Src-Family and Syk Kinases in Activating and Inhibitory Pathways in Innate Immune Cells: Signaling Cross Talk

Total Page:16

File Type:pdf, Size:1020Kb

Src-Family and Syk Kinases in Activating and Inhibitory Pathways in Innate Immune Cells: Signaling Cross Talk Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Src-family and Syk Kinases in Activating and Inhibitory Pathways in Innate Immune Cells: Signaling Cross Talk Clifford A. Lowell Department of Laboratory Medicine, University of California, San Francisco, California 94143 Correspondence: [email protected] The response of innate immune cells to growth factors, immune complexes, extracellular matrix proteins, cytokines, pathogens, cellular damage, and many other stimuli is regulated by a complex net of intracellular signal transduction pathways. The majority of these path- ways are either initiated or modulated by Src-family or Syk tyrosine kinases present in innate cells. The Src-family kinases modulate the broadest range of signaling responses, including regulating immunoreceptors, C-type lectins, integrins, G-protein-coupled recep- tors, and many others. Src-family kinases also modulate the activity of other kinases, includ- ing the Tec-family members as well as FAK and Pyk2. Syk kinase is required for initiation of signaling involving receptors that utilize immunoreceptor tyrosine activation (ITAM) domains. This article reviews the major activating and inhibitory signaling pathways regu- lated by these cytoplasmic tyrosine kinases, illuminating the many examples of signaling cross talk between pathways. nnate immune cells, including macrophages, important roles in innate cells. They are not dis- Idendritic cells, granulocytes, and mast cells, cussed in detail in this article, but are reviewed function as the first line of defense against elsewhere in articles on the subject. pathogens. These cells use a dizzying array of There are eight members of the Src family; cell-surface receptors, which are connected to innate immune cells primarily express Hck, an equally complicated intracellular signal trans- Fgr, Lyn, and to a lesser extent, Src (Lowell duction network, to sense pathogen molecules 2004). The Syk-ZAP70 family has only two and then orchestrate the appropriate immune members and only Syk is found in innate cells. response. Among the intracellular signaling mol- Most innate cell types express the same spec- ecules that are most crucial for innate immune trum of kinases with some specific cellular dif- cells are the cytoplasmic tyrosine kinases. Two ferences. For example, mast cells express a majorkinasefamiliesthat operateintheproximal broader range of Src-family kinases than macro- intracellular signaling pathways in innate cells are phages or dendritic cells (Colgan and Hankel the Src-family kinases and the Syk-ZAP70 family. 2010). In general, Src-family and Syk kinases A third familyof kinases, the Tek family, also have tend to operate together in signaling pathways, Editors: Lawrence E. Samelson and Andrey S. Shaw Additional Perspectives on Immunoreceptor Signaling available at www.cshperspectives.org Copyright # 2011 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a002352 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a002352 1 Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press C.A. Lowell with the Src-family being “upstream” or acti- of interaction and cross regulation. Together, vated first in response to pathogen detection. these pathways impinge on downstream factors, These enzymes then communicate downstream such as MAPK kinases, which have broad effects to Tec-family members. The Tec-family kinases on gene transcription; the Rac/Rho pathway to expressed in innate cells include Btk, Bmx, and modulate cytoskeletal function; the inositol Tec (Koprulu and Ellmeier 2009; Tohyama and trisphosphate (IP3), and diacylglycerol pathway Yamamura 2009). Additionally, Src-family kin- (DAG), which regulates Ca2þ entry into cells ases activate yet another family of PTKs, the and activation of various isoforms of protein FAK/Pyk2 tyrosine kinases, which play a major kinase C (PKC). Overall, the outline of the pro- role in integrin signaling (Hauck et al. 2000). totypical immunoreceptor pathway as described Though primarily studied in activating path- here is similar in both innate and adaptive im- ways, Src-family and Syk kinases also activate mune cells (Smith-Garvin et al. 2009; Kurosaki inhibitory signaling pathways (Nimmerjahn and et al. 2010). Ravetch 2008). In many situations, inhibitory signaling often overrides the activating signal. New Concepts in Immunoreceptor Signaling: Pathways can also be initiated at different times CARD9 and Receptor Diversity or rates. Finally, to add even more complexity, activating and inhibitory pathways often inter- Recent and exciting developments in the immu- act indirectly, for example, through the produc- noreceptor paradigm include recent progress in tion of cytokines and growth factors and not delineating how this pathway is connected to through direct intracellular biochemical inter- NF-kB and the demonstration that many innate actions; Hence the term signaling “cross talk,” immune receptors utilize the “immunoreceptor which now appears commonly in the literature pathway” even though they lack ITAMs and (O’Neill 2008; Ivashkiv 2009; Page et al. 2009). therefore are not technically immunoreceptors. The adapter protein CARD9, which con- tains a caspase-recruitment domain (CARD), OVERVIEW OF ACTIVATING PATHWAYS has now been shown to be the link between a variety of ITAM-containing receptors involved Classical Immunoreceptor Pathways in recognition of fungal and probably other In the prototypical immunoreceptor pathway, pathogen structures and NF-kB (Fig. 2) (Gross engagement of the receptor leads to activation et al. 2006; Gross et al. 2009). CARD9 is closely of Src-family kinases, which in turn phosphor- related to the lymphocyte protein CARMA-1, ylate immunoreceptor tyrosine-based activa- which forms a complex with the adapter pro- tion motifs (ITAMs) present on either the teins Bcl-10 and MALT1, and thus links the T- receptor or associated subunits (Fig. 1). This and B-cell receptors to the NF-kBpathway leads to recruitment of Syk, by binding of the (Rawlings et al. 2006). CARD9 forms the same Syk SH2 protein domain to the phospho-ITAM complex in innate cells. In lymphoid cells, residues, and activation of Syk allowing it CARMA-1 is activated by PKC isoforms (PKCu to phosphorylate downstream substrates. One in T-cells and PKCb in B-cells), which phos- of the enzymes activated downstream is phos- phorylate CARMA-1, resulting in a conforma- phoinositide3-kinase(PI3-kinase), which gener- tional change that allows it to interact with ates membrane-associated phosphatidylinositol IKK, leading to IkB turnover and NF-kB activa- (3,4,5)-triphosphate (PIP3). The FAK/Pyk2 tion. In myeloid cells, it remains unclear if kinases are activated directly via the Src-family CARD9 activation is directly downstream of kinases, where they contribute to downstream PKC activation (Hara and Saito 2009). Never- responses involving cell adhesion and migra- theless, it is clear that in the absence of tion. Though usually depicted as a linear signal- CARD9, receptors involved in fungal pathogen ing pathway with Src-kinases at the top and recognition (Dectin-1, Dectin-2) are unable to FAK/Pyk2 at the bottom, there are many points activate NF-kB, and more importantly, the 2 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a002352 Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Cytoplasmic Tyrosine Kinases in Innate Immune Cells Classical immunoreceptors Receptors co-opting ITAM signaling FcRγ Receptors DAP12 Receptors FcεR, FcγRs TREMs Dual Receptors Dectin-2 MDL-1 Hemi-ITAM Receptors Integrins Mincle CD200R3 Dectin-1 IL-3R DCAR Siglec-H CLEC2 PSGL-1 γ PIR-A MAIR-II CLEC9A IFN R SIRP-β RANK FcRγ DAP12 DAP12 FcRγ +– + – PIP3 PIP2 SLP-76SSLLLP-7P-P P Y Y P P Y Y P Y P SOS PI3-KPPI3-K P Y Y P Y Y Syk Syk Syk Syk P P LAT/NTAL Y Y P P Y Y P Y γ P Y Y Y Y SFK SFK PLCPLC Vav Tec Ks Fak/Pyk2 CARD9 Ras DAG IP3 RasGRP RhoRho GTPase WASPW NF-kB pathway PKC 2+ MAPKs Ca Actin polymerization Cytokine secretion Cytokine secretion NFAT proliferation gene transcription Migration degranulation Figure 1. Cytoplasmic tyrosine kinases in the activating signaling pathways utilizing ITAM-containing adapters. Examples of immunoreceptors, hemi-ITAM C-type lectin receptors, and nonimmunoreceptors that utilize ITAM-signaling adapters and the cytoplasmic tyrosine kinases (indicated as shaded molecules) discussed in this article are shown. “Classical immunoreceptors” refers to those signaling molecules that are directly coupled to ITAMadapters FcRg (group shown on the left) or DAP12 (group shown on the right) through transmembrane charged residues, shown as “þ” and “2” in the figure. These immunoreceptors consist of immunoglobulin superfamily-containing proteins (such as the Fc receptors, PIR-A, or the TREMs) or the C-type lectin receptors (Dectin-2, Mincle, or MDL-1). In some cases, receptors may utilize either signaling adapter (see Hamerman et al. 2009). Examples of the C-type lectin receptors that have ITAM-like sequences as imbedded domains within their cytoplasmic tails are Dectin-1, CLEC2, and CLEC9A. The sequences with the ITAM domain of these receptors differs in that the membrane distal tyrosine resides in a YxxxL sequence (or YxxxI for mouse), as opposed to the traditional YxxL ITAM sequence found around the proximal tyrosine. As a result, the
Recommended publications
  • Calycosin Down-Regulates C-Met to Suppress Development of Glioblastomas
    J Biosci (2019) 44:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-019-9904-4 (0123456789().,-volV)(0123456789().,-volV) Calycosin down-regulates c-Met to suppress development of glioblastomas , XIAOHU NIE ,YUE ZHOU* ,XIAOBING LI,JIE XU,XUYAN PAN,RUI YIN and BIN LU Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang, People’s Republic of China *Corresponding author (Email, [email protected]) These authors contributed equally to this work. MS received 15 October 2018; accepted 9 June 2019; published online 7 August 2019 The antitumor effect of calycosin has been widely studied, but the targets of calycosin against glioblastomas are still unclear. In this study we focused on revealing c-Met as a potential target of calycosin suppressing glioblastomas. In this study, suppressed-cell proliferation and cell invasion together with induced-cell apoptosis appeared in calycosin-treated U251 and U87 cells. Under treatment of calycosin, the mRNA expression levels of Dtk, c-Met, Lyn and PYK2 were observed in U87 cells. Meanwhile a western blot assay showed that c-Met together with matrix metalloproteinases-9 (MMP9) and phosphorylation of the serine/threonine kinase AKT (p-AKT) was significantly down-regulated by calycosin. Furthermore, overexpressed c-Met in U87 enhanced the expression level of MMP9 and p-AKT and also improved cell invasion. Additionally, the expression levels of c-Met, MMP9 and p-AKT were inhibited by calycosin in c-Met overex- pressed cells. However, an AKT inhibitor (LY294002) only effected on MMP9 and p-AKT, not on c-Met. These data collectively indicated that calycosin possibility targeting on c-Met and exert an anti-tumor role via MMP9 and AKT.
    [Show full text]
  • Inhibition of DDR1-BCR Signalling by Nilotinib As a New Therapeutic
    Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer Maya Jeitany, Cédric Leroy, Priscillia Tosti, Marie Lafitte, Jordy Le Guet, Valérie Simon, Debora Bonenfant, Bruno Robert, Fanny Grillet, Caroline Mollevi, et al. To cite this version: Maya Jeitany, Cédric Leroy, Priscillia Tosti, Marie Lafitte, Jordy Le Guet, et al.. Inhibition of DDR1- BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Molecular Medicine, Wiley Open Access, 2018, 10 (4), pp.e7918. 10.15252/emmm.201707918. hal- 01872978 HAL Id: hal-01872978 https://hal.archives-ouvertes.fr/hal-01872978 Submitted on 12 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Research Article Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer Maya Jeitany1,†, Cédric Leroy1,2,3,†, Priscillia Tosti1,†, Marie Lafitte1, Jordy Le Guet1, Valérie Simon1, Debora Bonenfant2, Bruno Robert4, Fanny Grillet5, Caroline Mollevi4, Safia El Messaoudi4, Amaëlle Otandault4, Lucile Canterel-Thouennon4, Muriel Busson4, Alain R Thierry4, Pierre Martineau4, Julie Pannequin5, Serge Roche1,*,† & Audrey Sirvent1,†,** Abstract The current clinical management involves surgical removal of the primary tumour, often associated with chemotherapy.
    [Show full text]
  • Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors
    Published OnlineFirst June 13, 2011; DOI: 10.1158/1078-0432.CCR-10-2616 Clinical Cancer Molecular Pathways Research Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors Juan Carlos Montero1, Samuel Seoane1, Alberto Ocaña2,3, and Atanasio Pandiella1 Abstract Dasatinib is a small molecule tyrosine kinase inhibitor that targets a wide variety of tyrosine kinases implicated in the pathophysiology of several neoplasias. Among the most sensitive dasatinib targets are ABL, the SRC family kinases (SRC, LCK, HCK, FYN, YES, FGR, BLK, LYN, and FRK), and the receptor tyrosine kinases c-KIT, platelet-derived growth factor receptor (PDGFR) a and b, discoidin domain receptor 1 (DDR1), c-FMS, and ephrin receptors. Dasatinib inhibits cell duplication, migration, and invasion, and it triggers apoptosis of tumoral cells. As a consequence, dasatinib reduces tumoral mass and decreases the metastatic dissemination of tumoral cells. Dasatinib also acts on the tumoral microenvironment, which is particularly important in the bone, where dasatinib inhibits osteoclastic activity and favors osteogenesis, exerting a bone-protecting effect. Several preclinical studies have shown that dasatinib potentiates the antitumoral action of various drugs used in the oncology clinic, paving the way for the initiation of clinical trials of dasatinib in combination with standard-of-care treatments for the therapy of various neoplasias. Trials using combinations of dasatinib with ErbB/HER receptor antagonists are being explored in breast, head and neck, and colorectal cancers. In hormone receptor–positive breast cancer, trials using combina- tions of dasatinib with antihormonal therapies are ongoing. Dasatinib combinations with chemother- apeutic agents are also under development in prostate cancer (dasatinib plus docetaxel), melanoma (dasatinib plus dacarbazine), and colorectal cancer (dasatinib plus oxaliplatin plus capecitabine).
    [Show full text]
  • Receptor Signaling and Syk in the Initiation of B-Cell Antigen
    Nonredundant Roles of Src-Family Kinases and Syk in the Initiation of B-Cell Antigen Receptor Signaling This information is current as Ondrej Stepanek, Peter Draber, Ales Drobek, Vaclav Horejsi of September 30, 2021. and Tomas Brdicka J Immunol 2013; 190:1807-1818; Prepublished online 18 January 2013; doi: 10.4049/jimmunol.1202401 http://www.jimmunol.org/content/190/4/1807 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/01/18/jimmunol.120240 Material 1.DC1 http://www.jimmunol.org/ References This article cites 75 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/190/4/1807.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 30, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Nonredundant Roles of Src-Family Kinases and Syk in the Initiation of B-Cell Antigen Receptor Signaling Ondrej Stepanek, Peter Draber, Ales Drobek, Vaclav Horejsi, and Tomas Brdicka When a BCR on a mature B cell is engaged by its ligand, the cell becomes activated, and the Ab-mediated immune response can be triggered.
    [Show full text]
  • Activation Tyrosine Kinases, Btk and Lyn, in Mast Cell Redundant And
    Redundant and Opposing Functions of Two Tyrosine Kinases, Btk and Lyn, in Mast Cell Activation This information is current as Yuko Kawakami, Jiro Kitaura, Anne B. Satterthwaite, of September 25, 2021. Roberta M. Kato, Koichi Asai, Stephen E. Hartman, Mari Maeda-Yamamoto, Clifford A. Lowell, David J. Rawlings, Owen N. Witte and Toshiaki Kawakami J Immunol 2000; 165:1210-1219; ; doi: 10.4049/jimmunol.165.3.1210 Downloaded from http://www.jimmunol.org/content/165/3/1210 References This article cites 75 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/165/3/1210.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Redundant and Opposing Functions of Two Tyrosine Kinases, Btk and Lyn, in Mast Cell Activation1 Yuko Kawakami,* Jiro Kitaura,* Anne B. Satterthwaite,† Roberta M.
    [Show full text]
  • Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia
    cancers Review Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia Kalpana K. Bhanumathy 1,*, Amrutha Balagopal 1, Frederick S. Vizeacoumar 2 , Franco J. Vizeacoumar 1,3, Andrew Freywald 2 and Vincenzo Giambra 4,* 1 Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (A.B.); [email protected] (F.J.V.) 2 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (F.S.V.); [email protected] (A.F.) 3 Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada 4 Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy * Correspondence: [email protected] (K.K.B.); [email protected] (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.) Simple Summary: Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase su- perfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies.
    [Show full text]
  • Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy
    Review Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy Ursula Bommhardt, Burkhart Schraven and Luca Simeoni * Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany * Correspondence: [email protected]; Tel. +49-391-6717894 Received: 12 June 2019; Accepted: 12 July 2019; Published: 16 July 2019 Abstract: In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck. Keywords: Lck; T cell; CAR; cancer; leukemia; brain 1. Introduction The lymphocyte-specific protein tyrosine kinase (Lck) is a member of the Src family of protein tyrosine kinases firstly identified in the 1980s [1,2]. Since then, the function of Lck has been extensively investigated and many mechanistic insights into the regulation of its activity have been revealed.
    [Show full text]
  • SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis
    cancers Review SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis Edwige Voisset , Fabienne Brenet , Sophie Lopez and Paulo de Sepulveda * INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, Institute Paoli-Calmettes, CRCM—Cancer Research Center of Marseille, U1068 Marseille, France; [email protected] (E.V.); [email protected] (F.B.); [email protected] (S.L.) * Correspondence: [email protected] Received: 28 May 2020; Accepted: 19 July 2020; Published: 21 July 2020 Abstract: Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80–90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
    [Show full text]
  • Facial Cutaneo-Mucosal Venous Malformations Can Develop
    Brahami et al. Journal of Negative Results in BioMedicine (2017) 16:9 DOI 10.1186/s12952-017-0072-5 BRIEFREPORT Open Access Facial cutaneo-mucosal venous malformations can develop independently of mutation of TEK gene but may be associated with excessive expression of Src and p-Src Nabila Brahami1, Selvakumar Subramaniam2, Moudjahed Saleh Al-Ddafari1, Cecile Elkaim3, Pierre-Olivier Harmand3, Badr-Eddine Sari1,4, Gérard Lefranc5 and Mourad Aribi1* Abstract We aimed to search for mutations in the germline and somatic DNA of the TEK gene and to analyze the expression level of Src and phospho-Src (p-Src) in tumor and healthy tissues from patients with facial cutaneo-mucosal venous malformations (VMCM). Eligible patients from twelve families and thirty healthy controls were recruited respectively at the Departments of Stomatology and Oral Surgery, and Transfusion Medicine of Tlemcen University Medical Centre. Immunoblot analyses of Src and p-Src were performed after direct DNA sequencing. No somatic or germline mutations werefoundinallthe23exonsandtheir5’ and 3’ intronic flanking regions, except for one case in which a c.3025+20- 3025+22 del mutation was highlighted at the intron 15, both in the germline and somatic DNA. Additionally, elevated expression levels of Src and p-Src were observed only in the patient with such mutation. However, when normalized to β-actin, the overall relative expression levels of both Src and p-Src were significantly increased in VMCM tissues when compared to healthy tissues (for both comparisons, p <0.001). In conclusion, we confirm the outcomes of our previous work suggesting that VMCM can develop independently of mutation of the TEK gene.
    [Show full text]
  • Tyrosine Kinases As Targets for the Treatment of Rheumatoid Arthritis Christina D’Aura Swanson, Ricardo T
    REVIEWS Tyrosine kinases as targets for the treatment of rheumatoid arthritis Christina D’Aura Swanson, Ricardo T. Paniagua, Tamsin M. Lindstrom and William H. Robinson Abstract | As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA. D’Aura Swanson, C. et al. Nat. Rev. Rheumatol. 5, 317–324 (2009); doi:10.1038/nrrheum.2009.82 Introduction Rheumatoid arthritis (RA) is an autoimmune synovitis that tyrosine kinases (RTKs) and non­receptor tyrosine kinases affects 0.5% of the population and can result in disability (non­rTKs).3 In addition to an extracellular ligand­binding owing to joint destruction.1 A number of cellular responses domain and a membrane­spanning domain, RTKs usually are thought to be involved in the pathogenesis of RA. An possess an intracellular cytoplasmic domain that contains adaptive autoimmune response mediated by T cells and a kinase core and regulatory sequences.
    [Show full text]
  • The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis
    cancers Review The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis 1, 2, , 1, Stephen P. Ducray y , Karthikraj Natarajan y z, Gavin D. Garland z, 1, , 2,3, , Suzanne D. Turner * y and Gerda Egger * y 1 Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK 2 Department of Pathology, Medical University Vienna, 1090 Vienna, Austria 3 Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria * Correspondence: [email protected] (S.D.T.); [email protected] (G.E.) European Research Initiative for ALK-related malignancies; www.erialcl.net. y These authors contributed equally to this work. z Received: 7 June 2019; Accepted: 23 July 2019; Published: 30 July 2019 Abstract: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies. Keywords: ALK; ALCL; NPM-ALK; EML4-ALK; NSCLC; ALK-translocation proteins; epigenetics 1. Introduction Anaplastic lymphoma kinase (ALK) was first successfully cloned in 1994 when it was reported in the context of a fusion protein in cases of anaplastic large cell lymphoma (ALCL) [1].
    [Show full text]
  • Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy
    cancers Review Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy 1,2, 3,4 1 2 3, Charles Pottier * , Margaux Fresnais , Marie Gilon , Guy Jérusalem ,Rémi Longuespée y 1, and Nor Eddine Sounni y 1 Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; [email protected] (M.G.); [email protected] (N.E.S.) 2 Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium; [email protected] 3 Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; [email protected] (M.F.); [email protected] (R.L.) 4 German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany * Correspondence: [email protected] Equivalent contribution. y Received: 17 January 2020; Accepted: 16 March 2020; Published: 20 March 2020 Abstract: Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs.
    [Show full text]