539 A2062 516 A83016F 445 Acidic Phospholipids 187

Total Page:16

File Type:pdf, Size:1020Kb

539 A2062 516 A83016F 445 Acidic Phospholipids 187 539 Index a aminobenzimidazole ureas 282 A2062 516 aminocoumarins 17, 19–20, 86, 87, A83016F 445 276–280, 284 acidic phospholipids 187 aminoglycoside acetyltransferases (AACs) acitretin 358, 364, 365 83–84, 461 actinonin 412, 415, 417–418 aminoglycoside phosphotransferases (APHs) acyl homoserine lactone (AHL) 241, 84, 459, 461 251–253 aminoglycosides 1–3, 76, 84, 86, 88, 93, 97, acyltransfer 83–84 359–361, 373, 376, 453–455, 502 adenosine diphosphate – A-site switch locking in ‘‘on’’ state (ADP)-ribosyltransferase 85 459–461 adriamycin RDF (doxorubicin) 342, 344 – binding affinity and eluding defense AFN-1252 203 mechanisms 461–462 AgrC/AgrA 248–247, 249 – binding pocket recognition 459 agrocin 394, 395 – binding to antibiotic-resistant bacterial ajoene 245, 252, 253 mutant and protozoal cytoplasmic A sites albicidin 275 464 2-alkoxycarbonylaminopyridines 161–164 – binding to human A sites 464–465 amicetin 358, 361, 362 – chemical structures 455 amidases 80 – molecular recognition by bacterial A site amikacin 457, 462, 463 458–459 aminoacyl-tRNA synthetases (aaRSs) 388 – nonaminoglycoside antibiotic targeting of A – classification 389–391 site 466 – enzymatic mechanism of action 388–389 – not targeting A site 465–466 – fidelity and proof reading 391–392 – secondary structures of target A sites 455, – transamidation pathway 392 458 aminoacyl tRNA synthetase inhibitors – semisynthetic aminoglycosides binding 387 463–464 – mupirocin 387, 393–395, 403 – targeting A site with different modes of – novel inhibitors in clinical development action 465 399–403 amphomycin 8, 11 – old and new compounds with aaRS amphotericin B 198 inhibitory activity 393–399 ampicillin 230 – resistance development 403 amycolamicin 281 – selectivity over eukaryotic and mitochondrial AN2690 (tavaborole) 400, 401–402 counterparts 404 anisomycin 361 aminoalkyl pyrimidine carboxamides (AAPCs) ansamycins 15–16, 302–304 44 anthralin 358, 365 Antibiotics: Targets, Mechanisms and Resistance, First Edition. Edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA. 540 Index antibacterial discovery 23 bacterial cell-to-cell chemical signaling – cell entry 31–32 interference 241–242 – clinically used drug classes and sources 33 – non-TCSs targeting biofilm formation and – computational chemistry, virtual screening, quorum sensing in Pseudomonas spp. SBDD, and FBDD 42–45 250–253 – natural products 40–42 – two-component systems (TCSs) – problems 24 – – case studies as drug targets 243–246 – screening strategies 32 – – nonessential systems targeting 246–250 – – chemical collections 38–40 – – potential anti-infective targets 242–243 – – empirical screens 32–34 bacterial cell-wall precursor chemical ––in vitro screens for single-target inhibitors composition reprogramming 89 37–38 bacterial dynamin-like protein (BDLP) 157 – – phenotypic whole-cell screens 34–37 bacterial membrane 217–219 – target choice and essentiality 24–26 – efflux barrier 222–223 – target choice and resistance 26–31 – efflux blocking 225–229 antibiotic transferases 83–86 – efflux systems 92–94 antimicrobial peptides (AMPs) 183, 187, 190, – – major facilitator superfamily (MSF) 194, 198, 201 94–96 antipsoriatic compounds 364–366 – – ATP-binding cassette (ABC) superfamily apolipoprotein B 247, 248, 249 94 apramycin 461, 456, 457, 460, 462, 464 – – multidrug and toxic compound extrusion 7 ArmA/Rmt (m G1405) 377, 380 (MATE) family 97–98 arotinoids 364 – – resistance-nodulation division (RND) artesunate 229 superfamily 96–97 arylpiperidines 101 – – small multidrug-resistance family (SMR) ATPase-domain inhibitors 276 96 – GyrB and dual-targeting GyrB/ParE ATPase – influx increase 224–225 inhibitors 281–284 – natural products as efflux modulators – natural products 276–281 228–229 ATP-binding cassette (ABC) superfamily 94 – outer membrane barrier and porin aurodox 445 219–221 autoinducers (AIs) 241 – targeting 183–184 avilamycin 415, 421 – – bactericidal and low potential for azdimycin 445 resistance development 189–190 azetidinone 3 – – dormant infections treatment 184–185 azithromycin 514–515 – – fatty acid and phospholipid biosynthesis aztreonam 227 inhibition 203 azytromycin 13 – – new approaches to identify compounds killing dormant bacteria 196 b – – prevent and kill dormant bacteria bacterial cell division 152 185–186 – cytoskeleton proteins 157 – – target essentiality and selectivity – FtsZ structure and assembly properties 186–188 152–153 bactoprenol phosphate 145–146 – proteins involved in septum formation battacin 224 156 benzimidazoles 169, 281, 282 – proteins regulating FtsZ assembly benzoxaboroles 401, 403 155–156 benzoxazinorifamycins 15 – Z-ring 153–155 berberine 162, 167 bacterial cell partitioning inhibitors 151 β-galactosidase 528 – cell division proteins as therapeutic targets β-lactams 3–4, 75, 80, 81, 96, 97, 185, 218, 158, 170 221, 223, 229 – FtsZ as therapeutic target 158–170 – resistome of P. aeruginosa 98 Index 541 – acquired antibiotic resistance in S. aureus chloramphenicol 57, 75, 76, 80, 84, 95, 97, 98–100 117, 220, 223, 228, 361, 373, 374, 471, 472, BI-88E3 527, 530 473, 474, 475–476, 477, 478, 480, 481 biofilms 184–186, 190–196, 241, 243, 249 chloramphenicol acetyltransferases (CATs) – challenges with membrane-active agents 84 196 chlorogenic acid 162, 170 – genetic resistance 199–200 chloroquine 267 – pharmacological 198–199 chlorpromazine 228 – spectrum of activity 197–198 CHP-105 527, 530 – test methods 197 chrysophaentins 162, 169 – therapeutic use of membrane-damaging chuangxinmycin 394, 395 agents against biofilms 190–196 cinnamic acid 170 BioFlux systems 197 ciprofloxacin 95, 185, 223, 227, 266, biosynthetic medicinal pathway 66 267–268, 271–272, 275, 285, 286 bisbenzimide 342, 344 cispentacin 394, 396 blasticidin S 358, 361, 362, 471, 472, 473, clarithromycin 514 478–479 clavulanic acid 4, 101, 224 borrelidin 394, 395 clerocidin 263, 275, 287 clindamycin 75, 85, 401, 473, 474, 478, 481 c clofazimine 187, 192, 195, 201 caffeic acid 170 clorobiocin 277, 280 calcipotriol 358, 364, 365 Clostridium difficile infection (CDI) 202, 312, capistruin 302, 309 399–401 caprazamyins 135 co-chaperones 525, 527 capreomycin 497 colistins 8, 10, 197, 222, 224, 531 2-carbamoyl pteridine 163, 164 connective polypeptide 1 (CP1) 389 carbapenems 75, 81, 100, 218 corallopyronin 300, 303, 305, 311 cardiolipin 187, 188 coumermycin 277 carvacrol 225 covalent modifications on lipopolysaccharide CB183,315 202 core 92 CBR703 series 300, 301, 302, 305, 309–310 crescentin 157 c-di-GMP(bis-3 -5 -cyclic dimeric guanosine CRS3123 399–401, 404 monophosphate) riboswitch 331–334, 345 CSA-13 192, 195, 197 cefepime 221 curcumin 159, 162, 166 cefotaxime 221 cyclic peptides 8–11 cefpirome 221 cycline antibiotics 228 cell-wall synthesis inhibitors cycloheximide 500–501 – bactoprenol phosphate 145–146 cycloserine 164 – MraY inhibitors 134–137 cyclothialidines 276, 280 cell wall synthesis lipid II targeting cytokinesis 151, 153, 154, 156, 158, 170 compounds – enduracidin 143, 144 d – glycopeptides 134, 137–139, 146 dalbavancin 137, 138, 139, 187, 191, – lantibiotics 134, 139–143, 146 193–194, 199 – ramoplanin 134, 142, 143, 144, 146 dalfopristin 473, 482, 483, 515 Centers for Disease Control (CDC) bioreactor daptomycin 1, 9, 11, 57, 59, 65, 77, 91–92, 197 183, 187–188, 189, 190, 191, 193, 195, 198, cephalosporins 75, 80, 96, 97, 221, 224 199, 202–203, 248 ceragenins 194, 197 daunomycin 95 cerulenin 203 defensins 145, 202 cethromycin 12, 15 delafloxacin 271, 287 chelocardin 342, 344 15-deoxyspergualine 527 ChemBridge™ 303, 313 Dermofural 425, 428 chitosan 194 dichamentin 162, 166 542 Index difimicin 14, 15 ertapenem 218 dihydropteroate synthetase (DHPS) 77, 88 erythromycin 12, 13, 57, 75, 78, 81, 85, 88, diminazene aceturate 342, 344 95, 99, 227, 363, 373, 381, 474, 478, DinF protein 97–98 512–513, 514, 515, 516, 518 dityromycin 497 ethambutol 164 DNA gate inhibitors 265, 266 ethidium bromide 95, 99 – ATPase domain inhibitors 265, 266, eugenol 170 276–282 evernimicin 415, 421 – NBTIs 263, 265, 272–274, 287–288 – quinolones and related compounds 263, f 265, 267–272, 273–274, 275, 276, 284, factumycin 445 287–288 Fas II inhibitors 203 DnaK 525–528 fatty acid and phospholipid biosynthesis – cooperation with HtpG 530–531 inhibition 203 – in vivo screening of compounds targeting fatty acylbenzamides 530 528 ferulic acid 170 doripenem 218 fidoxamicin 400 double-sieve model 391 FtsZ D-peptides 530 – filamentous temperature-sensitive Z 152 – proteins regulating assembly 155–156 e – structure and assembly 152–153 edeine 413, 415, 423, 425, 426–427 FtsZ as therapeutic target efflux blocking 225–226 – identfication of antibacterial agents – barrier 222–223 158–161 – chemical response 226–228 – inhibitors 161–170 – natural products as efflux modulators – status of FtsZ-targeting compounds 228–229 172–173 efflux systems 92–94 fitness – ATP-binding cassette (ABC) superfamily – absolute 111 94 – cost and genetic background 120 – major facilitator superfamily (MSF) 94–96 – cost and regulation of resistance expression – multidrug and toxic compound extrusion 118 (MATE) family 97–98 – cost in clinical isolates 114–115 – resistance-nodulationdivision (RND) – cost of plasmid-borne resistance 117 superfamily 96–97 –costofrif resistance 114–117 – small multidrug-resistance family (SMR) –costofstr resistance 112–113 96 – – restrictive vs non restrictive phenotypes efrotomycin 445 113 elongation factor (EF-Tu) inhibitors 437 – cost
Recommended publications
  • The Role of Nanobiosensors in Therapeutic Drug Monitoring
    Journal of Personalized Medicine Review Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring Vivian Garzón 1, Rosa-Helena Bustos 2 and Daniel G. Pinacho 2,* 1 PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia; [email protected] 2 Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +57-1-8615555 (ext. 23309) Received: 21 August 2020; Accepted: 7 September 2020; Published: 25 September 2020 Abstract: Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine. Keywords: biosensors; therapeutic drug monitoring (TDM), antibiotic; personalized medicine 1. Introduction The discovery of antibiotics (AB) ushered in a new era of progress in controlling bacterial infections in human health, agriculture, and livestock [1] However, the use of AB has been challenged due to the appearance of multi-resistant bacteria (MDR), which have increased significantly in recent years due to AB mismanagement and have become a global public health problem [2].
    [Show full text]
  • Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules As Potent Antibacterial and Antifungal Agents
    Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules as Potent Antibacterial and Antifungal Agents Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt der Naturwissenschaftlichen Fakultät I Institut für Pharmazie Fachbereich für Pharmazeutische Chemie der Martin-Luther-Universität Halle-Wittenberg von Kaveh Yasrebi Geboren am 09.14.1987 in Teheran/Iran (Islamische Republik) Gutachter: 1. Prof. Dr. Andreas Hilgeroth (Martin-Luther-Universität Halle-Wittenberg, Germany) 2. Prof. Dr. Sibel Süzen (Ankara Üniversitesi, Turkey) 3. Prof. Dr. Michael Lalk (Ernst-Moritz-Arndt-Universität Greifswald, Germany) Halle (Saale), den 21. Juli 2020 Selbstständigkeitserklärung Hiermit erkläre ich gemäß § 5 (2) b der Promotionsordnung der Naturwissenschaftlichen Fakultät I – Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel und Quellen angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht. Ich erkläre ferner, dass diese Arbeit in gleicher oder ähnlicher Form bisher keiner anderen Prüfbehörde zur Erlangung des Doktorgrades vorgelegt wurde. Halle (Saale), den 21. Juli 2020 Kaveh Yasrebi Acknowledgement This study was carried out from June 2015 to July 2017 in the Research Group of Drug Development and Analysis led by Prof. Dr. Andreas Hilgeroth at the Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg. I would like to thank all the people for their participation who supported my work in this way and helped me obtain good results. First of all, I would like to express my gratitude to Prof. Dr. Andreas Hilgeroth for providing me with opportunity to carry out my Ph.D.
    [Show full text]
  • Oxazolidinones for TB
    Oxazolidinones for TB: Current Status and Future Prospects 12th International Workshop on Clinical Pharmacology of Tuberculosis Drugs London, UK 10 September 2019 Lawrence Geiter, PhD Disclosures • Currently contract consultant with LegoChem Biosciences, Inc., Daejeon, Korea (LCB01-0371/delpazolid) • Previously employed with Otsuka Pharmaceutical Development and Commercialization, Inc. (delamanid, OPC-167832, LAM assay) What are Oxazolidinones • A family of antimicrobials mostly targeting an early step in protein synthesis • Cycloserine technically oxazolidinone but 2-oxazolidinone different MOA and chemical properties • New generation oxazolidinones bind to both 50S subunit and 30S subunit • Linezolid (Zyvox) and Tedizolid (Sivestro) approved for drug resistant skin infections and community acquired pneumonia Cycloserine • Activity against TB demonstrated in non- clinical and clinical studies • Mitochondrial toxicity >21 days limits use in TB treatment Linezolid Developing Oxazolidinones for TB Compound Generic Brand Sponsor Development Status TB Code- Activity/Trials PNU-100766 Linezolid Zyvox Pfizer Multiple regimen Yes/Yes TR-201 Tedizolid Sivextro Merck Pre-clinical efficacy Yes/No PNU-100480 Sutezolid Pfizer Multiple regimen studies Sequella Yes/Yes (PanACEA) TB Alliance LCB01-0371 Delpazolid LegoChem Bio EBA trial recruitment completed Yes/Yes TBI-223 - Global Alliance SAD trial launched Yes/Yes AZD5847 Posizolid AstraZenica Completed EBA Yes/No RX-1741 Radezolid Melinta IND for vaginal infections ?/No RBX-7644 Ranbezolid Rabbaxy None found ?/No MRX-4/MRX-1 Contezolid MicuRx Skin infections Yes/No U-100592 Eperezolid ? No clinical trials ?/No PK of Oxazolidinones in Development for TB Steady State PK Parameters Parameter Linezolid 600 Delpazolid 800 mg QD2 mg QD3 Cmax (mg/L) 17.8 8.9 Cmin (mg/L) 2.43 0.1 Tmax (h) 0.87 0.5 T1/2 (h) 3.54 1.7 AUC0-24 (µg*h/mL) 84.5 20.1 1 MIC90 (µg/mL) 0.25 0.5 References 1.
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • WHO Drug Information Vol
    WHO Drug Information Vol. 31, No. 3, 2017 WHO Drug Information Contents Medicines regulation 420 Post-market monitoring EMA platform gains trade mark; Automated 387 Regulatory systems in India FDA field alert reports 421 GMP compliance Indian manufacturers to submit self- WHO prequalification certification 421 Collaboration 402 Prequalification process quality China Food and Drug Administration improvement initiatives: 2010–2016 joins ICH; U.S.-EU cooperation in inspections; IGDRP, IPRF initiatives to join 422 Medicines labels Safety news Improved labelling in Australia 423 Under discussion 409 Safety warnings 425 Approved Brimonidine gel ; Lactose-containing L-glutamine ; Betrixaban ; C1 esterase injectable methylprednisolone inhibitor (human) ; Meropenem and ; Amoxicillin; Azithromycin ; Fluconazole, vaborbactam ; Delafloxacin ; Glecaprevir fosfluconazole ; DAAs and warfarin and pibrentasvir ; Sofosbuvir, velpatasvir ; Bendamustine ; Nivolumab ; Nivolumab, and voxilaprevir ; Cladribine ; Daunorubicin pembrolizumab ; Atezolizumab ; Ibrutinib and cytarabine ; Gemtuzumab ozogamicin ; Daclizumab ; Loxoprofen topical ; Enasidenib ; Neratinib ; Tivozanib ; preparations ; Denosumab ; Gabapentin Guselkumab ; Benznidazole ; Ciclosporin ; Hydroxocobalamine antidote kit paediatric eye drops ; Lutetium oxodotreotide 414 Diagnostics Gene cell therapy Hightop HIV home testing kits Tisagenlecleucel 414 Known risks Biosimilars Warfarin ; Local corticosteroids Bevacizumab; Adalimumab ; Hydroquinone skin lighteners Early access 415 Review outcomes Idebenone
    [Show full text]
  • Novel Antimicrobial Agents Inhibiting Lipid II Incorporation Into Peptidoglycan Essay MBB
    27 -7-2019 Novel antimicrobial agents inhibiting lipid II incorporation into peptidoglycan Essay MBB Mark Nijland S3265978 Supervisor: Prof. Dr. Dirk-Jan Scheffers Molecular Microbiology University of Groningen Content Abstract..............................................................................................................................................2 1.0 Peptidoglycan biosynthesis of bacteria ........................................................................................3 2.0 Novel antimicrobial agents ...........................................................................................................4 2.1 Teixobactin ...............................................................................................................................4 2.2 tridecaptin A1............................................................................................................................7 2.3 Malacidins ................................................................................................................................8 2.4 Humimycins ..............................................................................................................................9 2.5 LysM ........................................................................................................................................ 10 3.0 Concluding remarks .................................................................................................................... 11 4.0 references .................................................................................................................................
    [Show full text]
  • Infectious Diseases
    2013 MEDICINES IN DEVELOPMENT REPORT Infectious Diseases A Report on Diseases Caused by Bacteria, Viruses, Fungi and Parasites PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Research Evolves Against Infectious Diseases with Nearly 400 Medicines and Vaccines in Testing Throughout history, infectious diseases hepatitis C that inhibits the enzyme have taken a devastating toll on the lives essential for viral replication. and well-being of people around the • An anti-malarial drug that has shown Medicines in Development world. Caused when pathogens such activity against Plasmodium falci- For Infectious Diseases as bacteria or viruses enter a body and parum malaria which is resistant to multiply, infectious diseases were the current treatments. Application leading cause of death in the United Submitted States until the 1920s. Today, vaccines • A potential new antibiotic to treat methicillin-resistant Staphylococcus Phase III and infectious disease treatments have proven to be effective treatments in aureus (MRSA). Phase II many cases, but infectious diseases still • A novel treatment that works by Phase I pose a very serious threat to patients. blocking the ability of the smallpox Recently, some infectious pathogens, virus to spread to other cells, thus 226 such as pseudomonas bacteria, have preventing it from causing disease. become resistant to available treatments. Infectious diseases may never be fully Diseases once considered conquered, eradicated. However, new knowledge, such as tuberculosis, have reemerged new technologies, and the continuing as a growing health threat. commitment of America’s biopharma- America’s biopharmaceutical research ceutical research companies can help companies are developing 394 medicines meet the continuing—and ever-changing and vaccines to combat the many threats —threat from infectious diseases.
    [Show full text]
  • Parsek Micro410 Lecture
    Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Organization of the Prokaryotic Cell Prokaryotic Structures fimbriae Size Range of Prokaryotes bacillus See Table 4.1 (rigid) vibrio Nanobacteria 0.05‐0.2 µm (0.14‐0.2 µm) (flexible) Thiomargarita namibiensis Mycoplasma are 700‐750 µm (Fig. 4.2) pleomorphic green alga Nanochlorum eukaryotum Mycoplasma 0.1‐ ~1-2 µm in diameter 0.3 µm Fig. 4.1 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Staining cells for Microscopic observation Cell Arrangements Motility- ~80% of prokaryotes are motile streptococcus Staining properties: Gram Stain staphylococcus Fig. 2.3 Gram Stain (1884) (Bacteria) Gram-negative mixed culture Gram-positive Fig. 2.3 and 2.4 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Functions of the cytoplasmic membrane The phospholipid bi‐layer Fig. 4.9 Fig. 4.4 What is the structure of bacterial phospholipids? Other components of the cytoplasmic membrane Figs. 4.5‐4.6 Microm 410 Fall 2009: Prokaryotic Structure/Function part 1 Dr. Matt Parsek Archaeal membranes can be a lipid monolayer Archaeal phospholipids have an ether linkage Fig. 4.7 Fig. 4.8 Importance of Cell Wall Schematic diagram cell wall • Provides rigidity to cell allowing cell to withstand the large osmotic/ionic Fig. 4.16 changes a bacterium may experience in its environment, and turgor pressure of cytoplasm (conc. of solutes in cytoplasm). Cell lysis • May have a role in shape determination. • Provides a barrier against certain toxic chemical and biological agents. • Site of action of some of the most commonly used antibiotics used to treat bacterial infections (penicillin family).
    [Show full text]
  • Parsek Lecture #3
    Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Peptidoglycan Synthesis Peptidoglycan Synthesis cytoplasm cell membrane cell wall Bactoprenol-P Pi UDP-NAM M G pentapeptide G M Bactoprenol Bactoprenol-P-P P M UMP G P NAM G M pentapeptide M G UDP-NAG Bactoprenol G P NAM‐NAG P NAM-NAG UMP pentapeptide Fig. 6.7a Interbridge peptide Peptidoglycan Synthesis Cross-linking of Peptidoglycan Strands cytoplasm cell membrane cell wall autolysins Bactoprenol-P Pi UDP-NAM Bacitracin M G pentapeptide G D-cycloserine Bactoprenol M (Oxamycin) Bactoprenol-P-P P M UMP G P Transpeptidase (FtsI) NAM G M pentapeptide M G UDP-NAG Bactoprenol G Vancomycin P NAM‐NAG P NAM-NAG pentapeptide UMP Fig. 6.7b pentapeptide Interbridge peptide Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Cross-linking of Peptidoglycan Strands Antibiotic Resistance autolysins • Inactivate antibiotic β-lactamase (penicillinase) Clavulanic acid β-lactams Augmentin and Trimentin (combination of clavulanic acid and transpeptidase amoxicillin or ampicillin respectively) penicillins and cephalosporins lysozyme • Change chemistry of target site • Limit access of the antibiotic to target site Fig. 6.5 Cell Shape Determination • Modifications made to Peptidoglycan: ‐ lysozyme: Protoplasts/spheroplasts ‐ autolysins Bacillus subtilis ‐ endopeptidase Heliobacter pylori • Protein(s) may play a major role ‐ MreB protein Caulobacter crescentus ‐ MreB has homology to actin, a component of the cytoskeleton of eukaryotes. Shape determining protein‐ crescentin Fig. 6.4 Microm 410 Fall 2009: Prokaryotic Structure/Function: Part 2/3 Dr. Matt Parsek Cell Wall Gram-positive Bacteria intermediate filaments in the bacteria Caulobacter crescentus glycerol similar predicted structures of crescentin and intermediate filaments Fig.
    [Show full text]
  • 9-20-08 Referral
    Comparative studies with antibiotics: Why should we change the rules? Paul M. Tulkens, MD, PhD Cellular and Molecular Pharmacology & Centre for Clinical Pharmacy Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 1 What its all about ? • We are in real need of novel antibiotics… but … most clinical studies with new compounds aim at equivalence or non-inferiority, failing to meet clinicians’ expectations and regulatory requirements for novelty. In parallel, safety issues are becoming an increasingly worrying hurdle for manufacturers Pricing make antibiotic unattractive • What are the possible solutions ? 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 2 The antibiotic crisis * * A pictorial view using 4 paintings of Van Gogh (who stayed briefly in Belgium when moving from Holland to France) and with selected Belgian and International data… 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 3 Are antibiotics following a path to madness ? discovery in soil bacteria and fungi 1928 - … 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 4 Are antibiotics following a path to madness ? and then we all saw the blooming tree of semi- synthetic and totally synthetic antibiotics 1950 – 1980 … 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 5 Are antibiotics following a path to madness ? and the US General Surgeon told us that the fight was over 1970 … 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 6 Are antibiotics following a path to madness ? But… 2012 … 10-10-2012 Late Phase Leaders Forum, Vienna, Austria 7 Extent of resistance of P.
    [Show full text]
  • Gonorrhea, Chlamydia, and Syphilis
    2019 GONORRHEA, CHLAMYDIA, AND SYPHILIS AND CHLAMYDIA, GONORRHEA, Dedication TAG would like to thank the National Coalition of STD Directors for funding and input on the report. THE PIPELINE REPORT Pipeline for Gonorrhea, Chlamydia, and Syphilis By Jeremiah Johnson Introduction The current toolbox for addressing gonorrhea, chlamydia, and syphilis is inadequate. At a time where all three epidemics are dramatically expanding in locations all around the globe, including record-breaking rates of new infections in the United States, stakeholders must make do with old tools, inadequate systems for addressing sexual health, and a sparse research pipeline of new treatment, prevention, and diagnostic options. Lack of investment in sexual health research has left the field with inadequate prevention options, and limited access to infrastructure for testing and treatment have allowed sexually transmitted infections (STIs) to flourish. The consequences of this underinvestment are large: according to the World Health Organization (WHO), in 2012 there were an estimated 357 million new infections (roughly 1 million per day) of the four curable STIs: gonorrhea, chlamydia, syphilis, and trichomoniasis.1 In the United States, the three reportable STIs that are the focus of this report—gonorrhea, chlamydia, and syphilis—are growing at record paces. In 2017, a total of 30,644 cases of primary and secondary (P&S) syphilis—the most infectious stages of the disease—were reported in the United States. Since reaching a historic low in 2000 and 2001, the rate of P&S syphilis has increased almost every year, increasing 10.5% during 2016–2017. Also in 2017, 555,608 cases of gonorrhea were reported to the U.S.
    [Show full text]
  • Rifalazil | Medchemexpress
    Inhibitors Product Data Sheet Rifalazil • Agonists Cat. No.: HY-105099 CAS No.: 129791-92-0 Molecular Formula: C₅₁H₆₄N₄O₁₃ • Molecular Weight: 941.07 Screening Libraries Target: DNA/RNA Synthesis; Bacterial Pathway: Cell Cycle/DNA Damage; Anti-infection Storage: 4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture) SOLVENT & SOLUBILITY In Vitro DMSO : 8.33 mg/mL (8.85 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 1.0626 mL 5.3131 mL 10.6262 mL Stock Solutions 5 mM 0.2125 mL 1.0626 mL 2.1252 mL 10 mM --- --- --- Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution BIOLOGICAL ACTIVITY Description Rifalazil (KRM-1648; ABI-1648), a rifamycin derivative, inhibits the bacterial DNA-dependent RNA polymerase and kills bacterial cells by blocking off the β-subunit in RNA polymerase[1]. Rifalazil (KRM-1648; ABI-1648) is an antibiotic, exhibits high potency against mycobacteria, gram-positive bacteria, Helicobacter pylori, C. pneumoniae and C. trachomatis with MIC values from 0.00025 to 0.0025 μg/ml[3]. Rifalazil (KRM-1648; ABI-1648) has the potential for the treatment of Chlamydia infection, Clostridium difficile associated diarrhea (CDAD), and tuberculosis (TB)[2].
    [Show full text]