The Economist Investment Case Study Competition 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Casper the Friendly Finality Gadget
Casper the Friendly Finality Gadget Vitalik Buterin and Virgil Griffith Ethereum Foundation Abstract We introduce Casper, a proof of stake-based finality system which overlays an existing proof of work blockchain. Casper is a partial consensus mechanism combining proof of stake algorithm research and Byzantine fault tolerant consensus theory. We introduce our system, prove some desirable features, and show defenses against long range revisions and catastrophic crashes. The Casper overlay provides almost any proof of work chain with additional protections against block reversions. 1. Introduction Over the past few years there has been considerable research into “proof of stake” (PoS) based blockchain consensus algorithms. In a PoS system, a blockchain appends and agrees on new blocks through a process where anyone who holds coins inside of the system can participate, and the influence an agent has is proportional to the number of coins (or “stake”) it holds. This is a vastly more efficient alternative to proof of work (PoW) “mining” and enables blockchains to operate without mining’s high hardware and electricity costs. There are two major schools of thought in PoS design. The first, chain-based proof of stake[1, 2], mimics proof of work mechanics and features a chain of blocks and simulates mining by pseudorandomly assigning the right to create new blocks to stakeholders. This includes Peercoin[3], Blackcoin[4], and Iddo Bentov’s work[5]. The other school, Byzantine fault tolerant (BFT) based proof of stake, is based on a thirty-year-old body of research into BFT consensus algorithms such as PBFT[6]. BFT algorithms typically have proven mathematical 2 properties; for example, one can usually mathematically prove that as long as > 3 of protocol participants are following the protocol honestly, then, regardless of network latency, the algorithm cannot finalize conflicting blocks. -
Beauty Is Not in the Eye of the Beholder
Insight Consumer and Wealth Management Digital Assets: Beauty Is Not in the Eye of the Beholder Parsing the Beauty from the Beast. Investment Strategy Group | June 2021 Sharmin Mossavar-Rahmani Chief Investment Officer Investment Strategy Group Goldman Sachs The co-authors give special thanks to: Farshid Asl Managing Director Matheus Dibo Shahz Khatri Vice President Vice President Brett Nelson Managing Director Michael Murdoch Vice President Jakub Duda Shep Moore-Berg Harm Zebregs Vice President Vice President Vice President Shivani Gupta Analyst Oussama Fatri Yousra Zerouali Vice President Analyst ISG material represents the views of ISG in Consumer and Wealth Management (“CWM”) of GS. It is not financial research or a product of GS Global Investment Research (“GIR”) and may vary significantly from those expressed by individual portfolio management teams within CWM, or other groups at Goldman Sachs. 2021 INSIGHT Dear Clients, There has been enormous change in the world of cryptocurrencies and blockchain technology since we first wrote about it in 2017. The number of cryptocurrencies has increased from about 2,000, with a market capitalization of over $200 billion in late 2017, to over 8,000, with a market capitalization of about $1.6 trillion. For context, the market capitalization of global equities is about $110 trillion, that of the S&P 500 stocks is $35 trillion and that of US Treasuries is $22 trillion. Reported trading volume in cryptocurrencies, as represented by the two largest cryptocurrencies by market capitalization, has increased sixfold, from an estimated $6.8 billion per day in late 2017 to $48.6 billion per day in May 2021.1 This data is based on what is called “clean data” from Coin Metrics; the total reported trading volume is significantly higher, but much of it is artificially inflated.2,3 For context, trading volume on US equity exchanges doubled over the same period. -
Validation of Smart Contracts Through Automated Tooling
Faculty of Sciences and Tecnology Department of Informatics Engineering Validation of Smart Contracts Through Automated Tooling Tom´asMorgado de Carvalho Concei¸c~ao Internship Report in the context of the Master in Informatics Engineering, Specialization in Software Engineering advised by Professor Raul Barbosa and Eng. Jo~aoBarbosa and presented to the Department of Informatics Engineering / Faculty of Sciences and Technology January 2019 Acknowledgements I would first like to thank Professor Raul Barbosa, my advisor at the University of Coimbra, for, with his valuable experience and insights, guiding me through this process and always challenging me to do better. I would like to thank my advisor, Jo~aoBarbosa, not only for his technical contributions to this dissertation but for always ensuring that I had my priorities straight and was managing my time properly. Thank you for pushing me to always make healthy choices regarding my work-life balance. I want to thank the members of my jury, Professor Fernando Jos´eBarros and Professor C´esarAlexandre Domingues Teixeira, for their input and suggestions for improvement, and their constructive criticism. I would like to thank Whitesmith and Blocksmith, and in particular Gon¸caloLouzada, Maria Jo~aoFerreira and Rafael Jegundo, for accepting me on this internship, providing me with all the tools and conditions to achieve my goals and for inviting me to take part on other projects during this year. I would also like to thank my co-workers, who, since the first day and without exception, made me feel welcome and at home. I have learned something new with every single one of you. -
TRUST, but VERIFY: WHY the BLOCKCHAIN NEEDS the LAW Kevin Werbach†
TRUST, BUT VERIFY: WHY THE BLOCKCHAIN NEEDS THE LAW Kevin Werbach† ABSTRACT The blockchain could be the most consequential development in information technology since the Internet. Created to support the Bitcoin digital currency, the blockchain is actually something deeper: a novel solution to the age-old human problem of trust. Its potential is extraordinary. Yet, this approach may not promote trust at all without effective governance. Wholly divorced from legal enforcement, blockchain-based systems may be counterproductive or even dangerous. And they are less insulated from the law’s reach than it seems. The central question is not how to regulate blockchains but how blockchains regulate. They may supplement, complement, or substitute for legal enforcement. Excessive or premature application of rigid legal obligations will stymie innovation and forego opportunities to leverage technology to achieve public policy objectives. Blockchain developers and legal institutions can work together. Each must recognize the unique affordances of the other system. DOI: https://doi.org/10.15779/Z38H41JM9N © 2018 Kevin Werbach. † Associate Professor of Legal Studies and Business Ethics, The Wharton School, University of Pennsylvania. Email: [email protected]. Thanks to Dan Hunter for collaborating to develop the ideas that gave rise to this Article, and to Sarah Light, Patrick Murck, and participants in the 2017 Lastowka Cyberlaw Colloquium and 2016 TPRC Conference for comments on earlier drafts. 488 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 33:487 -
Short Selling Attack: a Self-Destructive but Profitable 51% Attack on Pos Blockchains
Short Selling Attack: A Self-Destructive But Profitable 51% Attack On PoS Blockchains Suhyeon Lee and Seungjoo Kim CIST (Center for Information Security Technologies), Korea University, Korea Abstract—There have been several 51% attacks on Proof-of- With a PoS, the attacker needs to obtain 51% of the Work (PoW) blockchains recently, including Verge and Game- cryptocurrency to carry out a 51% attack. But unlike PoW, Credits, but the most noteworthy has been the attack that saw attacker in a PoS system is highly discouraged from launching hackers make off with up to $18 million after a successful double spend was executed on the Bitcoin Gold network. For this reason, 51% attack because he would have to risk of depreciation the Proof-of-Stake (PoS) algorithm, which already has advantages of his entire stake amount to do so. In comparison, bad of energy efficiency and throughput, is attracting attention as an actor in a PoW system will not lose their expensive alternative to the PoW algorithm. With a PoS, the attacker needs mining equipment if he launch a 51% attack. Moreover, to obtain 51% of the cryptocurrency to carry out a 51% attack. even if a 51% attack succeeds, the value of PoS-based But unlike PoW, attacker in a PoS system is highly discouraged from launching 51% attack because he would have to risk losing cryptocurrency will fall, and the attacker with the most stake his entire stake amount to do so. Moreover, even if a 51% attack will eventually lose the most. For these reasons, those who succeeds, the value of PoS-based cryptocurrency will fall, and attempt to attack 51% of the PoS blockchain will not be the attacker with the most stake will eventually lose the most. -
Creation and Resilience of Decentralized Brands: Bitcoin & The
Creation and Resilience of Decentralized Brands: Bitcoin & the Blockchain Syeda Mariam Humayun A dissertation submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Administration Schulich School of Business York University Toronto, Ontario March 2019 © Syeda Mariam Humayun 2019 Abstract: This dissertation is based on a longitudinal ethnographic and netnographic study of the Bitcoin and broader Blockchain community. The data is drawn from 38 in-depth interviews and 200+ informal interviews, plus archival news media sources, netnography, and participant observation conducted in multiple cities: Toronto, Amsterdam, Berlin, Miami, New York, Prague, San Francisco, Cancun, Boston/Cambridge, and Tokyo. Participation at Bitcoin/Blockchain conferences included: Consensus Conference New York, North American Bitcoin Conference, Satoshi Roundtable Cancun, MIT Business of Blockchain, and Scaling Bitcoin Tokyo. The research fieldwork was conducted between 2014-2018. The dissertation is structured as three papers: - “Satoshi is Dead. Long Live Satoshi.” The Curious Case of Bitcoin: This paper focuses on the myth of anonymity and how by remaining anonymous, Satoshi Nakamoto, was able to leave his creation open to widespread adoption. - Tracing the United Nodes of Bitcoin: This paper examines the intersection of religiosity, technology, and money in the Bitcoin community. - Our Brand Is Crisis: Creation and Resilience of Decentralized Brands – Bitcoin & the Blockchain: Drawing on ecological resilience framework as a conceptual metaphor this paper maps how various stabilizing and destabilizing forces in the Bitcoin ecosystem helped in the evolution of a decentralized brand and promulgated more mainstreaming of the Bitcoin brand. ii Dedication: To my younger brother, Umer. -
The Amazing Story of Ethereum and the $55 Million Heist That Almost
One he clock above baggage claim at Toronto’s Pearson Airport read 21:45 as Vitalik Buterin, six years old, played with a rubber Tducky. A gift from the Lufthansa flight attendant on the long journey from Moscow, it would become one of his favorite bath toys in the years ahead. As the towheaded, blue-eyed boy looked around this new place, COPYRIGHTEDhe thought about recently celebrating MATERIAL his birthday with his parents and grandparents in Kolomna, the ancient Russian city southeast of Moscow where the Moskva and Oka rivers meet. A few days later, when he was told they were going to Canada, he asked if it was for a week or a month. No, zaya, it’s for good, he was told. Vladimir Putin would soon be president in Russia, and his parents were seeking better opportunities – as well as some adventure – abroad. There are few bigger 27 Leising602934_c01.indd 27 8/12/2020 8:20:50 AM 28 out of the ether changes in a life than moving across an ocean, and like anyone, the skinny six-year-old felt afraid of the unknown he now faced. He carried fond, but few, memories of Russia with him. He remem- bered living with his grandparents while his mom and dad were busy with their careers, and as they worked out the details of an amicable divorce. His mother’s parents had an apartment in Kolomna as well as a dacha where his grandmother tended a vegetable garden. The nearby forest was his favorite place to play. He remembered it being cold. -
Software Developers As Fiduciaries in Public Blockchains
Digital Commons at St. Mary's University Faculty Articles School of Law Faculty Scholarship 2019 In Code(rs) We Trust: Software Developers as Fiduciaries in Public Blockchains Angela Walch Follow this and additional works at: https://commons.stmarytx.edu/facarticles Part of the Banking and Finance Law Commons 3 In Code(rs) We Trust SoftwareDevelopers as Fiduciaries in Public Blockchains Angela Walch,. I. Introduction 'Those who are not expert developers or computer scientists who have invested a great deal of time in learning the design principles and codebaseof a blockchain must place a great deal of faithin theexpert developer community:' 'Acomputer operates only in accordance with the informationand directions supplied by its human programmers. If the computer does not think like a man, it is man's fault? A decade into Bitcoin's existence, governance questions around it and other public blockchains abound. Do these 'decentralized' structures even have governance? If so, what does it look like? Who has power, and how is it channelled or constrained? Are power struc turesimplicit or explicit? How can we improve upon the ad hoc governance structures of early blockchains? ls 'on-chain governance:like that proposed byTezos and others, the path forward? In August 20 I 6, in the aftermath of the DAO theft and resulting Ethereum hard fork, I argued in American Banker that the core developers and significant miners of public blockchains functionas fiduciaries of those who rely on these systems and should, therefore, be accountable as such.' The DAO episode provided a gripping real-world demonstration that certain people within nominally decentralized public blockchains were malting deci sions about other people's money and resources, yet this power was largelyunacknowledged, undefined, andunaccountable. -
Cryptocurrency and the Blockchain: Technical Overview and Potential Impact on Commercial Child Sexual Exploitation
Cryptocurrency and the BlockChain: Technical Overview and Potential Impact on Commercial Child Sexual Exploitation Prepared for the Financial Coalition Against Child Pornography (FCACP) and the International Centre for Missing & Exploited Children (ICMEC) by Eric Olson and Jonathan Tomek, May 2017 Foreword The International Centre for Missing & Exploited Children (ICMEC) advocates, trains and collaborates to eradicate child abduction, sexual abuse and exploitation around the globe. Collaboration – one of the pillars of our work – is uniquely demonstrated by the Financial Coalition Against Child Pornography (FCACP), which was launched in 2006 by ICMEC and the National Center for Missing & Exploited Children. The FCACP was created when it became evident that people were using their credit cards to buy images of children being sexually abused online. Working alongside law enforcement, the FCACP followed the money to disrupt the economics of the child pornography business, resulting in the virtual elimination of the use of credit cards in the United States for the purchase of child sexual abuse content online. And while that is a stunning accomplishment, ICMEC and the FCACP are mindful of the need to stay vigilant and continue to fight those who seek to profit from the sexual exploitation of children. It is with this in mind that we sought to research cryptocurrencies and the role they play in commercial sexual exploitation of children. This paper examines several cryptocurrencies, including Bitcoin, and the Blockchain architecture that supports them. It provides a summary of the underground and illicit uses of the currencies, as well as the ramifications for law enforcement and industry. ICMEC is extremely grateful to the authors of this paper – Eric Olson and Jonathan Tomek of LookingGlass Cyber Solutions. -
The Lightning Network - Deconstructed and Evaluated
The Lightning Network - Deconstructed and Evaluated Anti-Money Laundering (AML) and Anti-Terrorist Financing (ATF) professionals, especially those working in the blockchain and cryptocurrency environment, may have heard of the second layer evolution of Bitcoin's blockchain - the Lightning Network, (LN). This exciting new and rapidly deploying technology offers innovative solutions to solve issues around the speed of transaction times using bitcoin currently, but expandable to other tokens. Potentially however, this technology raises regulatory concerns as it arguably makes, (based on current technical limitations), bitcoin transactions truly anonymous and untraceable, as opposed to its current status, where every single bitcoin can be traced all the way back to its coinbase transaction1 on the public blockchain. This article will break down the Lightning Network - analyzing how it works and how it compares to Bitcoin’s current system, the need for the technology, its money laundering (ML) and terrorist financing (TF) risks, and some thoughts on potential regulatory applications. Refresher on Blockchain Before diving into the Lightning Network, a brief refresher on how the blockchain works - specifically the Bitcoin blockchain (referred to as just “Bitcoin” with a capital “B” herein) - is required. For readers with no knowledge or those wishing to learn more about Bitcoin, Mastering Bitcoin by Andreas Antonopoulos2 is a must read, and for those wishing to make their knowledge official, the Cryptocurrency Certification Consortium, (C4) offers the Certified Bitcoin Professional (CBP) designation.3 Put simply, the blockchain is a growing list of records that can be visualized as a series of blocks linked by chains. Each block contains specific information - in Bitcoin’s case, a list of transactions and their data, which includes the time, date, amount, and the counterparties4 of each transaction. -
Bitcoin 2.0 – New Technologies and New Legal Impacts
October 16, 16, 2018 October RamdeRakesh – ProteumLLC Capital, –MinneJacob Lewis Bockius& Morgan, LLP ANDNEWIMPACTS LEGAL NEWTECHNOLOGIES BITCOIN2.0– © 2018 Morgan, Lewis & Bockius LLP Agenda • Introduction - A Brief Refresher on Bitcoin • Second Layer Solutions: – Lightning Network – Applicability of AML Laws – Extraterritoriality – Taxation – Potential Strategies • Digital Governance Strategies – Dash – Taxing and Spending – Ethereum and the DAO – EOS – On-Chain Dispute Ressolution • Business Assets on the Blockchain – Rakesh Ramde, Proteum Capital, LLC 2 INTRODUCTION AND REFRESHER ON BLOCKCHAIN A Blockchain Is: 1. A database, 2. that is distributed (not centralized), 3. whose data elements are immutable (unalterable), and 4. that is encrypted “At its simplest level, a blockchain is nothing much more than a fancy kind of database” - Blythe Masters, Digital Assets 4 Bitcoin Distributed Payment System • All participants (A-I) have sight of all transactions on A B the blockchain (and their C entire history) • Payments pass directly I between users, here A to F, D but are verified by other users (here, D, G, and I) • New transactions are H E broadcast to “miners” • When verified, the G F transaction is added to the (Bank of England Quarterly Bulletin 2014 Q3) blockchain history 5 Advantages and Disadvantages Advantages: Disadvantages: • Accessibility • Slow transaction rate / (potentially) high cost • Redundancy • High Energy Cost • Passive access • Lack of Privacy 6 SECOND LAYER SOLUTIONS – A DISCUSSION OF LIGHTNING NETWORK Second Layer Solutions • Developers need a way to scale if Bitcoin is to have widespread adoption. One so-called “second layer” solution is “Lightning Network.” 8 Lightning Network • In Lightning, two peers make a single transaction on the blockchain, each locking some amount of bitcoin in a “channel.” • The two parties can then trade back and forth so long as the net balance never exceeds the channel balance. -
Joel & Greg's Recommended Bitcoin and Crypto Library
Joel & Greg’s Recommended Bitcoin and Crypto Library Whitepapers Bitcoin: A Peer‐to‐Peer Electronic Cash System, by Satoshi Nakamoto (2008) Ethereum Whitepaper, by Vitalik Buterin (2013) Early Articles How Bitcoin Works: A Guide for the Digitally Perplexed, by Richard Bondi (2014) Why Bitcoin Matters by Marc Andreessen (2014) Why I Invested in Bitcoin by Chamath Palihapitiya (2013) Why I’m Interested in Bitcoin by Chris Dixon (2013) Books on the history of bitcoin and ethereum Bitcoin Billionaires: A True Story of Genius, Betrayal, and Redemption, by Ben Mezrich (2019) Digital Gold: Bitcoin and the Inside Story of the Misfits and Millionaires, by Nathaniel Popper (2016) How Money Got Free: Bitcoin and the Fight for the Future of Finance, by Brian Eha (2017) The Infinite Machine: How an Army of Crypto‐hackers is Building the Next Internet with Ethereum, by Camila Russo (2020) Out of the Ether: The Amazing Story of Ethereum and the $55 Million Heist that Almost Destroyed It, by Matthew Leising (2020) Books explaining use of bitcoin and the use money The Age of Cryptocurrency: How Bitcoin and the Blockchain Are Challenging the Global Economic Order by Paul Vigna (2016) The Bitcoin Standard: The Decentralized Alternative to Central Banking by Saifedean Ammous (2018) Cryptoassets: The Innovative Investor's Guide to Bitcoin and Beyond by Chros Burniske (2017) The Internet of Money: A collection of talks by Andreas M. Antonopoulos, volume 1 (2016), volume 2 (2017) , volume 3 (2019) by Andreas Antonopoulos The Little Bitcoin Book by Bitcoin Collective