Top Elastomeric Materials Guide

Total Page:16

File Type:pdf, Size:1020Kb

Top Elastomeric Materials Guide Craftech Industries® Top Elastomeric Materials Guide Craftech Industries®, 2014 8 Dock Street, Hudson, NY 12534 Website: www.craftechind.com Blog: info.craftechind.com/blog E-mail: [email protected] Phone: 518-828-5001 or 800-833-5130 Fax: 518-828-9468 Craftech Industries® Top Elastomeric Materials Guide 4 Elastomer Material Descriptions 6 Elastomer Mechanical Properties 7 Elastomer Chemical Resistance Data Elastomer Material Descriptions ELASTOMER TYPE DESCRIPTION STRENGTH(S) LIMITATION(S) VITON® A fluoroelastomer utilized when Performs well in high Relatively high cost both high temperature and temperatures and in the material with limited chemical resistance are required. presence of acids when the hardness range. Poor proper grade is selected. resistance to ketones, Very good weathering and low molecular weight ozone resistant properties. esters, alcohols and nitro- containing compounds. SILICONE Used in applications where Excellent high temperature Poor resistance to solvents, high temperature performance resistance. Excellent oils, concentrated acids, is required. Due to its purity weather, UV, and ozone and steam. Tensile strength when processed, Silicone is often resistance. and tear resistance are both used in food processing and poor. pharmaceutical fields. Used for industrial applications because of its long service life. BUNA-N Used in applications where Very good resistance to oils, Poor resistance to UV, gasoline, oil, and greases may solvents, and fuels. ozone and weathering. be present. This material is also Does not perform well with known under other generic names ketones and chlorinated such as Nitrile, Buna or NBR. hydrocarbons. EPDM An elastomer that is a popular Very good resistance to Poor resistance to oils (ethylene propylene choice for outdoor applications ozone, UV, and sunlight. and solvents, aromatic diene monomer) where weather and water Performs well in higher hydrocarbons, and resistance is crucial. Also known temperatures and where petroleum products. as M-Class synthetic rubber. steam, brake fluid, and/or weak acids may be present. NEOPRENE A popular elastomer considered Performs well in moderate Poor resistance to strong by many as a “General Purpose” exposure to ozone, UV, acids, strong solvents, rubber. Often misused as a generic weather. Provides good esters, and ketones. Does term for “rubber.” resistance to oils, greases, not perform well with and weaker solvents as well. chlorinated, aromatic, or nitro-hydrocarbons. FLUOROSILICONE This elastomer is utilized as a Excellent high temperature Poor resistance to brake substitute for silicone when higher resistance. Excellent fluids and ketones. levels of chemical resistance are resistance to moderate Moderate physical required. or oxidizing chemicals, properties. ozone, aromatic chlorinated solvents and bases. 4 © 2014 Craftech Industries® www.craftechind.com (800) 833-5130 ELASTOMER TYPE DESCRIPTION STRENGTH(S) LIMITATION(S) SBR One of the first synthetic rubbers Very good abrasion Poor resistance to oils, (styrene-butadiene and the most widely used in the resistance, similar to natural fuels, solvents, and rubber) past. Was known for its low cost rubber. It boasts a relatively hydraulic fluids. Fair in the marketplace. low cost. resistance to weathering, similar to natural rubber. SYNTHETIC The synthetic version of natural Very similar to natural Same limitations as Natural POLYISOPRENE rubber. Also known as “Synthetic rubber. Free of allergenic Rubber. (See Below) Natural.” It contains no rubber proteins of natural rubber tree latex. (latex free). NATURAL/GUM An elastomer made from rubber High elongation and Deteriorates when exposed RUBBER tree latex. resilience with high to oils, fuels, solvents and tensile strength. Excellent hydraulic fluids. Poor abrasion resistance and resistance to sunlight and low compression set. Good ozone. Not recommended flexing qualities at low for outdoor applications. temperature. Poor high temperature resistance. Please Note: The information presented above is for general guideline purposes only. Craftech Industries, Inc. does not guarantee its completeness or accuracy, nor assumes any responsibility for its use. www.craftechind.com (800) 833-5130 © 2014 Craftech Industries® 5 Elastomeric Mechanical Properties Data SILICONE FLUOROSILICONE EPDM NEOPRENE BUNA-N/NITRILE FKM/VITON® ASTM PVMQ / VMQ FVMQ Fluoro- Ethylene CR Chloroprene NBR-Nitrile buta- Fluoro- Designation Polydimethyl- substituted silenes propylene diene rubber elastomer siloxane diene Properties Specific Gravity .95-1.2 1.2-1.4 .86-1.1 1.2-1.4 1.0-1.2 1.98 Useful Durometer 30-90 40-80 40 -90 30-95 40-95 50-90 Range Tensile Strength 700-1200 900-1500 1800-2500 2500-4000 1000-3500 1000-3000 (psi) Elongation @ Break 900 400 600 600 650 300 (%) Low Temperature -100 -70 -50 -40 -35 - 30 Limit (approx. °F, 5:1 Stiffening) High Temperature + 350 + 325 + 250 + 200 + 200 + 450 Limit (°F, Continuous) High Temperature + 600 + 500 + 325 + 300 + 300 + 500 Limit (°F, Intermittent) Tear Resistance C-B D C B B B Abrasion Resistance B D B A A B Compression Set B-A C-B B-A B B B-A (CS) Creep C-A B C-B B B B-A Ozone Resistance A A A A C A Weather Resistance B B A B NR B Gas Impermeability NR NR D C B A Flame Resistance NR C NR C NR A Electrical A C B D D C Resistance Dielectric Constant 3.1 6.5 2.5 6.7 15-20 8.8-10.7 Dielectric Strength 500-1000 380 500-1400 400-600 230-280 400-600 (V/mil) A = Excellent B = Good C = Fair D = Use with caution NR = Not Recommended 6 © 2014 Craftech Industries® www.craftechind.com (800) 833-5130 Elastomeric Chemical Resistance Data CHEMICAL SILICONE FLUOROSILICONE EPDM NEOPRENE BUNA-N VITON® INTERACTION Acetone C D A C D D Ammonia Gas A A A A A D (cold) Ammonia Gas A D B B D D (hot) Benzene D A D D D A Carbon D A D D C A Tetrachloride Chlorine (Aq.) D B C C D B Chloroform D B D D D A Diesel Oil D A D C A A Fluorine D No Rating D D D B Gasoline, D A D C B A Unleaded Hydrochloric C B A B C A Acid (cold) 37% Hydrochloric D D C D D B Acid (hot) 37% Hydrofluoric Acid D D C D D A (Conc) Cold Hydrofluoric Acid D D D D D D (Conc) Hot Hydrofluoric Acid D No Rating C D D D - Anhydrous Hydrogen B B B D D B Peroxide (90%) Lubricating Oil D A D B A A (Petroleum) Lye (Sodium B A A B B B Hydroxide) A - No attack, possibly slight absorbtion. Negligible effect on mechanical properties. B - Slight attack by absorption. Some swelling and a small reduction in mechanical properties likely. C - Moderate attack of appreciable absorbtion. Material will have limited life. D - Material will decompose or dissolve in a short period of time. www.craftechind.com (800) 833-5130 © 2014 Craftech Industries® 7 CHEMICAL SILICONE FLUOROSILICONE EPDM NEOPRENE BUNA-N VITON® INTERACTION Methyl Ethyl D D A C D D Ketone Methylene D B C D D B Chloride Mineral Oil B A C B A A Nitric Acid D D D D D B (Conc.) Nitric Acid B B B B D A (Dilute) Nitric Acid - Red D D D D D C Fuming Phenol (Aq.) D B B C D A Sea Water A A A B A A Sodium Hypochlorite B B B A B A (Aq.) (Chlorox) Styrene D C D D D B (Monomer) Sulphuric Acid D C B B C A (Dilute) Sulphuric Acid D D C D D A (Conc.) Sulphuric Acid D D D D D A (20% Oleum) Toluene D B D D D B Transformer Oil B A D B A A Trichlorethylene D B D D D A Turpentine D B D D A A Xyelene D A D D D A A - No attack, possibly slight absorbtion. Negligible effect on mechanical properties. B - Slight attack by absorption. Some swelling and a small reduction in mechanical properties likely. C - Moderate attack of appreciable absorbtion. Material will have limited life. D - Material will decompose or dissolve in a short period of time. 8 © 2014 Craftech Industries® www.craftechind.com (800) 833-5130 8 Dock Street, Hudson, NY 12534 Website: www.craftechind.com Blog: info.craftechind.com/blog E-mail: [email protected] Phone: 518-828-5001 or 800-833-5130 Fax: 518-828-9468.
Recommended publications
  • Restriction of Per- and Polyfluoroalkyl Substances (PFAS) Under REACH
    Webinar: Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH Questions and answers ECHA organised a webinar on 29 October 2020 on Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH. It explained the REACH restriction process and the status of ongoing work by the Netherlands, Germany, Denmark, Sweden and Norway on a potential restriction to limit the risks to the environment and human health from the manufacture and use of per- and polyfluoroalkyl substances (PFAS). This document compiles the questions and answers from the webinar. Editorial changes have been made to improve clarity, correct spelling mistakes etc. Similar questions have been combined. The document will not be updated. For the most up-to-date advice on PFAS, contact us or refer to our support material. Disclaimer: The European Chemicals Agency and the authorities from the five countries does not accept any liability with regard to the use that may be made of the information contained in this document. Use of the information in this document remains the sole responsibility of the reader. Although, the information provided on this Q&A document has been prepared with the utmost care, possible errors or omissions cannot be excluded. The European Chemicals Agency and the authorities from the five countries does not accept any liability with regards to any such errors or omissions. P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu Question Answer General process We expect to notify the proposal in ECHA's registry of intention (RoI) in the first half of 2021 and to submit the completed assessment and proposal to ECHA for opinion making in the first half of 2022.
    [Show full text]
  • FKM Xplor™ V9T82
    TRELLEBORG SEALING SOLUTIONS FKM XploRTM V9T82 EXPLOSIVE DECOMPRESSION RESISTANT MATERIALS OUTSTANDING EXTREME LOW TEMPERATURE PERFORMANCE Explosive decompression is a major concern to the oil and gas industry. It occurs when applied system pressure is released, causing absorbed gas to expand, potentially damaging elastomer seals. Trelleborg Sealing Solutions has focused on this issue and Features and benefits presents the XploR™ range, an entire family of advanced elastomers especially developed for oil and gas applications. • Unrivalled ED restistance within its material type The portfolio includes compounds in HNBR, FKM, Aflas® and • Operating temperatures from -48°C to +200°C/-54°F to Isolast® Perfluoroelastomer, each of which demonstrates +392°F with short excursions to 210°C/+410°F best-in-class Explosive Decompression (ED) resistance for • Outstanding performance at extremely low temperatures its material type. • Exceptional mechanical performance • Low long-term compression set XploR™ V9T82 combines excellent chemical and thermal • Very good chemical compatibility properties, with outstanding low temperature capability. • Extended life in aggressive media, including the hydrocarbon It exhibits superior high pressure sealing performance in and aqueous media common within oil & gas applications ED situations, which is supported by independent institute • High modulus and high strength approval to standard test protocols. Applications When the composition of the well or conditions of the application are known, FKM XploR™ V9T82 may prove the • Separation equipment optimum and most cost-effective material for your application, • Connector systems especially when operating temperatures are extremely low. • Valves • Wellhead control equipment For further information on selecting the right compound and • Tubing hangers advice on seal specification for your individual application, • Swivel stacks on Floating Production Storage and consult your local Trelleborg Sealing Solutions marketing Offloading (FPSO) vessels company.
    [Show full text]
  • Comprehensive Testing to Measure the Jtespoi^Se^Yf Jhuorocarbdn Rubber (FKM) Whanfomtank1 Waste Simulant
    2t 2000 SANDIA REPORT SAND2000-032SA 5 i Unlimited Release Rrinted February 2000 Comprehensive Testing to Measure the jtespoi^se^yf JHuorocarbdn Rubber (FKM) WHanfoMTank1 Waste Simulant Paul J. Nigrey and DenniS'L. Bolton Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia'is a multiprogram laboratory operated by Sandia Corporation, a Lock'heed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Sandia National Laboratories Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Xyfluor Chemical Compatibility Guide
    456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate
    [Show full text]
  • Hydrogen Peroxide Material Compatibility Chart from ISM and IS
    ver 09-Jul-2020 Hydrogen Peroxide Material Compatibility Chart All wetted surfaces should be made of materials that are compatible with hydrogen peroxide. The wetted area or surface of a part, component, vessel or piping is a surface which is in permanent contact with or is permanently exposed to the process fluid (liquid or gas). Less than 8% concentration H2O2 is considered a non-hazardous substance. Typically encountered versions are baking soda-peroxide toothpaste (0.5%), contact lens sterilizer (2%), over-the-counter drug store Hydrogen Peroxide (3%), liquid detergent non-chlorine bleach (5%) and hair bleach (7.5%). At 8% to 28% H2O2 is rated as a Class 1 Oxidizer. At these concentrations H2O2 is usually encountered as a swimming pool chemical used for pool shock treatments. In the range of 28.1% to 52% concentrations, H2O2 is rated as a Class 2 Oxidizer, a Corrosive and a Class 1 Unstable (reactive) substance. At these concentrations, H2O2 is considered industrial strength grade. Concentrations from 52.1% to 91% are rated as Class 3 Oxidizers, Corrosive and Class 3 Unstable (reactive) substances. H2O2 at these concentrations are used for specialty chemical processes. At concentrations above 70%, H2O2 is usually designated as high-test peroxide (HTP). Concentrations of H2O2 greater than 91% are currently used as rocket propellant. At these concentrations, H2O2 is rated as a Class 4 Oxidizer, Corrosive and a Class 3 Unstable (reactive) substance. Compatibility Compatibility Compatibility Compatibility Material 10% H2O2 30% H2O2 50%
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • New Developments in Properties for Ethylene Acrylate Polymers
    18 Rubber & Plastics News • November 30, 2020 www.rubbernews.com www.rubbernews.com Technical Technical New developments in properties for ethylene acrylate polymers By Patricia Panne, Klaus Kammerer, Serge Bouvier, Ed McBride, Mark Stewart, Steve Oriani and Elias Wang Executive summary DuPont Vamac-brand ethylene acrylic elastomer (AEM) was introduced in 1975 and has been used successfully for many years in the Ethylene acrylate (AEM) polymers transportation sector, where excellent resistance to heat, engine fluids and low temperature flexibility is required. were first introduced to the elastomer With the introduction of the Vamac Ultra grades, a step-change improvement in processability, performance and customer value market more than 40 years ago. They for targeted applications has been achieved. Increasing demands for improved temperature stability led recently to the development are non-crystalline copolymers of eth- of the VMX5000 series of pre-compounds to offer compounds in applications with a 10-15°C higher heat resistance over conventional ylene and methyl acrylate. carbon black-filled AEM compounds. Resistance to engine oils and acids remains excellent, which makes the VMX5000 pre-com- Both monomers add to the high tem- pounds an interesting cost-effective alternative to FKM materials in the temperature range between -35°C and +175°C. perature stability, and the completely sat- For dynamic hose applications, slow-curing polymers (Vamac GXF, Ultra HT and HT-OR) have been introduced. While com- urated polymer chain imparts excellent pounds using the Ultra grades offer better physical properties, they sometimes lead to high extrusion pressure and therefore re- resistance to ozone, oxidation and weath- quire lower hardness compounds (<70 ShA).
    [Show full text]
  • Stable Silenolates and Brook-Type Silenes with Exocyclic Structures
    Communication pubs.acs.org/Organometallics Terms of Use CC-BY Stable Silenolates and Brook-Type Silenes with Exocyclic Structures † † † † † ‡ Michael Haas, Roland Fischer, Michaela Flock, Stefan Mueller, Martin Rausch, Robert Saf, † † Ana Torvisco, and Harald Stueger*, † ‡ Institute of Inorganic Chemistry and Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria *S Supporting Information ABSTRACT: The first silenolates with exocyclic structures − + [(Me3Si)2Si(Si2Me4)2SiC(R)O] K (2a: R = 1-adamantyl; 2b: mesityl; 2c: o-tolyl) were synthesized by the reaction of the corresponding acylcyclohexasilanes 1a−c with KOtBu. NMR spectroscopy and single-crystal X-ray diffraction analysis suggest that the aryl-substituted silenolates 2b,c exhibit increased character of functionalized silenes as compared to the alkyl-substituted derivative 2a due to the different coordination of the K+ counterion to the SiC(R)O moiety. 2b,c, thus, reacted with ClSiiPr3 to give the exocyclic silenes (Me3Si)2Si(Si2Me4)2Si C(OSiiPr3)R (3b:R = Mes; 3c: o-Tol), while 2a afforded the Si-silylated acylcyclohex- asilane 1d. The thermally remarkably stable compound 3b, which is the first isolated silene with the sp2 silicon atom incorporated into a cyclopolysilane framework, could be fully characterized structurally and spectroscopically. here is no doubt about the central role of alkenes and Now we would like to report the synthesis, spectroscopic − + fi T metal enolates [(R2CC(R)O] M in organic chemistry, characterization, and molecular structures of the rst cyclic which has led to a thorough understanding of chemical and silenolates (2a−c) and the selective conversion of 2b to the physical properties and numerous applications of such silene 3b, which is the first example of an isolated stable compounds.
    [Show full text]
  • Thermal Rearrangements of Reactive Intermediates in Organosilicon Chemistry Stephanie Ann Burns Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Thermal rearrangements of reactive intermediates in organosilicon chemistry Stephanie Ann Burns Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Burns, Stephanie Ann, "Thermal rearrangements of reactive intermediates in organosilicon chemistry " (1982). Retrospective Theses and Dissertations. 7494. https://lib.dr.iastate.edu/rtd/7494 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Utilization of the Silicon-Silicon Bond in the Generation of Species Unsaturated at Silicon William Dean Wulff Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1979 Utilization of the silicon-silicon bond in the generation of species unsaturated at silicon William Dean Wulff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Wulff, William Dean, "Utilization of the silicon-silicon bond in the generation of species unsaturated at silicon " (1979). Retrospective Theses and Dissertations. 6677. https://lib.dr.iastate.edu/rtd/6677 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfîlming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • Eriks.Be SEALING ELEMENTS
    sealing elements application information www.eriks.be www.o-ring.info SEALING ELEMENTS Content Oil & Gas Industry Applications 3 Semiconductor Industry Applications 6 Chemical & Petrochemical Industry Applications 7 Food & Beverage Industry Applications 8 Potable Water Applications 9 Automotive Industry Applications 10 Pharmaceutical, Analytical & Biotechnical Applications 11 Responsibility All information published in this brochure was collected with the utmost care and precision. Despite of this, ERIKS cannot and will not accept any liability claims, originating from possible incompleteness and/or inadequacy of the contents of this brochure. All information included herein is subject to change without prior notice. 2 APPLICATION INFORMATION 1. Oil & Gas Chemical Compatibility Description Solutions Applications in the Oil & Gas Industry Regulating agencies for this industry range from seals and components are primarily the American Petroleum involved in exploration and drilling to Institute (AP) Series 6 - Valves and high-pressure / high-temperature Wellhead Equipment. sealing components in down-hole wells. Extreme temperatures and pressures place great demands on ela- stomers for this industry. In addition, many chemicals either experienced in the reservoir, or used in the drilling, completion or intervention process can degrade many common elastomers. Oil & Gas Industry Applications Segments Environment Elastomers Sealing Considerations Drilling -40 to 250 F HNBR, FKM Abrasion resistance, low compression set, to 7,500 psi drilling mud
    [Show full text]