Investigation of Coiled-Coil Interactions Between Proteins of the Spindle Pole Body

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Coiled-Coil Interactions Between Proteins of the Spindle Pole Body Investigation of Coiled-Coil Interactions between Proteins of the Spindle Pole Body by Nora Zizlsperger B.S. Biochemistry Simmons College, 2000 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2010 © 2010 Massachusetts Institute of Technology All rights reserved. Signature of Author………………………………………………………………………………… Nora Zizlsperger Department of Biology November 19, 2009 Certified by………………………………………………………………………………………… Amy E. Keating Associate Professor of Biology Thesis Supervisor Accepted by………………………………………………………………………………………... Steven P. Bell Chairman, Department Committee on Graduate Students 1 2 Investigation of Coiled-Coil Interactions between Proteins of the Spindle Pole Body by Nora Zizlsperger Submitted to the Department of Biology on November 19, 2009 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology ABSTRACT The spindle pole body (SPB) is a large multi-protein complex that organizes microtubules in yeast. Through its function of nucleating and anchoring microtubules, the SPB is essential for cell viability. High-resolution structures of the SPB have not been achieved using x-ray crystallography, due to its low copy number, large size, heterogeneous composition, and association with the nuclear membrane. However, structural information may be deciphered through a variety of other techniques. Cryo-electron microscopy images have provided a low- resolution model of the SPB. Experiments testing which proteins interact provide additional structural data, although in most cases, it is not known precisely how these interactions occur. Interestingly, a large proportion of SPB proteins are predicted to contain one or more coiled coils. The coiled coil is a common protein-protein interaction domain, consisting of two or more supercoiled α-helices. The high frequency of coiled coils predicted in SPB proteins suggests that this structure may be important for establishing the overall architecture of the complex. This thesis describes work towards determining whether coiled coils form interactions within or between SPB proteins. All coiled-coil regions predicted in SPB proteins were produced and tested for interactions as individual peptides, taking advantage of the often-observed ability of coiled coils to fold and interact cooperatively, isolated from the rest of the protein. Many self- associating coiled coils and several hetero-associating coiled coils were identified, and structural features of several complexes were determined. The results suggest that several SPB coiled coils form supports between layers of the SPB and other coiled coils mediate homo- and hetero- associations within layers or sub-complexes. The coiled-coil interaction data were incorporated with other structural information described in the literature to generate a model of the spindle pole body structure. Thesis Supervisor: Amy E. Keating Title: Associate Professor of Biology 3 4 Table of Contents List of Figures ................................................................................................................................ 7 List of Tables ................................................................................................................................. 8 CHAPTER 1 Introduction ............................................................................................. 9 Structure determination of large protein complexes through integration of diverse data .......... 9 Methods for obtaining structural information about complexes ............................................... 10 High-resolution structural studies ......................................................................................... 10 Computational structure prediction and annotation .............................................................. 10 Electron microscopy ............................................................................................................. 11 Biochemical identification of components and interactions ................................................. 11 Models of complex structures ................................................................................................... 12 Progress towards structural models of particular large protein complexes .............................. 13 The proteasome ..................................................................................................................... 14 The kinetochore .................................................................................................................... 14 The nuclear pore complex ..................................................................................................... 15 The spindle pole body ............................................................................................................... 16 Coiled coils – predicted structural features in the SPB ............................................................ 18 Summary of thesis .................................................................................................................... 21 CHAPTER 2 Analysis of coiled-coil interactions between core proteins of the spindle pole body ................................................................................... 23 ABSTRACT .............................................................................................................................. 23 INTRODUCTION .................................................................................................................... 24 MATERIAL AND METHODS ................................................................................................ 25 Coiled-coil prediction ........................................................................................................... 25 Domain annotation ................................................................................................................ 29 Protein production ................................................................................................................. 29 Circular dichroism spectroscopy ........................................................................................... 30 Fluorescence resonance energy transfer (FRET) assay ........................................................ 30 Analytical ultracentrifugation ............................................................................................... 31 Crosslinking .......................................................................................................................... 31 Crystallization ....................................................................................................................... 31 Structure determination ......................................................................................................... 31 RESUTS .................................................................................................................................... 32 Many coiled coils, but few other domains, are predicted in core SPB protein sequences. ... 32 Several core SPB coiled coils self-associate ......................................................................... 33 Several core SPB coiled coils hetero-associate..................................................................... 42 Characterization of core SPB coiled-coil interactions .......................................................... 44 Crystal structure of Spc42_1 ................................................................................................. 47 DISCUSSION ........................................................................................................................... 50 5 CHAPTER 3 Specific coiled-coil interactions contribute to a global model of the structure of the spindle pole body ........................................................ 53 ABSTRACT .............................................................................................................................. 53 INTRODUCTION .................................................................................................................... 53 MATERIALS AND METHODS .............................................................................................. 55 Coiled-coil prediction and production. ................................................................................. 55 Circular dichroism spectroscopy, analytical ultracentrifugation, and crosslinking experiments ........................................................................................................................... 56 Fluorescence resonance energy transfer (FRET) assay ........................................................ 56 Fluorescence anisotropy (FA) assay ..................................................................................... 56 Domain annotation. ............................................................................................................... 57 RESULTS ................................................................................................................................. 57 Many coiled coils are predicted in membrane-associated and half-bridge SPB proteins. .... 57 Many coiled coils from SPB membrane-associated proteins self-associate. ........................ 57 Characterization of homo-oligomerizing coiled coils in membrane-associated proteins ..... 62 Coiled coils from Bbp1 and Mps2 hetero-associate.
Recommended publications
  • An Ancestral Role of Pericentrin in Centriole Formation Through SAS-6 Recruitment
    bioRxiv preprint doi: https://doi.org/10.1101/313494; this version posted May 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An ancestral role of pericentrin in centriole formation through SAS-6 recruitment Daisuke Ito1*, Sihem Zitouni1, Swadhin Chandra Jana1, Paulo Duarte1, Jaroslaw Surkont1, Zita Carvalho-Santos1,2, José B. Pereira-Leal1, Miguel Godinho Ferreira1,3 and Mónica Bettencourt-Dias1* 1. Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal. 2. Present address: Champalimaud Centre for the Unknown, Lisbon, Portugal 3. Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, 06107 Nice, France *Correspondence to: [email protected] (DI); [email protected] (MBD) Running title: Ancestral role of pericentrin-SAS-6 interaction Key words: centrosome, centriole, fission yeast, SPB, SAS-6, pericentrin, calmodulin, evolution Short summary The pericentriolar matrix (PCM) is not only important for microtubule-nucleation but also can regulate centriole biogenesis. Ito et al. reveal an ancestral interaction between the centriole protein SAS-6 and the PCM component pericentrin, which regulates centriole biogenesis and elongation. 1 bioRxiv preprint doi: https://doi.org/10.1101/313494; this version posted May 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar matrix (PCM). Centrioles regulate matrix assembly. Here we ask whether the matrix also regulates centriole assembly.
    [Show full text]
  • Structural Biology of Laminins
    Essays in Biochemistry (2019) EBC20180075 https://doi.org/10.1042/EBC20180075 Review Article Structural biology of laminins Erhard Hohenester Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K. Correspondence: Erhard Hohenester ([email protected]) Laminins are large cell-adhesive glycoproteins that are required for the formation and func- tion of basement membranes in all animals. Structural studies by electron microscopy in the early 1980s revealed a cross-shaped molecule, which subsequently was shown to con- sist of three distinct polypeptide chains. Crystallographic studies since the mid-1990s have added atomic detail to all parts of the laminin heterotrimer. The three short arms of the cross are made up of continuous arrays of disulphide-rich domains. The globular domains at the tips of the short arms mediate laminin polymerization; the surface regions involved in this process have been identified by structure-based mutagenesis. The long arm of the cross is an α-helical coiled coil of all three chains, terminating in a cell-adhesive globular region. The molecular basis of cell adhesion to laminins has been revealed by recent structures of heterotrimeric integrin-binding fragments and of a laminin fragment bound to the carbohy- drate modification of dystroglycan. The structural characterization of the laminin molecule is essentially complete, but we still have to find ways of imaging native laminin polymers at molecular resolution. Introduction About 40 years ago, two laboratories independently purified a large glycoprotein from the extracellular matrix produced by mouse tumour cells [1,2]. Antibodies raised against this glycoprotein reacted with basement membranes (also known as basal laminae) in mouse tissues, prompting Rupert Timpl and col- leagues to name the new protein laminin.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Identification of Genes Concordantly Expressed with Atoh1 During Inner Ear Development
    Original Article doi: 10.5115/acb.2011.44.1.69 pISSN 2093-3665 eISSN 2093-3673 Identification of genes concordantly expressed with Atoh1 during inner ear development Heejei Yoon, Dong Jin Lee, Myoung Hee Kim, Jinwoong Bok Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Korea Abstract: The inner ear is composed of a cochlear duct and five vestibular organs in which mechanosensory hair cells play critical roles in receiving and relaying sound and balance signals to the brain. To identify novel genes associated with hair cell differentiation or function, we analyzed an archived gene expression dataset from embryonic mouse inner ear tissues. Since atonal homolog 1a (Atoh1) is a well known factor required for hair cell differentiation, we searched for genes expressed in a similar pattern with Atoh1 during inner ear development. The list from our analysis includes many genes previously reported to be involved in hair cell differentiation such as Myo6, Tecta, Myo7a, Cdh23, Atp6v1b1, and Gfi1. In addition, we identified many other genes that have not been associated with hair cell differentiation, including Tekt2, Spag6, Smpx, Lmod1, Myh7b, Kif9, Ttyh1, Scn11a and Cnga2. We examined expression patterns of some of the newly identified genes using real-time polymerase chain reaction and in situ hybridization. For example, Smpx and Tekt2, which are regulators for cytoskeletal dynamics, were shown specifically expressed in the hair cells, suggesting a possible role in hair cell differentiation or function. Here, by re- analyzing archived genetic profiling data, we identified a list of novel genes possibly involved in hair cell differentiation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Leucine Zippers
    Leucine Zippers Leucine Zippers Advanced article Toshio Hakoshima, Nara Institute of Science and Technology, Nara, Japan Article contents Introduction The leucine zipper (ZIP) motif consists of a periodic repetition of a leucine residue at every Structural Basis of ZIP seventh position and forms an a-helical conformation, which facilitates dimerization and in Occurrence of ZIP and Coiled-coil Motifs some cases higher oligomerization of proteins. In many eukaryotic gene regulatory proteins, Dimerization Specificity of ZIP the ZIP motif is flanked at its N-terminus by a basic region containing characteristic residues DNA-binding Specificity of bZIP that facilitate DNA binding. doi: 10.1038/npg.els.0005049 Introduction protein modules for protein–protein interactions. Knowing the structure and function of these motifs A structure referred to as the leucine zipper or enables us to understand the molecular recognition simply as ZIP has been proposed to explain how a system in several biological processes. class of eukaryotic gene regulatory proteins works (Landschulz et al., 1988). A segment of the mammalian CCAAT/enhancer binding protein (C/EBP) of 30 Structural Basis of ZIP amino acids shares notable sequence similarity with a segment of the cellular Myc transforming protein. The The a helix is a secondary structure element that segments have been found to contain a periodic occurs frequently in proteins. Alpha helices are repetition of a leucine residue at every seventh stabilized in proteins by being packed into the position. A periodic array of at least four leucines hydrophobic core of a protein through hydrophobic has also been noted in the sequences of the Fos and side chains.
    [Show full text]
  • Α/Β Coiled Coils 2 3 Marcus D
    1 α/β Coiled Coils 2 3 Marcus D. Hartmann, Claudia T. Mendler†, Jens Bassler, Ioanna Karamichali, Oswin 4 Ridderbusch‡, Andrei N. Lupas* and Birte Hernandez Alvarez* 5 6 Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 7 Tübingen, Germany 8 † present address: Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, 9 Technische Universität München, Munich, Germany 10 ‡ present address: Vossius & Partner, Siebertstraße 3, 81675 Munich, Germany 11 12 13 14 * correspondence to A. N. Lupas or B. Hernandez Alvarez: 15 Department of Protein Evolution 16 Max-Planck-Institute for Developmental Biology 17 Spemannstr. 35 18 D-72076 Tübingen 19 Germany 20 Tel. –49 7071 601 356 21 Fax –49 7071 601 349 22 [email protected], [email protected] 23 1 24 Abstract 25 Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be 26 described by parametric equations. This level of understanding has allowed their manipulation 27 in unprecedented detail. They do not seem a likely source of surprises, yet we describe here 28 the unexpected formation of a new type of fiber by the simple insertion of two or six residues 29 into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the 30 supercoil to the breaking point, causing the local formation of short β-strands, which move the 31 path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains 32 only one backbone hydrogen bond per repeat unit from the parent coiled coil.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • Folding and Unfolding of Helix-Turn-Helix Motifs in the Gas Phase
    FOCUS:FROM MOBILITIES TO PROTEOMES Folding and Unfolding of Helix-Turn-Helix Motifs in the Gas Phase Lloyd W. Zilch, David T. Kaleta, Motoya Kohtani, Ranjani Krishnan, and Martin F. Jarrold Department of Chemistry, Indiana University, Bloomington, Indiana, USA Ion mobility measurements and molecular dynamic simulations have been performed for a series of peptides designed to have helix-turn-helix motifs. For peptides with two helical ϩ ϩ ϩ ϩ sections linked by a short loop region: AcA14KG3A14K 2H , AcA14KG5A14K 2H , ϩ ϩ ϩ ϩ ϭ ϭ ϭ AcA14KG7A14K 2H , and AcA14KSar3A14K 2H (Ac acetyl, A alanine, G glycine, Sar ϭ sarcosine and K ϭ lysine); a coiled-coil geometry with two anti-parallel helices is the lowest energy conformation. The helices uncouple and the coiled-coil unfolds as the temperature is raised. Equilibrium constants determined as a function of temperature yield enthalpy and entropy changes for the unfolding of the coiled-coil. The enthalpy and entropy changes depend on the length and nature of the loop region. For a peptide with three helical sections: protonated AcA14KG3A14KG3A14K; a coiled-coil bundle with three helices side-by-side is substantially less stable than a geometry with two helices in an antiparallel coiled-coil and the third helix collinear with one of the other two. (J Am Soc Mass Spectrom 2007, 18, 1239–1248) © 2007 American Society for Mass Spectrometry ϩ ϩ he function and activity of a protein is controlled AcA15K H helices are remarkably stable in the gas by its conformation. The conformation is deter- phase, and have been shown to remain intact to over ϩ ϩ Tmined by the protein’s potential energy surface, 700 K.
    [Show full text]
  • Cell Cycle Control of Spindle Pole Body Duplication and Splitting by Sfi1 and Cdc31 in Fission Yeast
    ß 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 1481–1493 doi:10.1242/jcs.159657 RESEARCH ARTICLE Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast Ime`ne B. Bouhlel1,2,§, Midori Ohta3,*,§, Adeline Mayeux1,2,§, Nicole Bordes1,2, Florent Dingli1, Je´roˆ me Boulanger1,2, Guilhem Velve Casquillas1,2,`, Damarys Loew1, Phong T. Tran1,2, Masamitsu Sato3 and Anne Paoletti1,2," ABSTRACT Spindle pole bodies (SPBs) are yeast plaque-like organelles attached to the nuclear envelope that are functionally similar to Spindle pole biogenesis and segregation are tightly coordinated to centrosomes of animal cells. Like centrosomes, they are produce a bipolar mitotic spindle. In yeasts, the spindle pole body generated by conservative duplication of pre-existing SPBs. In (SPB) half-bridge composed of Sfi1 and Cdc31 duplicates to budding as well as fission yeast, the daughter SPB assembles at promote the biogenesis of a second SPB. Sfi1 accumulates at the the tip of a mother SPB appendage called the bridge, which half-bridge in two phases in Schizosaccharomyces pombe, from maintains the association of the duplicated SPBs until mitotic anaphase to early septation and throughout G2 phase. We found onset. Duplicated SPBs inserted in the nuclear envelope nucleate that the function of Sfi1–Cdc31 in SPB duplication is accomplished intranuclear microtubules to initiate bipolar spindle assembly before septation ends and G2 accumulation starts. Thus, Sfi1 early (Adams and Kilmartin, 2000; Ding et al., 1997; Jaspersen and accumulation at mitotic exit might correspond to half-bridge Ghosh, 2012; Jaspersen and Winey, 2004; Lim et al., 2009; duplication.
    [Show full text]
  • And Beta-Helical Protein Motifs
    Soft Matter Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs Journal: Soft Matter Manuscript ID SM-ART-10-2018-002046.R1 Article Type: Paper Date Submitted by the 28-Nov-2018 Author: Complete List of Authors: DeBenedictis, Elizabeth; Northwestern University Keten, Sinan; Northwestern University, Mechanical Engineering Page 1 of 10 Please doSoft not Matter adjust margins Soft Matter ARTICLE Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs E. P. DeBenedictis and S. Keten* Received 24th September 2018, Alpha helices and beta sheets are the two most common secondary structure motifs in proteins. Beta-helical structures Accepted 00th January 20xx merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell- DOI: 10.1039/x0xx00000x puncture devices, antifreeze proteins, and extracellular matrices. Alpha helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix www.rsc.org/ components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta- helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.).
    [Show full text]
  • The Transformation of the Centrosome Into the Basal Body: Similarities and Dissimilarities Between Somatic and Male Germ Cells and Their Relevance for Male Fertility
    cells Review The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility Constanza Tapia Contreras and Sigrid Hoyer-Fender * Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany; [email protected] * Correspondence: [email protected] Abstract: The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An Citation: Tapia Contreras, C.; articular structure is formed around the centriole pair known as the connecting piece, situated in the Hoyer-Fender, S. The Transformation neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, of the Centrosome into the Basal in short, HTCA.
    [Show full text]