Logo Renaissance Inside

Total Page:16

File Type:pdf, Size:1020Kb

Logo Renaissance Inside WINTER 1997 Volume 16 I Number 2 ~~ ~~s nat of th . n9 t.ouc. e ISTE Special Interest Group for Logo-Us' LOGO RENAISSANCE INSIDE Seymour Papert on Looking at Technology Robert Tinker on Logo's Return Logo for Little Kids Logo and the Writing Process StarLogo Starters Research You Can Use News, Reviews and Commentary Volume 16 I Number 2 Editorial Publisher 1997-1998 Logo Exchange is published quarterly by the In­ International Society for Technology in Education ISTE BOARD OF DIRECTORS ternational Society for Technology in Education Special In terest Group for Logo-Using Educa­ Editor-in-Chief ISTE Executive Board Members Lynne Schrum, President University of Georgia­ tors. Logo Exchange solicits articles on all aspects Gary S. Stager, Pepperdine University of Logo use in education . [email protected] Athens (GA) Dave Brittain, Past President MGT of America (FL) Submission of Manuscripts Cheryl Lemke, Secretary Milken Family Copy Editing, Design, & Production Manuscripts should be sent by surface mail on Foundation (CA) Ron Richmond a 3.5-inch disk (where possible). Preferred for­ Michael Turzanski, Treasurer Cisco Systems, mat is Microsoft Word for the Macintosh. ASCII Founding Editor Inc. (MA) files in either Macintosh or DOS format are also Tom Lough, Murray State University Chip Kimball, At Large Lake Washington welcome. Submissions may also be made by elec­ School District (WA) tronic mail. Where possible, graphics should be Design, Illustrations & Art Direction Neal Strudler, At Large University of Nevada­ submitted electronically. Please include elec­ Peter Reynolds, Fablevision Animation Studios Las Vegas [email protected] tronic copy, either on disk (preferred) or by elec­ ISTE Board Members tronic mail, with paper submissions. Paper sub­ Contributing Editors Jose Calderoni ILCE, Mexico missions may be submitted for review if Dr. Doug Clements, SUNY Buffalo Penny Ellsworth Western Springs School electronic copies are supplied on acceptance. Dr. Carolyn Dowling, Australian Catholic District 101 (IL) Send surface mail to: University Cameron Go nzales New Mexico State University Alan Epstein, Metasoft Gary S. Stager Cathy Gunn Northern Arizona University 21825 Barbara St. Dr. Brian Harvey, U.C. Berkeley Dennis Harper Olympia School District (WA) Torrance, CA 90503 USA Daniel Kinnaman, University Associates Paul O'Driscoll Salem-Keizer Public Schools (OR) Dr. Julie Sarama, Wayne State University Jorge Ortega FACE/Leon County SD (FL) Send electronic mail to: International Editor Heidi Rogers University of Idaho [email protected] Jeff Richardson, Monash University, Australia Carla Schutte Technology Specialists (FL) Peter Wholihan Sts. Paul & Peter School, Virgin Deadlines International Editor Emeritus Islands To be considered for publication, manuscripts Dennis Harper, Olympia, Washington School must be received by the dates indicated below. District ISTE Committees LaJ eane Thomas Accreditation and Standards Vol. 16, No.2 june 1, 1997 SIGLogo Officers Dave Brittain Awards Vol. 16, No. 3 Oct. 1, 1997 Chuck Friesen, President John Ketelhut Distance Learning Vol. 16, No.4 jan. 1, 1998 Steve Sesko, Vice-President Michael Turzanski Finance Vol. 17, No. 1 Mar. 1, 1998 Hope Chafiian, Secretary/Treasurer Paul Resta and Gerald Knezek International Gary S. Stager, Editor Jenelle Leonard Minority Affairs Lary Smith Policies and Procedures Director of Advertising Services Gwen Solomon Publications Judy Stickney ISTE Executive Officer David Moursund Logo Exchange is published quarterly by the International Society for Technology in Education (ISTE), 1787 Agate St., Eugene, OR 97403-1923, USA; 800/ 336-5191. lSTE members may join SIG/Logo for $24. Dues include a subscription to Logo Exchange. Non ISTE member subscription rate is $34. Add $10 for mailing outside the USA. Send membership dues to ISTE. Add $4.00 for processing if payment does not accompany your dues. VISA, MasterCard, and Discover accepted. Advertising space in Logo Exchange is limited. Please contact ISTE's director of advertising services for space availability and details. Logo Exchange solicits articles on all topics of interest to Logo-using educators. Submission guidelines can be obtained by contacting the editor. Opinions expressed in this publication are those of the authors and do not necessarily represent or reflect official ISTE policy. © 1997 ISTE. All articles are copyright of ISTE unless otherwise specified. Reprint permission for nonprofit educational use can be obtained for a nominal charge through the Copyl.'ight Clearance Center, 27 Congress St., Salem, MA 01970; 508/750-8400; Fax 508/750- 44 70. ISTE members may apply directly to the ISTE office for free reprint permission. POSTMASTER: Send address changes to Logo Exchange, ISTE, 480 Charnelton St., Eugene, OR 97401-2626 USA. Periodicals postage paid at Eugene, OR. USPS# 660-130. ISTE is a nonprofit organization with its main offices housed at the University of Oregon. ISSN# 0888-6970 This publication was produced using Aldus PageMaker®. Winter 1997 Vol. 16/ No. 2 Contents ARTICLES Logo's Return Robert Tinker 5 Looking at Technology Through School-Colored Spectacles Segmour Papert 15 Logo and Thinking Writing: Part II Leslie F. Thgherg 22 COLUMNS EDITORIAL FOR BEGINNERS Hard Fun Micro Worlds for Munchkins Garg S. Stager 2 Garg S. Stager 13 QUARTERLY QUANTUM LOGO: HomeWork SEARCH AND RESEARCH Tom Lough 3 This Much We Know: LOGO NEWS 4 Part II, Mathematics Douglas H. Clements BOOK REVIEW and]ulie Sarama 26 The Cyber Self Carolgn Dowling 8 THE LAST WORD: COMMENTARY TEACHER FEATURE Storytelling and John St. Clair Situated Cognition Jim Muller 9 Daniel E. Kinnaman 31 STARTING WITH STARLOGO Self-Organizing Behavior Alan Epstein 10 EDITORIAL / GARY S. STAGER Hard Fun n The Childrens' Machine, Seymour Seymour Papert described in 20 Things begin to trust teachers and support I Papert tells the story of one kinder­ to do with a Computer (1971), many their desire to create rich personal garten telling student another that schools react with increasingly au­ learning environments for kids. Logo is hard fun. Papert goes on to use thoritarian policies and trivial com­ About a decade ago the citizens of hard fun as a metaphor for thinking puter usage. In the hands of many Costa Rica made such a hard decision. about the deepest learning which oc­ schools the democratizing power of the They decided to leap-frog the curs when passion, challenge, context, Internet is used to cover the curricu­ instructionist technologies of 19th/ and purpose are all present. Any edu­ lum. New laptop computers are being 20th century schooling and embrace cator who has tried to make Logo or advertised for their ability to deliver the hard fun of Logo. They invested a Logo-like learning a staple of the school disembodied content and take student great deal in professional development day understands how hard and fun attendance-not as powerful vehicles and in supporting the dreams of their this process can be. for learning and self expression. teachers. Along the way, these educa­ Logo Exchange is thrilled to publish Those of us still healing from the tional pioneers had a great deal of fun a provocative speech by Dr. Seymour psychic scars left by our own school­ and their work has inspired educators Papert. The "Father of Logo" has spent ing are thrilled to assist Logo's creators around the world. Well, it seems that decades challenging our thinking and in realizing their visions of construc­ their hard work and commitment to inventing learning tools used by chil­ tionism and personal computing. Per­ excellence is beginning to pay off. The dren around the globe. His unbridled haps Papert's greatest achievement was Intel Corporation has decided to build optimism and advocacy for children creating a transitional object (Logo) its new $500 million chip plant in has been tireless and infectious. Al­ with which adults charged with the Costa Rica. Intel chose Costa Rica in­ though Dr. Papert is arguably one of care of children could feel creative and stead of 10 other countries because of the great minds of the 20th century, his intellectually powerful. Logo is great its "well-educated, highly-skilled, ideas are too often marginalized. In the fun. I can't imagine what my life would highly-motivated labor pool" and "the intellectual-free zone of educational be like without the joy oflearning and skills of the Costa Ricans are only go­ computing his ideas are not debated or teaching with Logo. ing to grow as a result of a MIT media even disputed-merely ignored. Logo I am reminded of how much fun program that has already placed com­ Exchange is one of the few educational learning and teaching can be when I puters in 30 percent of Costa Rica's publications to review his ground­ visit Cathie Galas' class in which 8- to primary schools." 1 Congratulations are breaking books, The Childrens' Ma­ 11-year-old kids create sensational certainly well deserved for our Costa chine and The Connected Family. Logo simulations of the brain or when Rican Logo-using colleagues. Papert's speech reminds us that I help Wesley College children program Many of you know how hard it is Logo was always about more than just their own virtual pets. Watching gradu­ to "shoehorn" Logo into an overflow­ turtles. Since the 1960s, Dr. Paperthas ate students and veteran teachers giggle ing curriculum or justify open-ended viewed school's ability to embrace in­ with joy while struggling to solve a projects in an age of national testing. creasingly powerful personal comput­ turtle graphics challenge reminds me In spite of the obstacles, Logo Exchange ers as a measure of the institution's that Logo is a powerful object to think readers work hard to make schools willingness to respect and support stu­ with. wonderful places for children. You dent learning. Bob Tinker makes the case that the know how hard it is to sustain Logo While the availability and power of availability oflow-cost ubiqui to us com­ and constructionism in increasingly personal computers begin to make pos­ puting will support a reemergence of sible the ideas Cynthia Solomon and Logo.
Recommended publications
  • Apuntes De Logo
    APUNTES DE LOGO Eugenio Roanes Lozano 1 y Eugenio Roanes Macías 2 Unidad Docente de Álgebra 3 Facultad de Educación Universidad Complutense de Madrid 26 Diciembre 2015 1 [email protected] 2 [email protected] 3 www.ucm.es/info/secdealg/ 1 DESCARGA DE LOGO: Una breve resumen de la historia de Logo (y sus dialectos) y la posibilidad de descargar MSWLogo 6.3 (funciona hasta Windows XP, no compatible con Windows 7 y posteriores): http://roble.pntic.mec.es/~apantoja/familias.htm Descarga de MSWLogo 6.5a (compatible con Windows modernos) (el más recomendable 4) http://neoparaiso.com/logo/versiones-logo.html Descarga de FMSLogo 6.34.0 (compatible con Windows modernos) 5: http://neoparaiso.com/logo/versiones-logo.html ALGUNAS OBSERVACIONES Ambos dialectos derivan de UCBLogo, diseñado por Brian Harvey, de la Universidad de Berkeley. Los tres volúmenes de su libro “Computer Science Logo Style”, publicado en 1997 por el MIT e información sobre Logo puede encontrarse en: http://www.cs.berkeley.edu/~bh/ El libro pionero y enciclopédico sobre las posibilidades de la geometría de la tortuga es: • Abelson, H. & di Sessa, A. (1986). Geometría de tortuga: el ordenador como medio de exploración de las Matemáticas. Madrid, España: Anaya. Un libro de esa época en que se desarrollan diferentes aplicaciones educativas para antiguos dialectos de Logo es: • Roanes Macías, E. & Roanes Lozano, E. (1988). MACO. Matemáticas con ordenador. Madrid, España: Síntesis. Es de destacar que hay localizados más de 300 dialectos de Logo. Véase: http://www.elica.net/download/papers/LogoTreeProject.pdf INSTALACIÓN: Sólo hay que ejecutar el correspondiente archivo .EXE.
    [Show full text]
  • Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
    Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research Brett A. Becker∗ Paul Denny∗ Raymond Pettit∗ University College Dublin University of Auckland University of Virginia Dublin, Ireland Auckland, New Zealand Charlottesville, Virginia, USA [email protected] [email protected] [email protected] Durell Bouchard Dennis J. Bouvier Brian Harrington Roanoke College Southern Illinois University Edwardsville University of Toronto Scarborough Roanoke, Virgina, USA Edwardsville, Illinois, USA Scarborough, Ontario, Canada [email protected] [email protected] [email protected] Amir Kamil Amey Karkare Chris McDonald University of Michigan Indian Institute of Technology Kanpur University of Western Australia Ann Arbor, Michigan, USA Kanpur, India Perth, Australia [email protected] [email protected] [email protected] Peter-Michael Osera Janice L. Pearce James Prather Grinnell College Berea College Abilene Christian University Grinnell, Iowa, USA Berea, Kentucky, USA Abilene, Texas, USA [email protected] [email protected] [email protected] ABSTRACT of evidence supporting each one (historical, anecdotal, and empiri- Diagnostic messages generated by compilers and interpreters such cal). This work can serve as a starting point for those who wish to as syntax error messages have been researched for over half of a conduct research on compiler error messages, runtime errors, and century. Unfortunately, these messages which include error, warn- warnings. We also make the bibtex file of our 300+ reference corpus ing, and run-time messages, present substantial difficulty and could publicly available.
    [Show full text]
  • Agent-Based Modeling with Netlogo
    Agent-Based Modeling with NetLogo Uri Wilensky Center for Connected Learning and Computer-Based Modeling Northwestern Institute on Complex Systems Departments of Computer Science & Learning Sciences Northwestern University Agent-Based Modeling in NetLogo SFI MOOC, Summer 2016 1 History: Roman to Hindu-Arabic Europe – at the turn of the first millenium • Before widespread adoption of Hindu-Arabic, very few could do multiplication/division • Scientists recognized superiority immediately • But widespread adoption took a very long time • Was in surreptitious use, but not official 2 Restructurations Structurations -- the encoding of the knowledge in a domain as a function of the representational infrastructure used to express the knowledge Restructurations -- A change from one structuration of a domain to another resulting from a change in representational infrastructure --- Wilensky & Papert 2006;2010 What is important and hard for people today? Similar to numeracy importance for science but difficulties in understanding, today we need to make sense of complex systems yet we find it difficult. What are Complex Systems? • Systems with a large number of interacting parts, evolving over time • Decentralized decisions vs. centralized control • Emergent global patterns from local interactions and decisions • Examples: ecosystems, economies, immune systems, molecular systems, minds, stock market, democratic government... Emergent Phenomena • Structure (Rules) at Micro- level leads to pattern at Macro- level • Order without Design • No leader or orchestrator
    [Show full text]
  • The Comparability Between Modular and Non-Modular
    THE COMPARABILITY BETWEEN MODULAR AND NON-MODULAR EXAMINATIONS AT GCE ADVANCED LEVEL Elizabeth A Gray PhD INSTITUTE OF EDUCATION UNIVERSITY OF LONDON 1 ABSTRACT The prime concern of this thesis is the comparability of two types of assessment now prevalent in Advanced level GeE examinations. The more conventional linear scheme assesses all candidates terminally, and the only way to improve the grade awarded is to re-take the whole examination. In contrast, the relatively new modular schemes of assessment include testing opportunities throughout the course of study. This not only has formative effects but allows quantifiable improvements in syllabus results through the medium of the resit option. There are obvious differences between the two schemes, but this does not necessarily imply that they are not comparable in their grading standards. It is this standard which the thesis attempts to address by considering the different variabilities of each of the schemes, and how these might impinge upon the outcomes of the grading process as evidenced in the final grade distributions. A key issue is that of legitimate and illegitimate variabilities - the former perhaps allowing an improvement in performance while maintaining grading standards; the latter possibly affecting the grading standard because its effect was not fully taken into account in the awarding process. By looking at a linear and modular syllabus in mathematics, the differences between the two are investigated, and although not fully generalisable, it is clear that many of the worries which were advanced when modular schemes were first introduced are groundless. Most candidates are seen to use the testing flexibility to their advantage, but there is little evidence of over-testing.
    [Show full text]
  • Microworlds: Building Powerful Ideas in the Secondary School
    US-China Education Review A 9 (2012) 796-803 Earlier title: US-China Education Review, ISSN 1548-6613 D DAVID PUBLISHING Microworlds: Building Powerful Ideas in the Secondary School Craig William Jenkins University of Wales, Wales, UK In the 1960s, the MIT (Massachusetts Institute of Technology) developed a programming language called LOGO. Underpinning this invention was a profound new philosophy of how learners learn. This paper reviews research in the area and asks how one notion in particular, that of a microworld, may be used by secondary school educators to build powerful ideas in STEM (science, technology, engineering, and mathematics) subjects. Keywords: microworlds, programming, STEM (science, technology, engineering, and mathematics), constructionism, education Theories of Knowing This paper examines the microworld as a tool for acquiring powerful ideas in secondary education and explores their potential role in making relevant conceptual learning accessible through practical, constructionist approaches. In line with this aim, the paper is split into three main sections: The first section looks at the underlying educational theory behind microworlds in order to set up the rest of the paper; The second section critically examines the notion of a microworld in order to draw out the characteristics of a microworlds approach to learning; Finally, the paper ends with a real-world example of a microworld that is designed to build key, powerful ideas within a STEM (science, technology, engineering, and mathematics) domain of knowledge. To begin to understand the educational theory behind microworlds, a good starting point is to consider the ways in which learners interact with educational technology. In 1980, Robert Taylor (1980) provided a useful framework for understanding such interactions.
    [Show full text]
  • A Simplified Introduction to Virus Propagation Using Maple's Turtle Graphics Package
    E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package A simplified introduction to virus propagation using Maple's Turtle Graphics package Eugenio Roanes-Lozano Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas Facultad de Educación, Universidad Complutense de Madrid, Spain Carmen Solano-Macías Departamento de Información y Comunicación Facultad de CC. de la Documentación y Comunicación, Universidad de Extremadura, Spain Eugenio Roanes-Macías Departamento de Álgebra, Universidad Complutense de Madrid, Spain [email protected] ; [email protected] ; [email protected] Partially funded by the research project PGC2018-096509-B-100 (Government of Spain) 1 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package 1. INTRODUCTION: TURTLE GEOMETRY AND LOGO • Logo language: developed at the end of the ‘60s • Characterized by the use of Turtle Geometry (a.k.a. as Turtle Graphics). • Oriented to introduce kids to programming (Papert, 1980). • Basic movements of the turtle (graphic cursor): FD, BK RT, LT. • It is not based on a Cartesian Coordinate system. 2 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • Initially robots were used to plot the trail of the turtle. http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/ 3 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • IBM Logo / LCSI Logo (’80) 4 E.
    [Show full text]
  • Down with School! up with Logoland!
    NEW SCIENTIST REVIEW Down with School! Up with Logoland! The Children's Machine: Rethinking in the classroom, with mixed results. large and small, designed to implement his School in the Age of the Computer I was one of them. About ten years ago, ideas, and has received a wealth of feed­ by Seymour Papert, Basic Books, New York, I was part of a team that developed and back, much of it deeply discouraging. But HarperCollins in Britain, pp 241, £22·50 taught an introductory course in computer one can learn even more from "mistakes" science aimed at universirv students who than from a string of successes-that is a Daniel Dennett hated and feared computers but whose central tenet of Papert's vision of learning, parents, in many cases, had said "You must and he practices what he preaches. So this IN 1956, the mathematician John McCarthy learn about computers before you gradu­ sequel engagingly recounts what he has coined the term "artificial intelligence" ate." These students were seasoned veter­ learned, and especially the mistakes he for a new discipline that was emerging ans of what Paperr calls School-experts at made along the way. His own thinking from some of the more has undergone a transforma­ imaginative and playful tion; he is still an infectiously explorations of that new optimistic visionary, but a mind-tool, the computer. A wiser one. few years later he devel­ Logo has nowjoined forces oped a radically new sort of with Lego, the plastic build­ programming language, ing blocks, and a new wave Lisp, which became the of delectable settings for lingua franca of AI.
    [Show full text]
  • Papert's Microworld and Geogebra: a Proposal to Improve Teaching Of
    Creative Education, 2019, 10, 1525-1538 http://www.scirp.org/journal/ce ISSN Online: 2151-4771 ISSN Print: 2151-4755 Papert’s Microworld and Geogebra: A Proposal to Improve Teaching of Functions Carlos Vitor De Alencar Carvalho1,4, Lícia Giesta Ferreira De Medeiros2, Antonio Paulo Muccillo De Medeiros3, Ricardo Marinho Santos4 1State University Center of Western, Rio de Janeiro, RJ, Brazil 2CEFET/RJ, Valença, RJ, Brazil 3Rio de Janeiro Federal Institute (IFRJ), Pinheiral, RJ, Brazil 4Vassouras University, Vassouras, RJ, Brazil How to cite this paper: De Alencar Car- Abstract valho, C. V., De Medeiros, L. G. F., De Me- deiros, A. P. M., & Santos, R. M. (2019). This paper discusses how to improve teaching of Mathematics in Brazilian Papert’s Microworld and Geogebra: A Pro- schools, based on Seymour Papert’s Constructionism associated with Infor- posal to Improve Teaching of Functions. mation Technology tools. Specifically, this work introduces the construction- Creative Education, 10, 1525-1538. https://doi.org/10.4236/ce.2019.107111 ist microworld, a digital environment where students are able to build their knowledge interactively, in this case, using dynamic mathematics software Received: June 6, 2019 GeoGebra. Accepted: July 14, 2019 Published: July 17, 2019 Keywords Copyright © 2019 by author(s) and Microworld, GeoGebra, Seymour Papert, Information Technologies in Scientific Research Publishing Inc. Education This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction This research’s main goal is to present a proposal to help Brazilian teachers im- prove their educational practices.
    [Show full text]
  • Polish Python: a Short Report from a Short Experiment Jakub Swacha Department of IT in Management, University of Szczecin, Poland [email protected]
    Polish Python: A Short Report from a Short Experiment Jakub Swacha Department of IT in Management, University of Szczecin, Poland [email protected] Abstract Using a programming language based on English can pose an obstacle for learning programming, especially at its early stage, for students who do not understand English. In this paper, however, we report on an experiment in which higher-education students who have some knowledge of both Python and English were asked to solve programming exercises in a Polish-language-based version of Python. The results of the survey performed after the experiment indicate that even among the students who both know English and learned the original Python language, there is a group of students who appreciate the advantages of the translated version. 2012 ACM Subject Classification Social and professional topics → Computing education; Software and its engineering → General programming languages Keywords and phrases programming language education, programming language localization, pro- gramming language translation, programming language vocabulary Digital Object Identifier 10.4230/OASIcs.ICPEC.2020.25 1 Introduction As a result of the overwhelming contribution of English-speaking researchers to the conception and development of computer science, almost every popular programming language used nowadays has a vocabulary based on this language [15]. This can be seen as an obstacle for learning programming, especially at its early stage, for students whose native language is not English [11]. In their case, the difficulty of understanding programs is augmented by the fact that keywords and standard library function names mean nothing to them. Even in the case of students who speak English as learned language, they are additionally burdened with translating the words to the language in which they think.
    [Show full text]
  • 4 MICRO WORLDS: TRANSFORMING EDUCA TION 1 Seymour Papert
    MICRO WORLDS: 4 TRANSFORMING EDUCA TION 1 Seymour Papert Arts and Media Technology Center Massachusetts Institute of Technology Cambridge. MA Looking at how computers are used in education, one is tempted to start classifying. It's a little dangerous to do this, but I would like to start off with a very crude classification of three ways of using computers, just to place a certain set of problems into perspective. First, as tutorials in one sense or another - which is by far the most widespread, best known, and earliest use - where the computer serves as a sort of mechanized instructor. Secondly, as tools for doing something else: as calculators, word processors, simulators, or whatever. And thirdly, a different concept altogether: as microworlds. Here I shall concentrate on the notion of microworld and talk about its relations both to computers and to theories of learning. The other uses of computers surely have a role - but they are not what will revolutionize education. One microworld which is already widely known is the Logo turtle mi­ croworld. Briefly, this world is inhabited by a small object on the screen. In some versions, it is shaped like a triangle, in others, like an actual turtle. To make it move and draw lines, you talk to it by typing commands on the keyboard. For example, if you say FORWARD 50, the turtle will move in the direction it's facing and draw a line 50 units long, 50 "turtle steps" children might say. Then if you say RIGHT 90, it will turn 90 degrees. And then you can tell it to go forward again, or back, turn through any angle, or lift its pen up so it moves without leaving a trace.
    [Show full text]
  • Changing Logo from a Single Student System to a 3D On-Line Student Collaboratory/Participatory Shared Learning Experience
    Changing Logo from a Single Student System to a 3D On-line Student Collaboratory/Participatory Shared Learning Experience Dr. James G Jones University of North Texas [email protected] Theresa Overall University of North Texas [email protected] The concept of Logo to support constructive learning has been in existence since the 1960’s. Logo as implemented in computer software in the 1970’s has focused on either single student to single computer or a group of students sharing a single computer. Later versions of Logo have supported multi-user networking, but have not truly provided a shared learning environment where students using single systems at distant locations can work together and view each other’s work. This paper will discuss the potential of combining Logo concepts with on-line 3D environments to create engaged participatory learning environments/experiences for students. This approach could expand Logo so that it can allow classrooms connected by the Internet to simultaneously engage in K-12 projects about mathematics, language, music, robotics, telecommunications, and/or science. This paper and the presentation at the TCEA conference will demonstrate what an on-line 3D participatory system looks like and show the initial software modules developed for classroom use. Logo One of the primary purposes of the Logo programming environment is to support constructivist learning, such that students create knowledge through interaction with other people and the world around them. The Logo Programming Language, a dialect of Lisp, was created in the 1970’s to promote the concept of Logo as a learning tool (What is Logo, 2003).
    [Show full text]
  • Integrating Language Arts and Computational Thinking: A
    Integrating Language Arts and Computational Thinking: A Reflection on the Importance of Gossip by Glen Bull, University of Virginia According to Cynthia Solomon, Seymour Papert went to Europe in the summer of 1966 and returned with the initial specifications for the computing language Logo (Personal Communication, 2018). Logo is notable as the first computing language designed specifically for children. Solomon and Papert collaborated with Wally Feurzeig to develop an initial implementation of the computing language, which they began testing with children in local schools the following year. At the time, Papert was codirector of the MIT Artificial Intelligence Laboratory. Artificial intelligence (AI) is the science of creating computer programs that can replicate the performance of humans. An important aspect of AI is interpretation of human language. Therefore, not surprisingly, an important aspect of Logo is its capability to process words and sentences. Feurzeig originated the name of the language, Logo, the Greek word for word. Papert summarized this work in Mindstorms: Children, Computers, and Powerful Ideas, published in 1980. Papert introduced the term “computational thinking” in Mindstorms. He also described the use of Logo by middle school students to generate “computer poetry.” The students created syntactic structures that generated sentences in the process of exploring the way in which language works. Background Like many others, I was influenced by the vision that Papert outlined in Mindstorms. Texas Instruments donated 10 TI 99/4 microcomputers with Logo that I used to offer an initial course, Teaching With Logo, at the University of Virginia in fall 1980. The TI microcomputer had a fraction of the power of today’s personal computers.
    [Show full text]