ZeldzamevogelsvanNederland, AvifaunavanNederland1 .Haarlem:GMBuitgeverij. Verner,J. 1964.Evolutionofpolygamyinthelongbilledmarshwren. Evolution , 18, 252261. Verner,J.&Wilson,M.F. 1966.Theinfluenceofhabitatsonmatingsystemsof NorthAmericanpasserinebirds. Ecology , 47, 143147. Voelkl, B. & Kasper, C. 2009. Social structure of primate interaction networks facilitates the emergence of cooperation. Biology Letters , doi:10.1098/rsbl.2009.0204. Webb, J. N., Houston, A. I., McNamara, J. M. & Székely, T. 1999. Multiple patternsofparentalcare. AnimalBehaviour , 58, 983993. Webb,J.N.,Székely,T.,Houston,A.I.&McNamara,J.M. 2002.Atheoretical analysisoftheenergeticcostsandconsequencesofparentalcaredecisions. Philosophical Transactions of the Royal Society London B Biological Sciences , 357, 331340. Webster, M. S. 1991. Male parental care and polygyny in birds. American Naturalist , 137, 274280. Wenseleers, T., Gardner, A. & Foster, K. R. 2009. Social evolution theory: a reviewofmethodsandapproaches.In: Socialbehaviour:genes,ecologyand evolution (Ed. by Székely, T., Moore, A. J. & Komdeur, J.). Cambridge: CambridgeUniversityPress. West, S. A., Gardner, A., Shuker, D. M., Reynolds, T., BurtonChellow, M., Sykes,E.M.,Guinnee,M.A.&Griffin,A.S. 2006.Cooperationandthe scaleofcompetitioninhumans. CurrentBiology , 16, 11031106. West, S. A., Griffin, A. S. & Gardner, A. 2007. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of EvolutionaryBiology , 20, 415432. Westneat, D. F. & Stewart, I. R. K. 2003. Extrapair paternity in birds: causes, correlates,andconflict. AnnualReviewofEcologyandSystematics , 34, 365 396. Widen,P.&Richardson,M. 2000.CopulationbehaviourintheOspreyinrelation tobreedingdensity. Condor , 102, 349354. Wiklund, C. & Forsberg, J. 1991.Sexualsizedimorphisminrelationtofemale polygamy and protandry in butterflies: a comparative study of Swedish PieridaeandSatyridae. Oikos , 60, 373381. Wiklund,C.,Karlsson,B.&Leimar,O. 2001.Sexualconflictandcooperationin butterflyreproduction:acomparativestudyofpolyandryandfemalefitness. Proceedings of the Royal Society of London Series BBiological Sciences , 268, 16611667. Wilkinson,G.S.&Birge,L.M. 2009.Socialbehaviourandspeciation.In: Social behaviour:genes,ecologyandevolution (Ed.bySzékely,T.,Moore,A.J.& Komdeur,J.).Cambridge:CambridgeUniversityPress. Wilson, A. B., Vincent, A., Ahnesjö, I. & Meyer, A. 2001. Male pregnancy in seahorses and pipefish (Family Syngnathidae): Rapid diversification of

150 paternal brood pouch morphology inferred from a molecular phylogeny. JournalofHeredity , 92, 159166. Wisenden, B. D. 1994. Factors affecting mate desertion by males in freeranging convict cichlids ( Cichlasoma nigrofasciatum ). Behavioral Ecology , 5, 439 447. Wolf, L., Ketterson, E. D. & Nolan, V. J. 1991. Female condition and delayed benefitstomalesthatprovideparentalcare:aremovalstudy. Auk , 108, 371 380. Wysocki,D. 2004.WithinseasondivorcerateinanurbanpopulationofEuropean Blackbird Turdusmerula . Ardea , 92, 219227. Young,L.J.&Insel,T.R. 2002.Hormonesandparentalbehavior.In: Behavioral endocrinology (Ed. by Becker, J. B., Breedlove, S. M., Crews, D. & McCarthy,M.M.).Cambridge,MA:MITPress.

151 APPENDIX I OFFSPRING SEX RATIO IN THE SEQUENTIALLY POLYGAMOUSPENDULINETIT REMIZPENDULINUS RenéE.vanDijk,JanKomdeur,MarcovanderVelde,IstvánSzentirmai, XutongYang,RichardffrenchConstant&TamásSzékely JournalofOrnithology(2008)149:521527 Authors’contributions REvD :studydesign,datacollection,statisticalanalyses,manuscriptpreparation JK :manuscriptimprovement MvdV :molecularsexing,manuscriptimprovement IS :datacollection,manuscriptimprovement XY :molecularsexing RfC :molecularsexing,manuscriptimprovement TS :studydesign,manuscriptimprovement

152 ABSTRACT Despite the growing literature on facultative sexratio adjustment in chromosomal sexdeterminingvertebratetaxa(birds,mammals),theconsistencyofresultsisoften low between studies and species. Here, we investigate the primary and secondary offspring sex ratio of a small passerine bird, the Eurasian penduline tit (Remiz pendulinus )inthreeconsecutiveyears.Thisspecieshasauniquelydiversebreeding system,inwhichthemale(and/orthefemale)abandonsthenestduringegglaying, and starts a new breeding attempt. This allowed us to test (i) whether patterns of parentalcare,i.e. maleonlycare,femaleonlycareorbiparentaldesertion,influence offspring sex ratio, and (ii) whether the offspring sex ratio is repeatable between successive clutches of males and females. Using molecular markers to sex 497 offspringin176broods,weshowthat(i)offspring sex ratio does not depend on whichparentprovidescare,and(ii)theoffspringsexratioisnotrepeatablebetween clutchesofagivenindividual.Theoverallprimaryandsecondaryoffspringsexratio atapopulationlevelisnotdifferentfromparity(54±6%males,and50±3%(mean ±SE),respectively).Wesuggestthatecologicalandphenotypicfactors,ratherthan individualtraitsofparents,mayinfluenceoffspring’ssex,andconcludethatthereis currently no evidence for a facultative adjustment of offspring sex ratio in the pendulinetit.

153 INTRODUCTION Fisher’s (1930) frequencydependent model of sex allocation predicts that natural selectionwillmaintainanevenpopulationsexratioaslongasthecostofproducinga maleisequaltothatofproducingafemale.However,theoptimaloffspringsexratio ofanindividualparentmaydeviatefromparityduetoavarietyoffactorsresultingin arelativefitnessdifferencebetweensonsanddaughters(TriversandWillard1973; HasselquistandKempenaers2002;KomdeurandPen2002;Westetal.2002).The recent advent of molecular sexing techniques has contributed significantly to the questionwhethermothersshouldbiasthesexratiooftheiroffspring.Incontrastto previous work (Charnov 1982; CluttonBrock 1986), recent studies suggest that animals with chromosomal sex determination, such as birds and mammals, are indeed able to facultatively adjust the primary sex ratio of their offspring in an adaptivemanner(KomdeurandPen2002;HasselquistandKempenaers2002;West etal.2002;WestandSheldon2002).Forexample,femalesmaybiasthesexratioof theiroffspringinresponsetotheattractivenessofthefather(Kempenaersetal.1997; Sheldonetal.1999),thetimingofbreeding(Daanetal.1996;Badyaevetal.2003; Székely et al. 2004), levels of parental care (CluttonBrock 1991), and to biased populationsexratiosleadingtomoreintensecompetitionformatesamongonesex (Hamilton1967).However,despiteseveralstudiesreportingbiasesinoffspringsex ratio,othersfailedtofinddeviationsfromparity(e.g. Sainoetal.1999;Grindstaffet al.2001;reviewedinKomdeurandPen2002).Thisunderlinestheneedforfurther studies including those reporting nonsignificant effects as well as significant findings to avoid publication bias (FestaBianchet 1996; Cockburn et al. 2002; HasselquistandKempenaers2002). Griffin et al. (2005) argue that across species the selection on sexratio adjustment may be variable due to differences in breeding system, sexual dimorphism, and lifehistories, and as such cause biological variation in sexratio adjustment, whereas within species such variability in selection is less straightforward. Studies investigating the repeatability of facultative sex ratio adjustment in the same species between years, and for the same individuals are scarce, yet crucial to determine with confidence the frequency of sexratio modificationinspecifictaxa(Palmer2000;Ewenetal.2004;Casseyetal.2006; Korstenetal.2006). Here we investigate sex allocation in Eurasian penduline tit ( Remiz pendulinus ) in three consecutive breeding seasons. The penduline tit is a small

154 passerine(bodymassabout9g)withmodestsexualdimorphism:adultmaleshave brighterplumageandlargereyestripesthanfemales(Crampetal.1993;Glutzvon BlotzheimandBauer1993;Kingmaetal.2008).Pendulinetitshavehighlydiverse breedingstrategiesthatinvolvesequentialpolygamybybothsexes,anduniparental incubation and subsequent brood care by either the male (520% of nests) or the female(5070%ofnests).Anunusualfeatureofpendulinetitbreedingbiologyisthe highfrequencyofnestdesertionbybothparents(approximately 30% of clutches) doomingtheseeggstofailure(Franz1988;PerssonandÖhrström1989;Szentirmai etal.2007).Sincedesertiontakesplaceduringegglaying,clutchescaredforbythe maleandclutchesdesertedbybothparentsareusuallysmaller(3.4±1.3eggs(mean ±SD))thanclutchescaredforbythefemale(5.9±1.3eggs),sincethefemalemay layafewmoreeggsafterhermatehasdeserted(Franz1991;PerssonandÖhrström 1989). The breeding system of penduline tits allowed us to address three major objectives.Firstly,wetestedwhetheroffspringsexratiodependsonwhichparent providescare,bycomparingoffspringsexratiosof maleonly cared clutches with those in femaleonly cared and biparentally deserted clutches. The sex of the offspringmayvarywithlayingorderinseveralbirds( e.g. Kilner1998,Komdeuret al.2002,Cichońetal.2003),andgiventhatdesertiontakesplaceduringegglaying inpendulinetits,thismayleadtoadifferentsexratioinmaleonlycaredandfemale onlycaredclutches.Sincetheproportionofsonshasbeenreportedtoincreasewith laying order (Kilner 1998, Krebs et al. 2002), we expected femaleonly cared clutches to be more malebiased than maleonly cared clutches in penduline tits, sincefemalesusuallylay23moreeggsafterthemaledeserted. Secondly,weexpectedrepeatablesexallocationbetweensuccessivenestsof a given individual if individual characteristics, such as attractiveness or parental abilities,influencetheoffspring’ssex,andisindependentofthequalityofthemate, territoryandseason(butseeOddieandReim2002).Toinvestigatehowvariationin brood sex ratio may depend on individual characteristics, we calculated the repeatability of offspring sex ratio of individual males and females that produced severalbroodsinagivenseason. Thirdly, we tested whether offspring sex ratio deviated from unity at the populationlevelandwhetherthedistributionofsons was different from binomial distribution.Therationalebehindthelatterwasthatevenifoffspringsexratioisnot different from unity at population level, some females may produce largely sons

155 whereasotherslargelydaughters,anddeviationoftheseextremephenotypesmaybe differentfromthebinomialexpectation(e.g. RadfordandBlakey2000,Westneatet al.2002,DietrichBischoffetal.2006). METHODS Fieldwork WestudiedthependulinetitsatanextensivesystemoffishpondsnearSzegedin southern Hungary (46°19’N, 20°5’E) where they breed along the dikes which separate the ponds. Fieldwork was carried out between April and August 2002 – 2004. A total of 214, 183, and 178 nests was found in 2002, 2003, and 2004, respectively.Malesstartbuildingtheirnestandsingtoattractafemale,althoughit takes8.9±7.0daysforamaletofindamate( n=111males).Ofallnests52%was abandoned either before pair formation had taken place (i.e. the male was unsuccessful in attracting a female (37%)), or the nest was abandoned due to disturbancebyhumans,heavywindsorpredation(12%),oranewownerovertook thenest(4%)).Wesearchedthestudysitetoidentifyunpaired,nestbuildingmales, andthenvisitedthemaleseveryotherdaytomonitortheirstatusbyobservingthem foratleast15minutes(seedetailsinBleekeretal.2005,VanDijketal.2007). We collected the following data at each nest: (i) Nest initiation date. The exact date of initiation could be determined for nests found when only a small amountofnestmaterialiswovenaroundatwig(categorizedasstageA,seefig.Bon p.385inCrampetal.1993).Initiationdatesfornestsfoundinlaterstages(stagesB E;seefig.CIonpp.386387inCrampetal.1993)wereestimatedbycomparison with the progress of nests that had been followed continuously since stage A (Szentirmaietal.2005).(ii)Dateofpairformation.Amalewasconsideredpairedif hewasseencopulatingwithafemalenearthenest,orthepairwasobservedbuilding the nest together. (iii) Sex of attendant parent. We identified which parent was attending the nest at each stage of the nesting cycle (nest building, egglaying, incubation,nestlingperiod).Aparentwasconsideredtohavedesertedthenestifit hadnotbeenseenduringatleasttwoconsecutivenest checks. Birds classified as ‘deserted’wereneverseenatthenestsubsequently.(iv)Startofincubation.Thiswas determinedbyobservingthebehaviouroftheparent:incubatingparentsstayinside thenestforlongercontinuousperiodsthennestbuildingbirds. Adultswereindividuallymarkedusingauniquecombinationofthreecolour rings, and one numbered metal ring from the Hungarian Ornithological Institute.

156 Returningratesofadultsarelowacrossyears:outof195colourringedmalesfrom 2002 and 2003, only 13 males were resighted in one or both subsequent years. Similarly for females: out of 87 colourringed females, only 8 were resighted. A smallbloodsample(about10l)wastakenfromadultsand10dayoldnestlingsby puncturingtheirbrachialvein.Unhatchedeggsinallclutchesincludingtheincubated oneswerecheckedforthepresenceofanembryo.Clutchesdesertedbybothparents weretakentothelaboratoryandincubatedindoorsusinganincubatorsetat37.5°C. Eggswereopenedafterbeingincubatedforfivedaysandanyvisibleembryoswere placedinanEppendorftube. Molecularsexing FornestlingsDNAextractionwascarriedoutusingtheGenomicPrep BloodDNA Isolation Kit (Amersham Biosciences Corp. USA). DNA from eggsamples was extractedusingtheChelexmethod(Walshetal.1991).Thesexoftheoffspringwas determined by DNA amplification using P2 and P8 primers for PCR under the reaction conditions given in Griffiths et al. (1998). We blindly repeated the molecularsexingof26nestlingand14eggsampleschosenatrandom:allmatched thesexassignedbythefirsttest.UsingDNAcollectedin2005wealsocomparedthe molecularsexingof22adults(14males,8females)withthesexingdoneinthefield basedonplumageandbehaviouralcharacteristics.Alladultsweresexedconsistently withourfieldobservations. Statisticalanalyses We investigated repeatability of offspring sex ratios for males and females using bootstrapping,sinceparametricestimation(LessellsandBoag1987;Harper1994) wasnotfeasiblegiventhattheproportionofsonswasnotnormallydistributedand the variances were heteroscedastic. We calculated the withinyear repeatability of offspringsexratiobychoosingmales(orfemales)thathadmultiplenestsinagiven season.Weonlyincludewithinyearrepeatabilitiesandnotbetweenyears,because returningratesarelow(seeabove).First,wecalculatedtheabsolutemeandifference intheproportionofsonsbetweenallnestsofagivenparent,andtookthemeanof these individual means (δ test statistic). Second, the sex of the offspring was randomised 10 4timesbykeepingtheoriginaldatastructure.Ateach iteration we calculatedδasforrealdata.Third,wecalculatedtheproportionofcasesinwhichthe randomised values were less than the test δ. We report the test statistic and the

157 probabilityoffindingavaluesmallerthanorequaltothetestδ.Randomizationwas carriedoutbyResamplingStats™forExcelversion3.2(2006). Allanalyseswerecarriedoutusingthreesetsofdata.First,weusedthefull dataset that included all nestlings and unhatched eggs. Second, we repeated the analysesseparatelyafterdividingthedatasetintoeggsandnestlings.Weprovidethe results of both given the interest in primary (eggs) and secondary (nestlings) sex ratios.Third,weinvestigatedtheinfluenceofwhichparent,male,femaleornone, providedparentalcareonoffspringsexratio.Ifseveralnestswereavailableforan individually marked male or female, we selected one nest randomly to avoid pseudoreplication, under the conditionthat maleonly cared nests were selected in priority to femaleonly orbiparentally deserted nestsduetothelimitednumberof maleonly cared nests (12.4% of nests). At 42 of randomly selected nests of individually marked males the female was unringed. At18ofthesenestsmultiple femalesbredatthesametimesotheseclutcheswereproducedbydifferentfemales. Fortheremaining24nestswherethefemalewasunringedpseudoreplicationcannot be excluded, although we suspect it is small given (i) the size of our breeding population(seeabove),(ii)thefactthatoffspringsexratioisnotrepeatablebetween nestsofgivenindividuals(seeResults),and(iii)matefidelityislowandremating betweenadultbreedersisextremelyrare. We used generalised linear mixed models (GLMMs) with binomial error distributionandalogitlinkfunctiontotesttheinfluenceofparentalsexonoffspring sexratioofindividualeggsandnestlingsnestedwithinabroodusingR(2005).The GLMM used the sex of each egg or nestling as the unit of analysis, the type of parental care (maleonly, femaleonly or biparental desertion) as the explanatory variable,andbroodIDasarandomfactor.Thedispersionparameterwassetto1.0. Date of pair formation and year were also included in the model to test for an influenceofseasonoryearontheeffectofparentalcaretype.Toassesstheinfluence ofparentalcareweusedtheWaldstatistic,whichhasanapproximatelychisquare distribution.WeconsideredusingparentIDasarandomfactorintheanalyses,but rejectedthisideabecauseformanybroodstheparentswerenotringed(in47%of 176broodsthemaleID,femaleIDorbothwereunknown).Morefemalesthanmales were unringed, and unringed females were especially common in maleonly cared and biparentally deserted nests, since females were usually trapped during incubation.

158 At the population level, we tested whether the proportion of sons deviates from0.5usingaonesampleWilcoxonsignedrankstestinMINITAB ®release12.2 (1998). To test whether the offspring sex ratio deviates from the binomial distribution(SokalandRohlf1995),wecalculatedthenumberofmalesforallnests with equal number of sexed eggs and/or chicks and compared the observed frequencieswiththeexpectedonesusingaχ2test.Nestswithbetweentwoandsix sexedeggsand/orchickswereincludedinthelatteranalysis Dataarerepresentedasmeans±SE,andweprovidetwotailedprobabilities. Statisticalsignificancewasjudgedatthe0.05level. RESULTS The attendant father was identified at 95 out of a total of 176 nests sampled for offspringsexdetermination.Theattendantmotherwasknownat85outofthe176 nests.Ofthoseknownmales41producedseveralbroodswithinayear(mean:2.41, range: 25 broods), compared with 19 individually marked females (mean: 2.21, range: 24 broods). We sampled 64 nests in 2002 (a total of 24 eggs and 152 nestlings),55nestsin2003(37eggsand104nestlings),and57nestsin2004(36 eggsand144nestlings);intotal497offspring(97eggsand400nestlings)in176 nests.Theseincludedbothpartialandcompleteclutches and broods (Fiala 1980). For57nestsonlyeggswereanalyzed,ofwhich8completeand49partialclutches. For 115 nests only nestlings were analyzed, of which 88 complete and 27 partial broods.For4nestsbotheggsandnestlingswereanalyzed.Ofeachofthesenestsa subsampleofthefullclutchorbroodwasincludedintheanalyses. Offspringsexratioandparentalcare Outof169nests21(12.4%)werecaredforbythemale,103(60.9%)bythefemale, and45(26.6%)nestsweredesertedbybothparents.Atsevenneststhesexofthe attendantparentwasnotknown.Offspringsexratiodidnotdifferbetweenmaleonly care,femaleonlycareandbiparentallydesertednests,whenbotheggsandnestlings wereincludedintheanalyses,(51±7%,42±4%,50±10%,respectively;χ2=2.04,d.f. =2, P=0.36, n=247offspringin90broods).Thisresultremainedconsistentwhen theanalysiswasrestrictedtonestlings,thereby,perdefinition,excludingbiparentally desertednests:56±7%,43±4%,respectively;χ2=1.11,d.f.=1, P=0.29, n=202 offspringin62broods.Wedidnotfindaneffectofyearordateofpairformation whenthesewereincorporatedintothemodel( P>0.31).

159 Repeatability Theproportionofsonswasnotdifferentfromrandombetweennestsofagivenmale (51±4%;δ=0.35, P=0.14, n=37males),orofagivenfemale(40±6%;δ=0.45, P =0.76, n=15females;nestsincludebotheggsandnestlings).Giventhattherewas noeffectofparentalcareonoffspringsexratio(seeabove),wedidnotcontrolfora potential effect of parental care on repeatability.Samplesizesdidnotallowusto analyseeggsandnestlingsseparately. Offspringsexratio 252outof497offspring(51%,poolingunhatchedeggsandnestlings),weremale.Of the97unhatchedeggs52%wasmale,comparedto51%of400nestlings;therefore, theoverallsexratiosdidnotdifferfromparity(TableI.1a).Thelatterresultsstand when the analysis was restricted to the average proportion of sons of individually markedmales(TableI.1b)orfemales(TableI.1c),suggestingthatpseudoreplication unlikelyinfluencedtheresults. Offspringsexratioswerenotdifferentfrombinomialdistribution(broodsize =2, n =38nests, P= 0.623;broodsize=3, n =33, P= 0.424;broodsize=4, n = 32, P= 0.849;broodsize=5, n =15, P= 0.753;broodsize=6, n =11, P= 0.794). DISCUSSION Offspringsexratiointhependulinetitdoesnotdependonwhichparentprovides brood care, is not repeatable between broods of individual males or females, and doesnotdeviatefromparityconsideringthepopulationasawhole.Italsodoesnot deviatefromthebinomialdistribution,whichsuggeststhatthereisnobiaswithin broods towards male or femaleonly offspring. Palmer (2000) and Ewen et al. (2004)criticisethereporteddeviationsfroma1:1primarysexratioandtheevidence that birds are able to modify their sex ratio in an adaptive manner (but see: Hasselquist and Kempenaers 2002). However, Cassey et al. (2006) argue that an overalltrendinfacultativeadjustmentofoffspringsexratioisweakbutsignificant usingthesamedataasEwenetal.(2004).Severalexamplesofadaptiveoffspring sexratio adjustment in birds have been reported (e.g . kestrel Falco tinnunculus , Dijkstraetal.1990;Seychelleswarbler Acrocephalussechellensis ,Komdeuretal. 1997;bluetit Cyanistescaeruleus ,Sheldonetal.1999,Korstenetal.2006).Since these taxonomically diverse bird species appear to adjust offspring sex ratios, it

160 Table I.1 PercentageofsonsinEurasianpendulinetitsinallsamples(a),andthepercentageofsons ofindividuallymarkedmales(b),andofindividuallymarkedfemales(c). (a) %ofsons za P n(nests) (mean±SE) Eggsonly 54±6 950.5 0.46 61 Nestlingsonly 50±3 1979.5 0.93 119 Eggs&Nestlings 52±3 5311.0 0.44 176 (b) %ofsons za P n (males) (mean±SE) Eggsonly 45±8 156.0 0.63 29 Nestlingsonly 47±3 365.5 0.40 62 Eggs&Nestlings 46±4 985.5 0.34 91 (c) %ofsons za P n(females) (mean±SE) Eggsonly 38±12 37.0 0.35 14 Nestlingsonly 53±3 990.5 0.30 73 Eggs&Nestlings 51±3 1240.5 0.68 85 aTeststatisticofWilcoxononesampletestsusing50%astestmedian.Sexratiopernestisusedas datum. seemsunlikelythatpendulinetitsaregeneticallyorphysiologicallyunabletodoso. However,Griffinetal.(2005)suggestedthatvariationintheoccurrenceofsexratio adjustment might be explained by the strength of selection for such adjustment, which differs across species. In the penduline tit there may not be a clear fitness benefitofoffspringsexratioadjustment.Thereisnoclearsexualsizedimorphism andthusthecostsofraisingmaleoffspringisunlikelytobeverydifferentfromthat ofraisingfemaleoffspring.Furthermore,notonlymalesbutalsofemalesmayobtain several mates within a given season (Szentirmai et al. 2007). So the reproductive successofmaleandfemaleparentnotonlyincreaseswiththenumberoffemales their sons will mate with, but also with the rate of polygamy of their daughters. Similarly,ifattractivenesswouldbeheritable,thismayinvolveafitnessadvantage

161 forbothmaleandfemaleoffspring.Selectionforadjustmentofoffspringsexratio maythereforebeweakinthisspecies. Ourstudyalsoshowsthat,usingdatafromthreeyearsthereiscurrentlyno evidencefora facultativeadjustmentofoffspring sex ratio in penduline tits. This meansthatevenifundercertainconditionstheremaybeabiasinoffspringsexratio, thefrequencyandrobustnessofsuchabiasinthisspeciesislikelytobelow.This mayhaveimplicationsforthewaywestudysexallocationinvertebrates:inorderto understand the evolution of adaptive sexratio modification, an unbiased literature withrepeatedstudies,betweenyearsandwithinyearsbetweengivenindividuals,is of primary importance. In this study we show that the offspring sex ratio in successivebroodsofagivenindividualmaleorfemaleisnotrepeatable,andthatthe distributionofmalesandfemaleswithinbroodsisnot different from thebinomial distribution.Thesenotionssuggestthatoverallindividualqualityorindividualtraits such as plumage colouration or condition, may not play an important role in the determination of an offspring’s sex. This is in line with most previous studies investigatingrepeatabilityofsexratiowithinyears(e.g . Leechetal.2001;Westneat etal.2002;DietrichBischoffetal.2006),althoughalsoherecontrastingresultshave beenreported(seeforinstanceWhittinghametal.2005).Theselectiontoproduce more sons when mated to an attractive male, for instance, may be weak and counteracted by increased costs of producing attractive males or costs of manipulation itself (Fawcett et al. 2006). Rather, ecological factors such as temperature (Badyaev et al. 2003), territory quality and/or breeding opportunities maybeparamount(Komdeuretal.1997;HipkissandHornfeldt2004).Forthelatter, comparing different populations of penduline tit may provide new insight, as at differentsitesacrossEurasiahabitatqualityand,inparticular,breedingopportunities arelikelytovarywidely(D.M.Brinkhuizen,R.E.vanDijk,T.Székely,J.Komdeur. unpublisheddata).Recently,Griffinetal.(2005)showedthatcooperativebreeding speciesingeneraladaptivelybiasedsexratiostowardsthehelpingsex,dependingon thebenefitsthatcanbegainedfromhavinghelpersaround.Tobuildonthepresent study,itwouldbeofparticularinteresttoinvestigatesexratiosinCapependulinetit Anthoscopusminutus .Thisspeciesis assumedtobecloselyrelatedtotheEurasian pendulinetit, yetexhibitsfacultativecooperativebreeding(Dean2005)–insharp contrasttothebreedingsystemofthespeciesinvestigatedinthepresentstudy.This mayshedfurtherlightonthelinkbetweentheevolutionofsexratioadjustmentand cooperation(Griffinetal.2005).

162 ACKNOWLEDGEMENTS We would like to thank the people that assisted in the field work: Maarten Bleeker, Dušan Brinkhuizen,KennethHayes,PéterHorváth,ArnowaKang’eri,SjoukeKingma,OtíliaMenyhártand LídiaMészáros.WealsoacknowledgeKiskunságNationalParkandSzegedfishLtd.forpermissionto carryoutourfieldworkatFehértó.ThemanuscriptbenefitedfromcommentsonearlierdraftsbyTim Fawcett, Thomas Friedl, and one anonymous reviewer. The research leading to these results has received funding from the European Community’s Sixth Framework Programme (FP6/20022006) undercontractn.28696. FurtherfinancialsupportwasprovidedbyaUniversityStudentshipofthe UniversityofBathtoREvD,andgrantsfromtheHungarian National Science Foundation (OTKA T031706,T043390)andaRoyalSocietyJointProjectgrant(15056)toTS.TSwasalsosupportedby The Leverhulme Trust (RF/2/RFG/2005/0279) and a HRDY Visiting Fellowship of Harvard University.ThefieldworkcarriedoutforthisstudycomplieswiththeHungarianlaw. REFERENCES BadyaevAV,HillGE,BeckML(2003)Interactionbetweenmaternaleffects:onset ofincubationandoffspringsexratiointwopopulationsofapasserinebird. Oecologia135:386390 BleekerM,KingmaSA,SzentirmaiI,SzékelyT,KomdeurJ(2005)Bodycondition andclutchdesertioninpendulinetit Remizpendulinus .Behaviour142:1465 1478 Cassey P, Ewen JG, Møller AP (2006) Revised evidence for facultative sex ratio adjustmentinbirds:acorrection.ProcRoyalSocB273:31293130 Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton,NewJersey CichońM,DubiecA,StoczkoM(2003)Layingorderandoffspringsexinbluetits Paruscaeruleus .JAvianBiology34:355359 CluttonBrockTH(1986)Sexratiovariationinbirds.Ibis128:317329 CluttonBrock TH (1991) The evolution of parental care. Princeton University Press,Princeton,NewJersey CockburnA,LeggeS,DoubleMC(2002)Sexratiosinbirdsandmammals:canthe hypotheses be disentangled? In: Hardy I, (ed) Sex Ratios. Concepts and ResearchMethods.CambridgeUniversityPress,Cambridge,pp.266286 Cramp S, Perrins CM, Brooks DJ (1993). Handbook of the Birds of Europe the MiddleEastandNorthernAfrica–birdsoftheWesternPalearctic.Volume VII.OxfordUniversityPress,Oxford.

163 DaanS,DijkstraC,WeissingFJ(1996)Anevolutionary explanation for seasonal trendsinaviansexratios.BehavEcol 7:426430 DeanWRJ(2005)CapependulinetitAnthoscopusminutus.In:HockeyPAR,Dean WRJ, Ryan PG, (ed) Roberts Birds of Southern Africa. John Voelker Bird BookFund,CapeTown,pp.736737 DietrichBischoffV,SchmollT,WinkelW,KrackowS, Lubjuhn T (2006) Extra pair paternity, offspring mortality and offspring sex ratio in the socially monogamouscoaltit( Parusater ).BehavEcolSociobiol60:563571 Dijkstra C, Bult A, Bijlsma S, Daan S, Meijer T, Zijlstra M (1990) Brood size manipulations in the kestrel ( Falco tinnunculus ): effects on offspring and parentsurvival.JAnimEcol59:269286 EwenJG,CasseyP,MøllerAP(2004)Facultativeprimarysexratiovariation;alack ofevidenceinbirds?ProcRoySocB271:12771282 Fawcett TW, Kuijper B, Pen I, Weissing FJ (2007) Should attractive males have moresons?BehEcol18:7180 FestaBianchetM(1996)Offspringsexratiostudiesofmammals:doespublication depend upon the quality of the research or the direction of the results? Ecoscience3:4244 FialaKL(1980)Onestimatingtheprimarysexratiofromincompletedata.AmNat 115:442444 Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford University Press,Oxford Franz D (1988) Das Paarungssystem der Beutelmeise (Remiz pendulinus ) – ein KampfderGeschlechter.JOrn129:107111 FranzD(1991)MatingsystemandstrategyofreproductioninPendulineTit( Remiz p.pendulinus ).JOrn132:241266 Glutz von Blotzheim UN, Bauer KM (1993) Handbuch der Vögel Mitteleuropas, volume13/2.AulaVerlag,Wiesbaden GriffinAS,SheldonBC,WestSA(2005)Cooperativebreedersadjustoffspringsex ratiostoproducehelpfulhelpers.AmNat166:628632 GriffithsR,DoubleM,OrrK,DawsonR(1998)AsimpleDNAtesttosexmost birds.MolEcol7:1071–1076 GrindstaffJL,BuerkleCA,CastoJM,NolanVJr,KettersonED(2001)Offspring sex ratio is unrelated to male attractiveness in Darkeyed Juncos ( Junco hyemalis).BehavEcolSociobiol50:312–316

164 HamiltonWD(1967)Extraordinarysexratios.Science156:477–488 HarperDGC(1994)Somecommentsontherepeatabilityofmeasurements.Ringing andMigration15:8490 Hasselquist D, Kempenaers B (2002) Parental care and adaptive brood sex ratio manipulationinbirds.PhilosTransRoySocB357:363372 HipkissT,HornfeldtB(2004)Highinterannualvariationinthehatchingsexratioof Tengmalm’sOwlbroodsduringavolecycle.PopEcol46:263268 KempenaersB,VerheyenGR,DhondtAA(1997)ExtrapairpaternityintheBlueTit (Paruscaeruleus ):femalechoice,malecharacteristics,andoffspringquality. BehavEcol8:481492 Kilner R (1998) Primary and secondary sex ratio manipulation by zebra finches. AnimBehav56:155164 KingmaSA,SzentirmaiI,SzékelyT,BókonyV,BleekerM,LikerA,KomdeurJ (2008) Sexual selection and the function of a melaninbased plumage ornament in polygamous penduline tits Remiz pendulinus . Behav Ecol Sociobiol(inpress) Komdeur J, Daan S, Tinbergen JM, Mateman C (1997) Extreme adaptive modificationinsexratiooftheSeychellesWarbler’seggs.Nature385:522 525 KomdeurJ,MagrathMJL,KrackowS(2002)Preovulationcontrolofhatchlingsex ratiointheSeychelleswarbler.ProcRoySocB269:10671072 KomdeurJ,PenI(2002)Adaptivesexallocationinbirds:thecomplexitiesoflinking theoryandpractice.PhilosTransRoySocB357:373380 KorstenP,LessellsCM,MatemanAC,vanderVeldeM,KomdeurJ(2006)Primary sex ratio adjustment to experimentally reduced male UV attractiveness in bluetits.BehavEcol17:539546 Krebs EA, Green DJ, Double MC, Griffiths R (2002) Laying date and laying sequence influence the sex ratio of crimson rosella broods. Behav Ecol Sociobiol51:447454 Leech DI, Hartley, IR, Stewart, IRK, Griffith, SC, Burke, T (2001) No effect of parentalqualityorextrapairpaternityonbroodsexratiointhebluetit( Parus caeruleus ).BehavEcol12:674680 LessellsCM,BoagPT(1987)Unrepeatablerepeatabilities–acommonmistake.Auk 104:116121 Minitab12.2(2004)MinitabInc.Pennsylvania,USA

165 OddieKR,ReimC(2002)Eggsexratioandpaternaltraits:usingwithinindividual comparisons.BehavEcol13:503510 PalmerAR(2000)Quasireplicationandthecontractoferror:lessonsfromsexratios, heritabilitiesandfluctuatingasymmetry.AnnRevEcolSyst.31:441–480 PerssonO,ÖhrströmP(1989)Anewavianmatingsystem:ambisexualpolygamyin thePendulineTit( Remizpendulinus ).OrnisScand20:105111 R. R Development Core Team (2005) A language and environment for statistical computing.RFoundationforStatisticalComputing,Vienna,Austria. RadfordAN,BlakeyJK(2000)Isvariationinbroodsexratiosadaptiveinthegreat tit( Parusmajor )?BehavEcol11:294298 ResamplingStats™forExcel(2006)ResamplingStats,Inc.Arlington,Virginia SainoN,EllegrenH,MøllerAP(1999)Noevidenceforadjustmentofsexallocation inrelationtoparentalornamentationandpaternityinBarnSwallow.Mol Ecol8:399–406 SheldonBC,AnderssonS,GriffithSC,ÖrnborgJ,Sendecka J (1999) Ultraviolet colourvariationinfluencesBlueTitsexratios.Nature402:874–877 Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. 3 rd edition. WH Freeman and company, New York, USA SPSS12.0.0(2003)SPSSInc,19892003.Chicago SzékelyT,CuthillIC,YezerinacS,GriffithsR,KisJ(2004)Broodsexratiointhe KentishPlover.BehavEcol15:5862 Szentirmai I, Komdeur J, Székely T (2005) What makes a nest building male successful?MalebehaviourandfemalecareinPendulineTits.BehavEcol 16:9941000 SzentirmaiI,SzékelyT,KomdeurJ(2007)Sexualconflictovercare:antagonistic effect of clutch desertion on reproductive success of male and female pendulinetits.JEvolBiol20:17391744 TriversRL,WillardDE(1973)Naturalselectionofparentalabilitytovarythesex ratioofoffspring.Science179:9092 vanDijkRE,SzentirmaiI,KomdeurJ,SzékelyT(2007)Sexualconflictovercarein PendulineTits:theprocessofclutchdesertion.Ibis149:530534 Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCRbased typing from forensic material. Biotechniques10:506518

166 WestSA,SheldonBC(2002)Constraintsintheevolutionofsexratioadjustment. Science295:16851688 WestSA,ReeceSE,SheldonBC(2002)Sexratios.Heredity88:117124 Westneat DF, Stewart IRK, Halpin Woeste E, Gipson J, Abdulkadir L, PostonJP (2002)PatternsofsexratiovariationinHouseSparrows.Condor104:598 609 Whittingham LA, Dunn PO, Nooker JK (2005) Maternal influences on brood sex ratios:anexperimentalstudyintreeswallows.ProcRoySocB272:1775 1780

167 APPENDIX II STRATEGICDIFFERENCES THEBATTLEOFTHESEXESINPENDULINETITS RenéE.vanDijk&ÁkosPogány Africa–Birds&Birding(2008)June/July:5255

168 strategic differences

THE BATTLE OF THE SEXES IN PENDULINE-TITS

TEXT BY RENÉ E. VAN DI JK & ÁKOS POGÁNY PHOTOGRAPHS BY RENÉ E. VAN DIJK

irds adopt a wide variety and may sometimes be assisted thus enhancing its annual of approaches to raising by helpers, usually offspring reproductive success. Both B y oung, and why breeding from a previous brood. males and females may have strategies differ among In the northern hemisphere, up to six mates in a given species remain some of the however, such cooperation is breeding season. central questions in rarer. The Eurasian Penduline- The downside of this ornithology. In a large number Tit Remiz pendulinus, a close promiscuous breeding system, of birds, both parents care relative of the Cape Penduline- however, is that the sexual jointly for their offspring. Tit, is anything but conflict results in Some species even have more cooperative and, in fact, it approximately a third of all extended cooperative breeding provides one of the best clutches being abandoned by strategies in which additional examples of sexual conflict both parents during the egg- birds, referred to as ‘helpers’ over parental care among laying phase. The effort of or ‘alloparents’, assist the birds. In this species, one of building the elaborate nest and breeding pair. Limited the parents (usually the male) laying eggs are thus nullified availability of food, combined deserts its partner during the as the parents are not there to with a relatively harsh climate egg-laying period, leaving it care for the eggs. and high predation rates, are to incubate the eggs and raise Such sexual conflict is based thought to be important factors the chicks alone. By on the fact that parental care, which drive cooperation in abandoning its partner and the although beneficial for the parenthood. clutch, the deserting parent not offspring, is costly in terms of The Cape Penduline-Tit only saves on the costs of time and energy for both Anthoscopus minutus is such an parental care, it benefits by parents. Each individual parent example: both parents of this gaining the opportunity to is therefore better off southern African near-endemic find another partner with transferring these costs to the incubate and feed their young, which it can start a new nest, partner, since it will gain the

P E N D U L I N E - T I T S A F R I C A – B I R D S & B I R D I NG 52 169 It seems that parents disguise their intention to care for or desert their offspring, and try to abscond before their partner does so

think that a sexual conflict over parental care may be apparent in other, unrelated behaviour patterns. Additionally, the recently ‘rediscovered’ sexual- conflict fitness benefit of passing on its The males vary in the size of theory predicts that such an genes to the next generation, but their black facial mask: the larger intense conflict leaves with minimal costs to itself. In the it is, the more attractive they are evolutionary footprints in reed-marsh habitats of Europe, to females. The males that were traits, such as plumage and where the Eurasian Penduline-Tit most successful in deserting one song, that are selected for by lives, food is plentiful, so a single partner and finding a new one females when choosing a parent may be able to raise the turned out to be the more partner. Could this have been offspring successfully. This food- ‘attractive’ males, with larger the case in penduline-tits? rich environment, combined with masks. A female that mates with To find out, in a a relatively mild climate and low an attractive male is therefore collaborative study with Dr predation rates, may have promoted more likely to be left behind to Penn Lloyd of the Percy the evolution of this breeding bear the brunt of care, illustrating FitzPatrick Institute at the system. some of the costs a female faces University of Cape Town, we when mated to an attractive male. went to Koeberg Nature ince 2002, our team of We also found that parents made Reserve in the Western Cape researchers from the snap decisions, with desert/remain to examine the breeding Su niversities of Bath (UK), choices occurring during the system of the Cape Penduline- Budapest (Hungary), and course of a single day. Tit. Groningen (The Netherlands), Also, partners do not reveal The two penduline-tit headed by Professor Tamás their level of commitment to species are strikingly similar in Székely, has been the other bird. It seems that several respects, particularly in investigating the Eurasian parents disguise their intention size (both weigh less than 10 Penduline- Tit’s unique to care for or desert their grams), in having a sharply breeding system in Hungary. offspring, and try to abscond pointed conical bill, in the We found that both males and before their partner does so. efficient use of their feet when females produce more offspring The latter results led us to gleaning foliage for food in a year by deserting the brood and leaving their partner to care for the young, emphasizing the intensity of sexual conflict.

Above The nest of a Cape Penduline-Tit has a false entrance (the pouch underneath the spout). The spout is usually closed, to prevent snakes from gaining access to the young . Right Koeberg Nature Reserve, a fynbos habitat which contains relatively little food for Cape Penduline-Tits.

Opposite The male and female Cape Penduline- Tit look similar. They have only a thin eye- stripe, and both sexes have a similar grey back.

JUNE / JULY 2008 P E N D U L I N E - T I T S 53 170 cooperative behaviour we have not observed in Eurasian Penduline- Tits. During the egglaying phase, we carried out detailed behavioural observations with a digital handycam, which photographed the nest every five seconds during the day. This provided in-depth data on nest attendance by partners, which had been colour-ringed for individual identification. We had used the same method in Hungary to monitor nest attendance by Eurasian Penduline-Tits during the crucial phase in which either or both parents desert the nest. What we discovered was that Cape Penduline-Tit parents not only spend more time together at the nest, but that they also spend more time attending the nest than Eurasian Penduline-Tits. This is in line with the expected effect of sexual conflict on the behaviour of penduline-tits. Greater sexual conflict in the Eurasian Penduline- Tit means that parents try to avoid each other at the nest in order to force their partner to work harder, whereas Cape Penduline-Tits are more cooperative on the basis of their shared commitment to parenting. A female (top) and male (above) harsher, with lower night In addition, to further test Eurasian Penduline-Tit at their nest. The male has a much larger mask, a temperatures than in Hungary, predictions of the sexual- conflict more deeply coloured red-brown that the risk of nest predation theory, we recorded the songs of back, and has red spots on his breast. is much higher, and that food all males and took digital The female is altogether much paler. in this fynbos habitat seemed photographs of the heads and and, most obviously, in their much less abundant than in the backs of all trapped Cape elaborate, domed nests, reedmarshes of Europe. These Penduline-Tit parents. This which are built with an differences may have enabled us to compare the song entrance spout. However, the constrained the opportunity for and the plumage with that of two penduline-tit species have sexual conflict to emerge in Eurasian Penduline-Tits. Sexual- a fundamentally different Cape Penduline-Tits, because conflict theory predicts that these approach to parenthood. Such both parents may be required traits (song and plumage), which contrasting breeding systems to keep the eggs at the right the females seek out when between closely related species temperature during incubation, picking a partner, should be more is unusual in the bird world, to guard against potential elaborate in the species exhibiting but it offered us a good predators and to find sufficient more intense sexual conflict, and opportunity to study whether food for the offspring. that those species should be more this may have had its We observed that Cape sexually dimorphic. predicted evolutionary Penduline- Tit partners behaved Consistent with that theory, impact on the species’ differently to their European we found that Eurasian Penduline- behaviour and plumage. counterparts. Cape Penduline- Tit males have far more intricate While we were doing Tit pairs typically arrive at and songs than Cape Penduline-Tits: fieldwork at Koeberg, we leave the nest together, and we they use some 16 different noticed that the climate seems also saw them allopreening, a ‘notes’ in their song, whereas the

54 P E N D U L I N E - T I T S 171 A F R I C A – B I R D S & B I R D I NG Cape Penduline-Tit males sing As an evolutionary if sex differences in behaviour only a single ‘note’. Eurasian and morphology are Penduline-Tits also exhibited a response, females generally related to their clear sexual plumage retaliate, becoming breeding system. In Central dimorphism, with the male choosier about male and East Asia, for instance, three species occur: the having a larger eyemask and a traits in order to pick the more colourful back than the Black-headed, the female, whereas male and mate of highest quality Whitecrowned and the Chinese Penduline-Tit. They female Cape Penduline-Tits or song. As an evolutionary occupy diverse habitats, with appear identical. response, females retaliate, varying quantities of food So, in essence, the differences becoming choosier about male available and different that we found between the traits in order to pick the climates, ranging from the species are consistent with our mate of highest quality: is the Gobi Desert in China to predictions based on the male that looks good and reed-marshes in Kazakhstan. difference in breeding system. sings beautifully really able to Investigating the environmental The level of cooperation in sire and raise high-quality conditions may reveal some breeding is mirrored in the level offspring? This female of the reasons why various of cooperation in behaviours selectiveness will force the male breeding systems have such as nest attendance. to elaborate even more on song evolved in penduline-tits. ut why do male and female and appearance in order to be In addition through the use of Eurasian Penduline- Tits picked by a female. DNA samples, we can assess Bs how such sexually dimorphic This ongoing process of the exact relationship between plumages, whereas Cape manipulation and resistance the species and may be able to Penduline-Tits males and drives the evolution of these reconstruct their phylogenetic females are similar? This can sexual traits at a much faster history in order to discover be ascribed to a process known rate in Eurasian Penduline-Tits which the ancestral species is: as ‘sexually antagonistic than in Cape Penduline-Tits. In a dull, cooperative one or a coevolution’, which only conclusion, their underlying bold macho? becomes readily apparent in breeding system may explain species experiencing sexual why some penduline-tit species The research leading to these conflict. Over evolutionary exhibit a greater degree of results received funding from the time scales, attempted sexual dimorphism than others, European Community’s Sixth manipulation by males is something that may hold true Framework Programme, the countered by resistance or for a number of bird species. Hungarian/South African retaliation by females. Males The next step in our Intergovernmental TÉT, and the research will be to study other Schure-Beijerinck-Poppingfonds might thus exploit a female mate of the Royal Netherlands preference for a fancier appearance species of penduline-tits and see Academy of Sciences.

An unconventional hang-out

n 1 November 2006, I visited the farm Vaalkop in the Petrusburg O district, approximately 80 kilometres south-west of Bloemfontein in the Free State, to check on a Secretarybird nest. The surrounding area of the farm is mainly Themeda triandra grassland, with shrubs concentrated on the hills and at the base of the hills. While driving through the open grassland on the secondary farm road, which is bordered on either side by a fence, I noticed the nest of a Cape Penduline- Tit on the third wire from the ground at a height of 1.15 metres. The nest was probably freshly built and was still empty. Seeds of the Themeda grass which had been used as nest material were also visible on the exterior of the nest. D. DE SWARDT On 15 November I revisited the site and saw that there were eggs more from the hilly area or from the nearest bushes. While an in the nest, but it was unclear what the clutch size was (generally a explanation for this nest site on the fence could be that the clutch contains between four and seven eggs). On another visit to the Themeda grass there is long enough to provide some protection nest, on 25 November, I inserted my finger into the nest to inspect it, for the nest against predators, it was not really wind-resistant. and discovered an adult bird inside, brooding newly hatched young. As far as I am aware, this is the first record for this species A second clutch was also probably laid, as chicks were again of a nest site on a man-made structure in an area away from its present in the nest on 15 January 2007. A few days later, on 27 natural habitat of bushes and low shrubs. DAWIE DE SWARDT January, three nestlings were in the nest and ready to fledge. This species attaches its nest to the branches of bushes at a REFERENCE height of one to three metres, the bushes acting as protection for the Dean, W.R.J. 2006. Cape Penduline-Tit Anthoscopus minutus. In: Hockey, P.A.R., nest. The nest found at Vaalkop was approximately 1 000 metres or Dean, W.R.J. & Ryan, P.G. (Eds). Roberts Birds of Southern Africa (7th edition) Cape Town. The Trustees of the John Voelcker Bird Book Fund. pp. 736–737. JUNE / JULY 2008 172 P E N D U L I N E - T I T S 55 APPENDIX III

PRACTICAL FIELD GUIDE FOR INVESTIGATING BREEDING

ECOLOGY OF PENDULINE TITS REMIZ PENDULINUS

René E. van Dijk 1, István Szentirmai 2 & Tamás Székely 1 1 DepartmentofBiology&Biochemistry,UniversityofBath,BathBA27AY, UK 2 İrsègNationalPark,Siskaszer26a,H9941,İriszentpéter,Hungary

Email: [email protected] Biodiversity Lab: http://www.bath.ac.uk/bio-sci/biodiversity-lab/

Photograph by C. Daroczi

Version 1.4 –5May2009

173 RATIONALE Why study penduline tits? Themainreasonbehindstudyingpendulinetitsistheir extremely variable and among birds unusual breeding system: both sexes are sequentiallypolygamous.Bothmalesandfemalesmaydeserttheclutchduringthe egglayingphase,sothatparentalcareiscarriedoutbyoneparentonlyand,most remarkably,some3040%ofclutchesisdesertedbybothparents. Inthisfieldguideweoutlineseveralmethodsthathelpustorevealvarious aspects of the penduline tit’s breeding system, including mate choice, mating behaviour,andparentalcare. Themotivationinwritingthisfieldguideistoguideyouthroughanumberof basicfieldmethodsandpointyourattentiontosomepotentialpitfalls.Thependuline titisafairlyeasyspeciestostudy,butattheheartofunravellingitsbreedingecology areappropriate,standardisedandaccuratefieldmethods. Further reading Cramp, S., Perrins, C. M. & Brooks, D. M. 1993. Handbook of the birds of Europe, the Middle East and North Africa – The Birds of the Western Palearctic .Oxford:OxfordUniversityPress. Franz, D. 1991. Paarungsystem and Fortpflanzungstrategie derBeutelmeise Remiz pendulinus. Journal für Ornithologie, 132 ,241266. Glutz von Blotzheim, U.N. 1993. Handbuch der Vögel Mitteleuropas .Wiesbaden: AULAVerlagGmbH. Harrap, S. & Quinn, D. 1996. Tits, Nuthatches & Treecreepers . London, United Kingdom:ChristopherHelm. Madge, S. 2008.FamilyRemizidae(Pendulinetits).In: Handbook of the birds of the world ,Vol.13,PendulinetitstoShrikes(delHoyo,J.,Elliott,A.&Christie, D.eds.).p.5275.Barcelona:LynxEdicions. Persson, O. & Öhrström, P. 1989. A new avian mating system: ambisexual polygamyinPendulineTit Remiz pendulinus. Ornis Scandinavica , 20, 105 111. Schönfeld, M. 1994. Die Beutelmeise. Die Neue Brehm Bücherei, Westarp Wissenschaften,Magdeburg.

174 Figure III.1 Typicalhabitatofpendulinetits,dikessurroundingfishpondsinFehértó,Hungary. (photographbyT.Székely)

THE PENDULINE TIT Male versus female The Eurasian penduline tit Remiz pendulinus is a small (body mass about 9g) passerine that breeds in reed marshes and gallery forests (Fig. III.1) throughout EuropeandlargepartsofAsia.Itisoneofthe13speciescurrentlyclassifiedwithin the subfamily of Remizinae (Harrap & Quinn 1996). Eurasian penduline tits are sexuallydimorphicsothatmalesandfemalescanusually be sexed without much troubleinthefield.Malesaremorebrightlycolouredthanfemales:theyhaveadark redbrown mantle, reddish spots on the breast, bright white crown feathers and a wider eyestripe (the ‘mask’) than females. Females are often paler (Fig. III.2). However,thesedifferencesarenotalwaysveryclear(Fig.III.3);inambiguouscases

theirbehaviourmayhelp, e.g. malessing,whereasfemalesonlycall.

Figure III.2 Themale(left)ismorebrightlycolouredandhasawidermaskthanthefemale(right). (photographsbyR.E.vanDijk)

175

Female Male Male Figure III.3 Thedistinctionbetweenmaleandfemaleisnotalwaysclearcutbasedononetrait,such asmasksize.(photographsbyS.A.Kingma)

Nest Penduline tits build elaborate, domed nests mainly from the pappus of reed Phragmites australis ,poplar Populus spp .andwillow Salix spp .(Fig.III.4).Thenest buildingprocesscanbedividedintosixstages(Fig.III.5).Themaleinitiatesthenest buildingprocessandmayattractafemale,usuallyfromastage‘C’or‘D’(seeFig. III.5).Male andfemale thenjointlyfinishthenest. A male is considered ‘mated’ whenthepaircopulatesnearthenest,orwhenthemaleandthefemalebuildthenest together. Nestsinstage‘A’areusuallyinitiatedonthedatethenestwasfound.Nests instage‘B’areusuallytwodaysoldand‘early’stage‘C’nestsmaybedetermined asthreedaysold.ThetimetoreachdifferentstagesfromConwardsmayvaryover thebreedingseason.Earlyintheseason,whenfewfemalesarepresent,themalemay stayinstage‘C’forweeks,lateronanestmaybefinishedwithinaweek. Eggs Onceanestisinstage‘E’thefemaleoftenstartslayingeggs,oneperday,usually earlymorning.Oncethereareaboutthreeeggsinthenest,themale,thefemale,or bothwilldeserttheclutch.Iftheydesertboth,allinvestmentinthecurrentnesthas beeninvainandthenestwillnotbeusedagain(althoughthematerialmaybeused forothernests).Ifthefemaledesertsthemalemaystaybehindtoincubatetheclutch and raise the offspring. Incubation is usually initiated one day after the female deserted.Ifthemaledeserts,thefemalemaylayanadditionalnumberofeggsand onlystartsincubatingoncetheclutchiscompleted.Weconsiderabirddesertedifit hasnotbeenseenatthenestforatleasttwoconsecutivenestchecks. Thesecond checkshouldlastforatleast30min(see Chapter III ).

176

Figure III.4 AnestinstageFofaEurasianpendulinetit.Thecolourringedmalehasjustarrivedon therightwithsomemorenestmaterial.Atthisstagethenestislikelysoontobedesertedbyeitherthe maleorthefemale.Afterdesertionthecaringparent,especiallyincaseoffemaleonlycare,usually extendsthespoutabitmore.(photographbyR.E.vanDijk)

A– Small amount of material wovenaroundthetwig. B–Ring.Bottompartverythin. C – Basket, where bot h holes covermorethan50%ofnest height D – Bag,wherebothholescover lessthan50%ofnestheight E – Nearly finished nest with one side closed, or at least not suitable as entrance/exit anymore;nospoutyet F – Finished nest. Spout may initially be not much more thanasmall‘roof’. Figure III.5 Themajorstagesofnestbuilding(drawingbyI.Szentirmai). Duringtheegglayingperiodtheeggsmayormaynotbecoveredwithnestmaterial. We are unsure what the reason for this egg covering behaviour may be, but protectionagainstcracksthatmayoccurforinstanceduetostrongwindcouldwell

177 beapossibility(butseeValeraetal.1997).Keepthisinmindwhencountingthe eggs! NB sometimes eggs are buried very deeply in the bottom of the nest. Sometimes these eggs remain buried and are not incubated. Eggs are normally uncoveredbytheparentduringtheincubationphase.Eggsarenormallycountedon theeighthdayofincubation, unlessotherwiserequiredforaspecificproject.Eggs canbecountedbyprobingwithyourfingersinsidethenest,supportingthebottomof thenestwiththeotherhand.Donottakeeggsoutofthenestifnotnecessary .Also, onlycounteggsonpredefineddates.Trytoavoidanydisturbanceatalltimes!Ifthe eggswerecovered,restoretheoriginalsituationaftercounting. Also at the eighth day of incubation we usually take a three hour video recording .Thetotalperiodofincubationis1415days. Nestlings Aroundtheexpecteddateofhatching,theactualhatchingdateshouldbedetermined. Thisshouldbedonebyobservingtheparent’sbehaviour:itwillflyinandoutmuch morefrequentlythanduringincubationanditwillbecarryingfooditems.Usuallya slighthatchingasynchrony(±1day,butmaysometimesbeasmanyasthreedays) doesoccur,but,unlessotherwiserequired,thefirstdayofhatchingistakenasthe hatchingdatetoavoidunnecessarydisturbance. Atthetenthdayafter hatching(hatchingdateisday0)afeedingfrequency observation isperformedbyfilmingforthree hours.Afterthisrecordingthenestlings areringedandmeasured,andasmallbloodsample(±25l)istaken. The chicks willfledgeataroundthe21 st dayafterhatching. GENERAL FIELD METHODS AteachnestvisitwritedowntheDate,Nestsite,Time,Birdpresent (maleand/or female and colourrings ), briefly the behaviour of present bird(s), and any other useful comments. Also record GPS coordinates inUTMformatforeachnestand giveashort andcleardescription ofwherethenestcanbefound(seeAppendicesI& II). Example : 1D/2 – 512 (7.15) ♂ (MBOW) Bl, Ca, Si, BN; ♀ (ur) Bl, Ca. GPS: N107229/E111078.Description:InsecondPoplarontheleftafterthelock,coming from1N.Tree:Populus sp .

178 Finding and checking nests Equipment needed: Notebook, GPS receiver, nest check notebook, binoculars, adhesivetape (SeeSupplementIVforasatelliteimageofourstudysiteFehértó,Hungary) Weusuallysplitthestudyareabetweenfieldworkers.Makesureeachpartofthearea iscompletelycoveredatleasteveryotherday .Walkingoverthedikesthebirdscan belocatedbytheircallsandsongs,and/ormovements.Onceabirdcaughtyoureye, thefirstthingtodoistolookatitslegs:Isitringed,andifso,whatisthecolour combination?Colourcodesarewrittendowninthefollowingorder:Upper,under, left,right.So,abirdMBGO,hasaMetalringontoponitslefttarsusfollowedbya Bluering,andaGreenringontoponitsrighttarsusfollowedbyanOrangering. Colourswehaveormayuseare:Yellow,Blue,White,Red,Green,Orange,Pinkand black(thelattercodedas‘S’from‘Swart’,AfrikaansforBlack). Tofinditsnest,youneedtofollowthebirdanditwilltakeyoutoitsnest(if ithasone).Eachnewnestshouldbelabelledusinganadhesivetapethatshouldbe attachedtoatreeorshrub10mfromthenesttowardsthefieldstation(thelatterto avoidhelpingotherpeoplefindingthenests).Codingofnestsworksasfollows:Each dikehasitsownuniqueID.Thefirstnestfoundonthatdikeis1,thesecond2,and soforth(e.g.4D/10).TheexactGPScoordinates(trytogetasclosetothenestas possible) should be taken for each nest using the UTM format. Record N and E coordinates. Every nest needs to be checked at least every other day during nest building;duringincubationandfeedingthenestcheckfrequencymaybesomewhat lower,e.g .everyfourthday.Fifteenminutes shouldbeenoughtorecordthepresence ofthebird(s)(see Chapter III & IV ).Thestageofthenest(Fig.III.5),treespecies, birdspresentandtheirbehaviour(briefly)shouldberecorded(seeSupplement1). Biparentallydesertedclutchesshouldbetakentoanincubatorassoonasthe nesthasbeenrecognisedas‘biparentallydeserted’. (SeeSupplementII) Trapping Birds Equipmentneeded: setofpoles,mistnet,ropes,tentpegstofixropes,portableCD player,twospeakers,dummypendulinetit,oldnest,cottonwool,birdbags

179 - DonottrytotrapanestbuildingmalebeforeanadvancedstageC ,otherwisethe birdwillverylikelyabandonitsnest. - Donottrytotrapapaironthedaytheygotmated,otherwisethefemaleislikelyto abandonhermate. - Donottrylongerthan30minatalltimes .Ifyoucannotcatchthebirdin30min, you very likely cannot catch it in one hour either, i.e . waste of time and unnecessarydisturbanceriskingabandonment. - Do not try to trap during rainfall. These small birds easily cool down and die becauseofthat. -Donotusethe‘Barbácsy’strap’ (seeFig.III.6)beforetheeighthdayofincubation, toavoidunnecessaryabandonment. - Make sure you always carry a pair of (sharp) scissors with you. If you do not managetofreethebirdwithinreasonabletime,somecarefulcutsinthenetmay help.Butbepatient;pendulinetitsareusuallynotthemostdifficulttoreleasefrom thenet.Askforhelpofmoreexperiencedresearchersifsorequired. - Trytoworkquickandefficient. Ifpossible,gotrappingtogether. Ideallybothmaleandfemaleshouldbetrappedtogetherduringtheperiodthatthey aretogetherusingamistnet: Positionthemistnetnottoofarfromthenest,andpreferablyintheshadow.Avoid thewindasmuchaspossible.Trytorememberthebird’sbehaviour:Manybirdsuse their favourite passages when leaving the nest site. Set up the net just there if possible. Setupthenetashighaspossible.Makesuretherearenobranchesaboveorclose tothenet,wherethebirdcantakeitstimetositonandthoroughlyinspectwhatis goingonhere. On the opposite side of the net (than the nest) a portable CDplayer should be placedplayingpendulinetitsong.Rightabovethespeakersanoldnest,cottonwool, andadummypendulinetitshouldbehungina(artificial)tree.

180 Figure III.6 TheBarbácsy’strap.(photographbyR.E.vanDijk) If you do not manage to trap the bird within 30 min., try again the next day. Unsuccessfulagain?Thenskiponedayandtryagainondayfour. Itisofnousetotryandtrapwiththeabovesetupduringincubation.Trappingthe birdsattheirnestusingthe‘Barbácsy’strap’ismuchmoresuccessful,butwaitusing this trap until day eight of incubation. Also feeding birds may be trapped using ‘Barbácsy’strap’. Handling Birds Equipmentneeded: metalrings,ringingplier,colourrings,colourringclip,colour ring table, digital calliper, ruler, digital camera, gray card, Pesola spring balance, yellow notes, waterproof pen, needles, capillaries, cottonwool, Eppendorf tubes,

capturenotebook

Figure III.7 Whenyoutakeaphotoofthemaskofabird,makesurethegraycard,theruleranda notecontainingdate,nestsiteandringnumberareclearlyvisible.(photographbyR.E.vanDijk)

181 - Thebird’shealthismoreimportantthancollectingalldata. Forinstance,donottry excessivelylongtogetsomebloodsample.Ifitdoesnotworkwithinareasonably time,moveon.

Ringing, measuring and sampling blood (inorderinwhichtheyshouldbecarried out): Metalring,onthelefttarsus.Makesuretheringcanbereadeasilywhenone holdsthebirdonitsbackinthehand( i.e. notupsidedown). Measureleft tarsus. Colourrings.Makesureyougettheorderright. Winglength.Outerprimariesinstraightlinealongtherulerofright wing. Fatscore.Infiveclassesinfurculardepression(inthroatjustabovesternum). Maskphotos(Fig.III.7).Threephotosfromeachsideofthehead.Makesure theruler,ringnumber,ANDgraycardarevisible.Thebirdshouldtouchthe graycardwithitsshoulder.Makeallphotosofthebirdandgraycardinthe shade. Photosofbackandneck.Makesurethegraycardisvisible(insimilarlight conditionsasthebird). Bodymass.MakesurethePesolaspringbalanceiscalibratedto0gwith bag. Bloodsampling.Takesmall(±25l,12cminacapillary)samplefromthe brachialvein.Storebloodinlabelled (Ringnumber,species,sex,date,year) Eppendorf tube containing Queen’s lysis buffer (Seutin et al. 1991). Use Leukoplastasalabel,donotwriteonthesideof the tube, this will easily wearoff.Writeontheleukoplastlabelwithwaterproofpen.Copythelabel, oratleastringnumberonthelid.Makesurethelidisproperlyclosed.You maywanttosealthelidusing,forinstance,parafilmwrappedarounditto ensureitwillnotopenwhilsttravelling.Refrigerateblooda.s.a.p.(Fig.III.8).

182 Figure III.8 Bloodsampling.(photographbyR.E.vanDijk) (SeeSupplementIII) Fates of nests Nestfatesareusuallyscoredusingthefollowingscheme: ABAND –nestisabandonedbythemaleduringnest building (before pair formation) CLABAND –clutchabandonment.Caringparentabandonedclutch(ornestlings). Oftenduetosomekindofdisturbance DES – biparental desertion. Both male and female deserted after pair formation,beforeincubation DEST –destroyed.Usuallybythewind,sometimesbyhumans. FLED −‘fledged’.Definedaspresenceofnestlingsatday10afterhatching. PRED – predation. Nest is predated. Usually during nestling phase, nest partlydestroyed. TAKEN – nest is overtaken by another male. Usually happens during nest buildingphase.Nestcodewillremainthesame,butindicatedas‘a’ and‘b’( e.g. 4D/10aand4D/10b)

183 ************************** DISCLAIMER *************************** *Pleasenotethattheauthorsarenotliableforanyconsequencesoftheuse(or* *misuse) of this guide. You need to check regulations and legislation in the* *countryandsitewhereyouarecarryingoutthefieldwork.Alsomakesureyou* *areawareofthehealthandsafetyinstructionsasprovidedbyyourinstitution,and* *takeanypotentialriskorhazardthataccompaniesyourfieldworkseriously.We* *did not deal with essential conceptual and practical issues for successful* *fieldwork (e.g . experimental design and logistics): each particular project and* *experimentrequiresitsowninnovativeideas.Wewillalwaysbehappytodiscuss* *ideas, and welcome suggestions to improve the study of penduline tits.* *Goodluck! * ********************************************************************

REFERENCES Harrap, S. & Quinn, D. 1996. Tits, Nuthatches & Treecreepers. London,United Kingdom:ChristopherHelm. Valera, F., Hoi, H. & Schleicher, B. 1997.EggburialinPendulineTits Remiz pendulinus :itsroleinnestdesertionandfemalepolyandry.Behavioral Ecology , 8, 2027. Seutin, G., White, B. N. & Boag, P. T. 1991.Preservationofavianbloodandtissue samplesforDNAanalyses. Canadian Journal of Zoology , 69, 8290.

184 SUPPLEMENT I. Behaviouralcodesofpendulinetitsatthenest.

Frequent behaviour Behaviour Explanation Abbreviation Away notpresentwithina10mradius A aroundthenest Buildingnest BL Calling CA Callingfrominsidenest CAN CleaningBill CB Covered presentwithin10mradius,but COV invisible / covered by leaves, branches,etc Feeding foraging FE Flying FL Gatheringnestmaterial GN Hangingonthenest HN Incubating I Perching sittingsomewhereresting/doing P nothing Preening cleaningfeathers PR Sittinginthenest doingnothing SN

Infrequent behaviour Behaviour Explanation Abbreviation Bringingnestmaterial tothenest BN Chasing somebird;writedowndetails CH Chasingawayfemale CHF Chasingawayintruder unknownenemyPT;writedown CHI detailsofintruder:rings,maleor female Chasingawaymale CHM Chasingawaymate CM Copulation CO Fighting withunknownenemy FI Fightingagainstfemale FIF Fightingagainstmale FIM Fightingagainstmate FM Nestmaterialdelivery male delivers material to NMD buildingfemale Singing SI Singing from inside the SIN nest Singing on outside of bird is hanging on the nest and SON nest singing Solicitingcopulation femaleisflappingherwings SC Tryingtoenternest maletriestoenterthenest, but TE femaleblocksentrance

185

SUPPLEMENT II. Nestrecords.Thespreadsheetcontainingthenestdatalookslikethis.Makesureyoucollecttheseforeachnest. YEAR SITE NEST MALE FEMALE FOUND FOUNDST ECOORD NCOORD TREE STBUILD MATDAT DESPAR DESM DESF EGGS CH10 FATE END DIST OBS COMM. CODE CODE 2007 4D 11 MOYG YYWM 607 A 733201 107936 Salix 607 614 M 620 5 4 FLED 728 0 RD 2007 CH 10 BRWM BBMO 601 D 734210 117543 Populus 523 ABAND607 0 LM 2007 FT 6 WWWM YMOR 526 C 741443 109856 Salix 521 528 MF 601 601 3 DES 601 0 ZG 2007 1D 8 YYRM BMOG 701 B 729043 110998 Salix 630 ABAND 702 1 RD treechopped YEAR SITE -Eachdikeorpatchhasitsunique‘sitecode’ NEST - Giveconsecutivenumbersforeachnestfoundforagivensiteintheorderinwhichtheywerefound. MALE CODE -Ringsofthemale FEMALE CODE - Ringsofthefemale FOUND -Thedateatwhichthenestwasfound FOUNDST - Thestageinwhichthenestwasfound(seeFig.3) ECOORD - EastGPSCoordinatesofthenest,followingUTMformat NCOORD - NorthGPSCoordinatesofthenest,followingUTMformat TREE - Thetreeinwhichthenestisbuilt STBUILD - Dateofnestbuildinginitiation MATDAT - Dateofpairformation DESPAR - Desertedparent DESM - Dateofdesertionbythemale DESF - Dateofdesertionbythefemale EGGS - Numberofeggsattheeighthdayofincubation CH10 - Numberofnestlingsatthetenthdayafterhatching FATE - Fledged,deserted,abandoned,etc. END - Lastdatewhenthenestwaschecked DIST - Wasthenestdisturbed?1=yes,0=no OBS - Observer COMM - Comments

186

SUPPLEMENT III. Capturerecords.Thespreadsheetcontainingthecapturedatalookslikethis.Makesureyoucollect theseforcapturedbirds. RING CODE YEAR DATE TIME SITE NEST SEX WING TARSUS FAT BROOD MOULT WEIGHT BLOOD PHOTO_L PHOTO_R PHOTO_HB OBS COMM 7E7431 MBGR 2007 620 9:15 CH 10 M 56 17.2 3 0 0 9.25 OK OK OK OK RD 7E7556 GYRM 2007 617 12:20 1D 9 F 57 17.0 4 1 1 11.25 OK OK OK OK LM 7E7332 YMBR 2007 712 16:30 3E 1 JUV 25 16.7 5 9.75 OK LM RING - Metalringnumber CODE - Allrings YEAR DATE - Dateofcapture TIME - Timeofcapture SITE NEST SEX - M=male,F=female,Juvisjuvenile(ajuveniletrappedinmistnetmaynotnecessarilybelongtothenestwherethenet wassetup) WING - Winglengthasmeasuredwithstretchedprimariesofrightwing(mm) TARSUS -Tarsuslengthoflefttarsus(to0.1mm) FAT -Fiveclassesinfurculardepression BROOD -Broodpatchpresent(1)ornot(0)? MOULT -Isthebirdmoulting(1)ornot(0)? WEIGHT -Bodymass(g) BLOOD -Isasmallbloodsampletaken(OK)? PHOTO_L -Isaphototakenoftheleftmask(OK)? PHOTO_R -Isaphototakenoftherightmask(OK)? PHOTO_HB -Isaphototakenoftheheadandback(OK)? OBS -Observer COMM -Comments

187

SUPPLEMENT IV. SatelliteimageofFehértó,Hungary.Clearlyvisiblearethelargefishpondssurroundedbydikes.On therighttheRiverTisza,whichmayhostmanypendulinetitsinitsgalleryforest(fromGoogleEarth).

188

APPENDIX

IV

The Evolution of Breeding Systems and the Impact of Sexual Conflict and Cooperation in Penduline Tits FIELDWORK REPORT

EXPEDITION KAZAKHSTAN 2008

18 May – 29 June

René E. van Dijk

DepartmentofBiologyandBiochemistry,UniversityofBath,BathBA27AY,UK

Email: [email protected]

Photographs by R.E. van Dijk 23June2008

189

Members of the expedition team penduline tits in Kazakhstan:

From left to right :SanderBot(UniversityofGroningen,TheNetherlands),VeraVoronova (UniversityofKaraganda,Kazakhstan),RenéE.vanDijk(UniversityofBath,UK)

OBJECTIVES 1. To describe the breeding system of a. Whitecrowned penduline tits Remiz coronatus ,andb.Blackheadedpendulinetits Remiz macronyx 2. Toinvestigatetowhatextenthabitatcanpredictlevels of cooperation and conflictinpendulinetits 3. To investigate the impact of conflict and cooperation on the evolution of morphologicaltraits 4. To investigate the impact of conflict and cooperation on the evolution of behaviouraltraits 5. Toreconstructaphylogenetictreeofpendulinetits(bloodsampling,aimed samplesize:40)

HYPOTHESES & PREDICTIONS H1. Theabundanceoffoodandnestmaterialinfluencesthelevelofcooperation inbreeding P1. Blackheadedpendulinetits,whichoccurinallegedlyfoodrichreedbeds, exhibithigherlevelsofconflict,includinguniparentalcareandpolygamy,than

190

Whitecrownedpendulinetits,whichliveintherelativelypoorfoothillsofthe TienShanmountains(biparentalcareandmonogamy) H2. The level cooperation influences morphology and song via an ongoing processofmanipulationandresistanceassociatedwithsexualconflict P2. Thespeciesexhibitingmoreintensesexualconflictwillshowamoreintense sexualplumagedimorphismandthemalewillhaveamorecomplexsongthan thespecieswithlowerlevelsofconflict H3. The level of cooperation in breeding system is reflected in parental behaviour P3. Thespeciesexhibitingmoreintensesexualconflictwilli.attendthenestless frequently,andii.attendthenestlesssynchronously. CentralAsiamaybethecradleofthesubfamilyRemizinae.Ourphylogenetictree may reveal this. The ancestral breeding system of the polygamous Eurasian pendulinetits Remiz pendulinus pendulinus ,withhabitatcharacteristicsandvarious morphologicaltraitssuperimposedonthephylogenymayprovideimportantinsight into the evolution of the diverse breeding systems within the relatively confined groupofpendulinetits. METHODS WevisitedtwofieldsitesinKazakhstan:fortheWhitecrownedpendulinetitsthe foothillsoftheTienShanmountainsnearJabagly(42 °25’N,70 °29’E)(10May–10 June), for Blackheaded penduline tits the Topar Lakes, near Topar (45 °02’N, 75 °01’E)(12–26June)(seeFig.IV.1). Default protocol field methods for penduline tit research, including monitoringofincubationbehaviour,wereused(seeAppendix III ).Additionally,nest attendancewasfilmedduringtheperiodofegglayingusingtheSonyDCRHC44E digital camcorder, over full daylight periods at a resolution of one frame per 5 seconds(see Chapter IV and IX forfurtherdetailsonfieldmethodology).Duetothe inaccessibility of most nests of the Whitecrowned penduline tits at Jabagly, the exactphaseofegglayingwasnotknown,butnestswerefilmedfromastageEof nestbuildingonwards(see Appendix III),which,atleastinEurasianpendulinetits,is whenegglayingtakesplace.OnenestofaBlackheadedpendulinetitpair( R. m.

191 ssaposhnikowi ) was monitored for nest attendance at exactly thecorrectperiod, at twoandthreeeggs. PendulinetitsarenotresidentinKazakhstan,butmigratesouthwardsduring winter.

(A)

(B) Figure IV.1 (A)ThefoothillsoftheTienShanmountainrangeatJabagly.Thearrowindicatesoneof the valleys in which the Whitecrowned penduline tits build their nests, mainly on hawthorn trees (Crataegus sp. ).Fourofthesevalleys,averagedistancebetweenthemabout2.7km,wereincludedin ourresearch.(B)AtypicalhabitatofBlackheadedpendulinetits,reedbedsalongtheToparLakes, nearTopar.

192

RESULTS White-crowned penduline tit (InthisreporttheWhitecrownedpendulinetitisthe R. c. coronatus )

Habitat ThehabitatoftheWhitecrownedpendulinetitnearJabaglyconsistedof,mainly, hawthorn( Crataegus sp. )treeswithafewwillows( Salix sp. )andpoplars( Populus sp .)aligningsmallstreamscomingdownfromtheTienShanmountainsthroughthe foothills. The penduline tits build their nests in these trees, and use various, yet typical, materials for their nests material which appears to be scarcely available. The limited amount of vegetation (beyond the aforementioned trees and some shrubbery,thereisnotmuchmorethanopengrassland)resultsinthatfoodresources areratherpoor.Althoughthisrequiressomemeasureofquantification( e.g. NDVI LandSatimages),itseemedtousverymuchlessavailablethanin,forexample,our fieldsiteinHungary,Fehértó. ThehabitatoftheWhitecrownedpendulinetitsatToparwasratherdifferent, yetwithregardstotheamountoffoodandnestmaterialcomparabletoJabagly.At TopartheirhabitatwasasmallsideriveroftheriverTopar,runningthroughthesand dunes.Alongthisriversomereed( Phragmites australis )andbulrush( Typha sp. ). ThenestswerebuiltinRussianolives( Eleagnus angustifolius ).Immediatelybeyond these narrow reed beds semidesert. The high density of nests of Whitecrowned pendulinetitsherewasremarkable. Biometricsandsong (A)(B)

Figure IV.2 Male(A)andfemale(B)Whitecrownedpendulinetit Remiz coronatus .

193

Whitecrowned penduline tits have a sexually dimorphic plumage, the extent to whichhasyettobeanalysed:Malesgenerallyhaveawidermaskthanfemaleswhich mayextendontothenape,sometimesonlyleavinga white crown. Males are also morebrightlycolouredwithdarkermantleandwingcoverts,andwhitercrownthan females (Fig. IV.2A). Females may have black on the nape too (Fig. IV.2B). A characteristics feature of the Whitecrowned penduline tits plumage compared to EurasianandBlackheadedpendulinetitisthecompletelackofredbrownfeathers ontheheadandbreast. WhitecrownedpendulinetitsaresmallerandlighterthanEurasianpenduline tits(mean±SD:7.36±0.48gversus9.62±0.87g).Females(7.72±0.52g)seem slightlyheavierthanmales(7.14±0.27g),asusual. Song seems very similar to Eurasian penduline tits: different syllables are used,butcomplexityappearsnottodifferverymuchfromtheEurasianpenduline tits.This,however,requiresdetailedanalyses.Wewereclearlymoresuccessfulin mistnettingthebirdsusingaplaybackofWhitecrownedpendulinetitsongthanwith aplaybackofthesongofEurasianpendulinetits. Parentalcare Nests are built by male and female together from stage A onwards, although an unmatedmalewillstartonitsown(Fig.IV.3).Sometimesthepairseemstowork closelytogether,mostlyinearlierstagesofnestbuilding,butingeneraltheyappear toworkprettymuch‘independently’ofoneanother(incontrasttothecooperative Capependulinetits Anthoscopus minutus ;see Chapter IX ). Of the 18 nests where we observed parental care, incubation was always carriedoutby male and female. However ,at 4 neststheyoungwere fed by only one parent, 2 male-only and 2 female-only .Additionally,YevgeniBelousovhad observedafeedingfemaleonlyinthesameseasoninAksuJabaglyNationalPark.

Clutch size wasdeterminedat4nests: 6.75 ±2.63eggs. Number of nestlings was determined at 6 nests (at various ages): 5.83 ± 2.32 nestlings. Mate switching hasnotbeenobserved. At 3 neststhe clutch was abandoned duringincubation. Predation tookplaceat 1 nest(possiblyat2nests).

194

Summaryofcollecteddata Nests: 32 (25atJabagly,7atTopar) Trappedmales: 22 (19atJabagly,3atTopar) Trappedfemales: 14 (13atJabagly,1atTopar) Samplednestlings: 31(allatJabagly) Allindividualstrapped(N= 67 )havebeensampledforblood(twoofwhichmaynot containenoughbloodforanalysis). Alltrappedadultshavebeenphotographedformasksizeandsaturationofback. Processvideo: 7 pairs(allatJabagly;5ofwhichforonedayonly) Songrecording: 12 males(allatJabagly) Incubationvideo: 10 nests (9atJabagly,1atTopar)

Figure IV.3MaleWhitecrownedpendulinetitatitsnest Black-headed penduline tit (In this report the subspecies R. m. macronyx and R. m. ssaposhnikowi and any hybridsarelumpedunderthisname,unlessotherwisestated)

195

Habitat ThehabitatwherewehavebeensearchingforBlackheadedpendulinetitsconsisted ofsemidesertinterspersedwithsmalllakesandmarshes.Therelativelysmalllakes inthesesanddunesapparentlycontainedtoolittlevegetationforpendulinetits. It alsoseemedratherdrycontainingverylittlefood.Blackheadedpendulinetitswere tobefoundinmoreextensivereedbedsclosetothe river Topar (at many places inaccessible) (Fig. IV.1B). The ssaposhnikowi subspeciesbuiltitsnestinatree(a Russianolive),althoughblackheadedpendulinetitsmaybuildtheirnestsinreeds and are thus likely less dependent on trees than, for instance, Whitecrowned pendulinetits.Foodresourcesinthesereedbedswere plentiful. Nest material too wasmuchmoreabundantthenatJabaglymainlyduetotheabundanceofreedand bulrush. Biometricsandsong Blackheadedpendulinetitshaveaclearlysexuallydimorphicplumage,theextentto whichhasyettobeanalysed: ssaposhnikowi : Males haveablackmask,achestnutbrowncrownandnape, andawhitishthroat(verymuchlike Remiz pendulinus caspius ).Adeeplycoloured darkredbrownmantleandwingcoverts,andalotofredcolourationonthebreast (Fig. IV.4A). Females are very much like Eurasian penduline tit males, yet with typical female characteristics: They have a wide mask, but squared rather than conicallyshapedandinterspersedwithsomegreyfeathers,inparticularatthebaseof thebill.Agreyringaroundtheeye.Aclearredfringeontheheadaboveforehead patchextendingtobothsidesofthecrown.Lotsofredfeathersonthebreast.The backispalerthanthemales(Fig.IV.4B). macronyx : Males haveacompletelyblackhead,averydarkreddishbreast andredbrownmantle(Fig.IV.4C).Femaleshavenotbeenobservedinourfield(but seeFig.IV.4D). Blackheaded penduline tits appear to be of similar size and weight as Eurasianpendulinetits(mean±SD:10.75±0.64gversus9.62±0.87g).Females (11.20g)seemslightlyheavierthanmales(10.30g),asusual. Song (and call) is clearly different from Eurasian penduline tits: different syllablesareused,ataslightlydifferentfrequency,butcomplexitymaynotbevery different.This,obviously,requiresdetailedanalyses.

196

Parentalcare The two Astage nests that we found were built by single males. The other nest, foundinstageD,wasattendedbythepairwhenwefoundit.Again,thepairseems toworkprettymuchindependentlyfromeachotherandcannotbeobservedatthe nesttogetherveryoften. At the one nest where we have been able to observe incubation, this was female-only care .Themaledesertedwhentherewerethreeeggsinthenest:VERY similar to Eurasian penduline tit Remiz pendulinus pendulinus . (The eggs were initially covered, and uncovered on the day the male had deserted (Valera et al. 1997)). Additionally,BlackheadedpendulinetitsinTurkmenistan( Remiz macronyx neglectus ) appeartoexhibitfemaleonlycaretoo.Themalehasneverbeenobserved to take up parental care, nor seems biparental desertion to make up part of the breedingsystem(Y.M.Belousov,pers.comm .).Themaleinthisspeciesisdescribed todesertat2eggs(Belousov1979). Clutch size wasdeterminedat1nest: 6 eggs We have not been able to determine the number of nestlings of Blackheaded pendulinetits. Summaryofcollecteddata Nests: 3 (twoofwhichinstageAafterwhichtheywereabandoned) Trappedmales: 1 (possiblyhybrid macronyx X ssaposhnikowi ) Trappedfemales: 1 (subspecies ssaposhnikowi ) Samplednestlings: 0 Allindividualstrapped(N= 2)havebeensampledforblood. Alltrappedadultshavebeenphotographedformasksizeandsaturationofback. Processvideo: 1 pair (ssaposhnikowi pair) Songrecording: 1 male Incubationvideo: 0nests

197

(A) (B)

(C) (D) Figure IV.4 (A)Male R. m. ssaposhnikowi .(B)Female R. m. ssaposhnikowi .(C)MaleBlackheaded pendulinetit,possiblyahybrid ssaposhnikowi x macronyx sincetheamountofredbrownonthehead and whiteon the throatpatchis markedlylessthaninatypical ssaposhnikowi male(see(A)).(D) Male (top) and female (bottom) Blackheaded penduline tit R. m. neglectus from Turkmenistan (courtesyphotoY.M.Belousov). Intotalwehaveseen: 4 R. macronyx macronyx males 4 R. m. ssaposhnikowi males 2 R. m. ssaposhnikowi females 3 R. pendulinus likefemales,whichlikelyhavebeenofsubspecies ssaposhnikowi. ThepopulationofpendulinetitsattheToparLakesthusconsistsofatleastthree different(sub)species,includingtheWhitecrownedpendulinetits R. c. coronatus .

198

CONCLUSIONS 1.AlthoughwehavelimiteddataontheBlackheadedpendulinetits,wecanfairly confidentially describe the breeding system of both species: The Whitecrowned penduline tits exhibits biparental care (NB feeding may be uniparental in some cases),whereastheBlackheadedpendulinetitseemstoexhibituniparentalcare(in accordance with observations from Turkmenistan (Y.M. Belousov, pers. comm. )), i.e. tworadicallydifferentbreedingsystemswithinKazakhstan.Detaileddescription (as to the exact share in incubation between male and female, for example) will followfromanalysesofvideos. 2.Importantly,thepredictedrelationbetweenbreedinghabitatandbreedingsystem IS supported: rich habitats were associated to less cooperation and a thus more polygamousbreedingsystem;poorhabitatswereassociatedtocooperationresulting inbiparentalcare. 3, 4. From observations in the field we note that both species exhibit sexual dimorphism,althoughmuchstrongerinthepolygamousBlackheadedpendulinetit. Howtheplumagedimorphism,songcomplexity,andbehaviourfitthepredictionsin relation to conflict and cooperation remains to be analysed. We have collected a substantialamountofdatatofurtherinvestigatethis. 5.Wehavecollectedasufficientamountofbloodsamplestobeabletoreconstructa phylogenetic tree of penduline tits. DNA samples collected from other populations/species will be included (i.e . Remiz consobrinus consobrinus, Remiz coronatus stoliczkae, Remiz pendulinus pendulinus, and Anthoscopus minutus gigi ; SupplementA).Ideally,alsoDNAfromVerdin Auriparus flaviceps andpossiblythe Firecappedtit Cephalopyrus flammiceps andTithylia Pholidornis rushiae willbe included.DNAoftheVerdinhasbeenrequestedfromprofRobertZink,University ofMinnesota.Alternatively,ClemensKuepper,UniversityofBath,maybeableto get DNA from subspecies A. f. sinaloae . A number of sequences for Auriparus flaviceps are available from GenBank (COI, cytb, RAG1, and mtDNA). The Fire cappedtitandTithyliaseemratherelusive.Hopefullysomemuseumspecimens,for instance,maybeasolution.

199

ACKNOWLEDGEMENTS I am grateful to Sander Bot (University of Groningen, The Netherlands) and Vera Voronova (UniversityofKaraganda,Kazakhstan)fortheirimportantcontributiontothefieldwork.Iamthankful to Lammert Bies, Sergey Sklyarenko, Machiel Valkenburg, and Arend Wassink for their essential support in arranging practicalities. I also thank Yevgeni Belousov for sharing the information he collectedinthe‘70ieson R. m. neglectus . Theresearchleadingtotheseresultshasreceivedfunding from the European Community’s Sixth Framework Programme (FP6/20022006) under contract n. 28696 (GEBACO and INCORE). Further financial support came from a University of Bath StudentshiptoREvD. REFERENCES Belousov, Y.M. 1979.OnthenestingbiologyofBlackheadedpendulinetitsRemiz pendulinus neglectus (In Russian). In: Tyezysy conferentsy molodykh uchenykh 'Ekologya gnyezdovanya ptyts y methody yeyo yzuchenya', Samarkand. Valera, F., Hoi, H. & Schleicher, B. 1997. Egg burial in Penduline Tits Remiz pendulinus: its role in nest desertion and female polyandry. Behavioral Ecology , 8, 2027

200

Jabagly

201

SUPPLEMENT A

Distributionofall14pendulinetitspeciesoftheworld(NB Anthoscopus sylviella isnotmentioned inHarrap&Quinn1996; Remiz macronyx isnotgiventhespeciesstatusbySibley&Monroe1993). Noteworthyare Auriparus flaviceps, Cephalopyrus flammiceps, and Pholidornis rushiae giventheir ‘odd’distributionandslightlydifferent(nestbuilding)behaviour.

202

AFFILIATIONS OF CO-AUTHORS

Dušan M. Brinkhuizen, Animal Ecology Group, Centre for Ecological and EvolutionaryStudies,UniversityofGroningen,BiologicalCentre,9750AAHaren,

TheNetherlands

Richard ffrench-Constant, Centre for Ecology and Conservation, University of

Exeter,CornwallCampus,PenrynTR109EZ,UnitedKingdom

Jan Komdeur, Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Biological Centre, 9750 AA Haren, The

Netherlands

Penn Lloyd, PercyFitzPatrickInstitute,DST/NRFCentreofExcellence,University ofCapeTown,Rondebosch7701,CapeTown,SouthAfrica

Arjen E. Pilon, Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Biological Centre, 9750 AA Haren, The

Netherlands

Ákos Pogány, GödBiologicalCentre,EötvösLorándUniversity,JávorkaSándoru.

14.,Göd,H2131,Hungary

Tamás Székely, Department of Biology and Biochemistry, University of Bath,

ClavertonDown,BathBA27AY,UnitedKingdom

István Szentirmai, İrsèg National Park, Siskaszer 26a, H9941, İriszentpéter,

Hungary

Marco van der Velde, Animal Ecology Group, Centre for Ecological and EvolutionaryStudies,UniversityofGroningen,BiologicalCentre,9750AAHaren,

TheNetherlands

Franz J. Weissing, Theoretical Biology Group, Centre for Ecological and EvolutionaryStudies,UniversityofGroningen,BiologicalCentre,9751NNHaren,

TheNetherlands

Xutong Yang, Department of Biology and Biochemistry, University of Bath, ClavertonDown,BathBA27AY,UnitedKingdom

203