Synthesis and Chemistry of Selected Di- and Tricoordinate Organosilicon Compounds William F

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Chemistry of Selected Di- and Tricoordinate Organosilicon Compounds William F Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Synthesis and chemistry of selected di- and tricoordinate organosilicon compounds William F. Goure Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Goure, William F., "Synthesis and chemistry of selected di- and tricoordinate organosilicon compounds " (1982). Retrospective Theses and Dissertations. 8344. https://lib.dr.iastate.edu/rtd/8344 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. Wiien an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. Uni International 300 N. Zeeb Road Ann Arbor, Ml 48106 8307747 Goure, William F. SYNTHESIS AND CHEMISTRY OF SELECTED DI- AND TRICOORDINATE ORGANOSILICON COMPOUNDS Iowa State University PH.D. 1982 University Microfilms Intsrnatlonsl 300 N. Zeeb Road. Ann Arbor. MI 48106 Synthesis and chemistry of selected di- and tricoordinate organosilicon compounds by William F. Goure A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Chemistry Major: Organic Chemistry Approved: Signature was redacted for privacy. Charge of Ma^or Work Signature was redacted for privacy. A)r the ftejor Department Signature was redacted for privacy. For the Sr^du^e College Iowa State University Ames, Iowa 1982 ii TABLE OF CONTENTS Page INTRODUCTION 1 NOMENCLATURE 3 HISTORICAL 5 Silylenes 5 Silyl Radicals 75 RESULTS AND DISCUSSION 136 Attempted Preparation of Silaoxetanes Utilizing Silylene Insertion Reactions 136 The addition of Dimethylsilylene to Cyclooctatetraene (COT) 161 Intramolecular Reactions of Silylenes 157 Investigation of the Thermal- and Photochemistry of 7-Silanorbornadienes 212 The Preparation and Chemistry of Alkenyl-Substituted Silyl Radicals 235 The Reaction of Diallyldimethylsilane with Trichloromethyl Radical 269 CONCLUSIONS 277 Suggestions for Future Work 278a EXPERIMENTAL 279 General Information 279 Procedures and Results 280 BIBLIOGRAPHY 387 ACKNOWLEDGEMENTS 404 1 INTRODUCTION Although the chemistry of silylenes - silicon analogues of carbenes - began over forty years ago with the discovery of dichlorosilylene (1,2), our current understanding of these interesting molecules is based primarily on the results of studies conducted within the last two decades. Indeed, the development of organosilylene chemistry did not begin until the early 1960s when Skell and Goldstein reported the generation of the first organo­ silylene (3). Even then, it was not until the pioneering work of Gilman and coworkers (4,5) and Atwell and Weyenberg (6,7) that the development of silylene chemistry began in earnest. Throughout the last twenty years, silylene chemistry has been extensively investigated, and continues today unabated. In some aspects, the chemistry of silyl radicals is similar to that of silylenes. Thus, less than fifty years ago the first silyl radicals were discovered. Although interest in the chemistry of silyl radicals has paralleled that of silylenes. the lack of convenient methods for the clean production of silicon based radicals has retarded advancements in this field of silicon chemistry. Despite this shortcoming, the last two decades have witnessed a substantial increase in our understanding of silyl radicals. This thesis will present the results of four primary investigations: a) the attempted utilization of silylenes as synthons for silaoxetanes; b) the preparation and chemistry of selected silylenes which contained substituants and were generated under conditions such that intramolecular rearrangements would be favored; c) the thermal- and photochemistry of 7- 2 silanorbornadienes; and d) the preparation and chemistry of alkenyl- substituted silyl radicals. In addition to these main areas of investiga­ tion, the results obtained from a study of the addition of dimethyl silylene to cyclooctatetraene and a brief study of the addition of Cl^C- to diallyldimethylsilane will be described. 3 NOMENCLATURE The nomenclature used in this thesis will, with the exceptions described below, follow the conventions set down by lUPAC. Simple organosilicon compounds will be named as derivatives of silane (SiH^) while more complicated linear and cyclic systems will be named as sila- analogs of the corresponding carbon systems. Divalent silicon species will be named as derivatives of the parent silylene (iSiHg). Examples : MegSiClH dimethylchlorosi1ane CI t Me^Si-Si-CH=CH2 1-chl oro-l-vinyltetramethyldi si1ane Me H I 2-methyl-2-sila-o-heptene Me Me \ / Si 1,1,4,4-tetramethyl-l ,4-disilin Si /\ Me Me 4 Silicon centered radicals will be named as derivatives of the parent silyl radical (HL,Si"). Examples : Me^Si- trimethylsilyl radical Me Me^SiSi" (trimethylsilyl)dimethylsilyl Me radical Me PhCHgCHgCHgSi' (3-phenylpropyl)dimethylsilyl Me radical Three membered rings containing a silicon and two carbon atoms will be named as derivatives of silarane or silacyclopropane and silarene or silacyclopropene. Silacyclopentadienes will be named as derivatives of silole. Examples : Me Me \ / y I 1,1-dimethylsilarane or 1,1-dimethylsilacyclopropane 5 Me Me \/ 1 J-dimethylsilarene or 1,1-dimethyl silacyclopropene Me Me \/ 1,1-dimethyl-2,5-di phenylsilole Finally, the [2,2,1] bicycloheptene and heptadiene ring systems, containing a silicon at the seven position, will be named as derivatives of 7-silanorbornene and 7-silanorbornadiene. Examples : ne ne \ / Si Ph 1 j4._dT phenyl-2,3-dicarbomethoxy- Ph^^COgMe 7,7-dimethyl-7-silanorborna-5-ene Me Me Si Ph COgMe 1,4-diphenyl-2,3-dicarbomethoxy- 7,7-dimethyl-7-si1anorbornadi ene COgMe 5 HISTORICAL Silylenes have been extensively reviewed (8-14). Thus, to prevent duplication, a complete survey of the chemistry of silylenes will not be presented. Instead, the review of the known chemistry of silylenes will concentrate on those aspects, particularly the advances made within the last two decades, that have contributed the most to our understanding of silylenes. The chemistry of difluorosilylene, which in many ways is differ­ ent from the chemistry of all other silylenes, will not be presented since it has been adequately reviewed elsewhere (8-14). Silyl radicals have also been the subject of several reviews (15-18). However, a number of significant advances have occurred in this field of silicon chemistry since the last review; thus, a more extensive survey of the known chemistry of silyl radicals will be presented. Silylenes The preparation and spectral observation of the first silylene, dichlorosilylene, was reported over 40 years ago (1,2). Although this discovery was contemporary to the beginnings of carbene chemistry, the development of silylene chemistry has lagged behind that of carbenes. This was due in part to a dearth of convenient methods of silylene generation prior to 1962. Indeed, the existence of the first organosilylene, dimethyl- silylene, was confirmed less than two decades ago. The electronic configuration and molecular geometry of inorganic silylenes, the dihydrides and mono- and dihalides, have been the subject of numerous studies, both theoretical and experimental, Nefedov has conven­ 7 iently tabulated these data (11). The mono- and dihalides are known to have a singlet ground
Recommended publications
  • Stable Silenolates and Brook-Type Silenes with Exocyclic Structures
    Communication pubs.acs.org/Organometallics Terms of Use CC-BY Stable Silenolates and Brook-Type Silenes with Exocyclic Structures † † † † † ‡ Michael Haas, Roland Fischer, Michaela Flock, Stefan Mueller, Martin Rausch, Robert Saf, † † Ana Torvisco, and Harald Stueger*, † ‡ Institute of Inorganic Chemistry and Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria *S Supporting Information ABSTRACT: The first silenolates with exocyclic structures − + [(Me3Si)2Si(Si2Me4)2SiC(R)O] K (2a: R = 1-adamantyl; 2b: mesityl; 2c: o-tolyl) were synthesized by the reaction of the corresponding acylcyclohexasilanes 1a−c with KOtBu. NMR spectroscopy and single-crystal X-ray diffraction analysis suggest that the aryl-substituted silenolates 2b,c exhibit increased character of functionalized silenes as compared to the alkyl-substituted derivative 2a due to the different coordination of the K+ counterion to the SiC(R)O moiety. 2b,c, thus, reacted with ClSiiPr3 to give the exocyclic silenes (Me3Si)2Si(Si2Me4)2Si C(OSiiPr3)R (3b:R = Mes; 3c: o-Tol), while 2a afforded the Si-silylated acylcyclohex- asilane 1d. The thermally remarkably stable compound 3b, which is the first isolated silene with the sp2 silicon atom incorporated into a cyclopolysilane framework, could be fully characterized structurally and spectroscopically. here is no doubt about the central role of alkenes and Now we would like to report the synthesis, spectroscopic − + fi T metal enolates [(R2CC(R)O] M in organic chemistry, characterization, and molecular structures of the rst cyclic which has led to a thorough understanding of chemical and silenolates (2a−c) and the selective conversion of 2b to the physical properties and numerous applications of such silene 3b, which is the first example of an isolated stable compounds.
    [Show full text]
  • Thermal Rearrangements of Reactive Intermediates in Organosilicon Chemistry Stephanie Ann Burns Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Thermal rearrangements of reactive intermediates in organosilicon chemistry Stephanie Ann Burns Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Burns, Stephanie Ann, "Thermal rearrangements of reactive intermediates in organosilicon chemistry " (1982). Retrospective Theses and Dissertations. 7494. https://lib.dr.iastate.edu/rtd/7494 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Utilization of the Silicon-Silicon Bond in the Generation of Species Unsaturated at Silicon William Dean Wulff Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1979 Utilization of the silicon-silicon bond in the generation of species unsaturated at silicon William Dean Wulff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Wulff, William Dean, "Utilization of the silicon-silicon bond in the generation of species unsaturated at silicon " (1979). Retrospective Theses and Dissertations. 6677. https://lib.dr.iastate.edu/rtd/6677 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfîlming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry View Article Online PAPER View Journal | View Issue Diastereoselective synthesis of trisubstituted olefins using a silicon-tether ring-closing Cite this: Org. Biomol. Chem., 2020, 18, 2297 metathesis strategy† Stéphane Wittmann,‡ Alexander F. Tiniakos and Joëlle Prunet * The diastereoselective synthesis of trisubstituted olefins with concomitant C–C bond formation is still adifficult challenge, and olefin metathesis reactions for the formation of such alkenes are usually not high yielding or/and diastereoselective. Herein we report an efficient and diastereoselective synthesis of trisubstituted olefins flanked by an allylic alcohol, by a silicon-tether ring-closing metathesis strategy. Both E-andZ-trisubstituted alkenes were synthesised, depending on the method employed Received 30th November 2019, to cleave the silicon tether. Furthermore, this methodology features a novel Peterson olefination for Accepted 4th March 2020 the synthesis of allyldimethylsilanes. These versatile intermediates were also converted into the DOI: 10.1039/c9ob02563d corresponding allylchlorodimethylsilanes, which are not easily accessible in high yields by other Creative Commons Attribution 3.0 Unported Licence. rsc.li/obc methods. Introduction However, there are much fewer examples of RCM reactions with O–Si–C tethers. The reported formations of trisubstituted The trisubstituted E olefin motif with a methyl substituent is olefins from allyl silanes lead to bicyclic products,8 and the present in numerous polyketide natural products. Among others focus on vinyl silanes.9 We propose a strategy for an these, callipeltoside A1 and dolabelide C2 possess another efficient and diastereoselective synthesis of trisubstituted This article is licensed under a common feature: an allylic alkoxy group on the lone substitu- olefins flanked by an allylic alcohol, which involves a RCM ent of the trisusbstituted olefin (highlighted in red in reaction with a O–Si–C tether.
    [Show full text]
  • Reactions of [(2-N, N-Dimethylaminomethyl) Phenyl
    Reactions of [(2-N,N-Dimethylaminomethyl)phenyl]methylvinylchlorosilane Bull. Korean Chem. Soc. 2001, Vol. 22, No. 6 593 Reactions of [(2-NMDimethylaminomethyl)phenyl]methylvinylchlorosilane with Z-BuLi: Synthesis and Characterization of Five Isomeric 1,3-Disilacyclobutanes Myong Euy Lee,* Hyeon Mo Cho, Soo Heung Lee, and Chang Hwan Kim Department of Chemistry, Graduate School, Yonsei University, Seoul 120-749, Korea Received March 6, 2001 The reaction of [(2-N,N-dimethylaminomethyl)phenyl]methylvinylchlorosilane with t-BuLi in hexane solvent gave dimers, five isomeric 1,3-disilacyclobutanes which were separated and characterized. In trapping experi­ ments with various trapping agents, no corresponding silene-trapping adduct was observed. We suggest that more important species for the formation of five isomeric dimers might be the zwitterionic species generated by virtue of intramolecular donor atom rather than the silene. Keywords : Silene, Zwitterionic species, Dimer, Intramolecular donor atom. Introduction Research on silenes has been the subject of considerable interest since 1967, when Gusel'nikov and Flowers pre­ —a dimers sented the evidence for the first time that these species could 2 (1) exist.1 They have frequently been postulated as reactive intermediates in the photolysis2 and thermolysis of organo- silicon compounds,3 usually on the basis of chemical trap­ ping studies4 or matrix isolation spectroscopy,5 and several stable silenes have been synthesized.6 There have, however, methy)phenyl]-2-neopentylsilene 니sing jB-elimination methods.11 been relatively few reports that describe the generation and In the absence of trapping agents, the five isomeric 1,3- reactivities of silene bearing intramolecular neutral donor disilacyclobutanes, 2, were obtained in 66% yield.
    [Show full text]
  • Decomposition of Hexamethyldisilazane on Hot Metal Filaments and Its Gas-Phase Chemistry in a Hot-Wire Chemical Vapor Deposition Reactor
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-09-04 Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor Ampong, Eric Ampong, E. (2019). Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110892 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor by Eric Ampong A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN CHEMISTRY CALGARY, ALBERTA SEPTEMBER, 2019 © Eric Ampong 2019 Abstract Hot-wire chemical vapor deposition (HWCVD) has been used to produce silicon- containing thin films, nanomaterials, and functional polymer coatings for applications in microelectronic and photovoltaic devices. Silicon carbonitride (SiCyNz) thin films, deposited by HWCVD, have found a wide range of applications due to their nonstoichiometric component that exhibits unique properties from a combination of SiC and Si3N4 binary compounds.
    [Show full text]
  • Lowcoordinated Silicon and Hypercoordinated Carbon
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 557 Lowcoordinated Silicon and Hypercoordinated Carbon Structure and Stability of Silicon Analogs of Alkenes and Carbon Analogs of Silicates ANDERS M. EKLÖF ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7294-8 2008 urn:nbn:se:uu:diva-9298 !" # $ % #" # " & ' & & (' ') *' + , ') ,-.& / ) #) 0 + $ ) $ $ & $ / & /- / & $) / ) ""!) " ) ) 1$2 3!434""54!#354) 6 ' + 547 ' & ) *' ' & & $8498: ; ) ) *' & +' ' ' ' ' $<4 =*> & & ) ?<?* ' & ' ' & ) - & ; & ' ' ; & ' ' 4 4' ' 4 4 ; ' ' ' & + ' ; ' - ) @ ' & ' ' & % ' $ ') A ; #4 4 #4' 4 #4B24424'C4 & ' & ' ) 1 + ' + & ' ' ' & D4 E ; ' + & ' -4 ' ' && & ' ; ) 1 & ' E 4 & 4 & 4 4#4 +'' ' ' & D4 E ; ' ' ' & ; - ' ; 4 ) 1 & ' 5:5:25: 2 5: ' & $ 4 " 7 " 7 " $ #4$?4 $? #4 ) + ' ' 7 " 7 ' ' '4 + ' ) ;+ ; ' ' ' ' + !"#$ % & $ %$ % ' ()*$ $ !+)(,-. $ F / ) ,-.& # 1$$2 7"47#5 1$2 3!434""54!#354 43#3 B' << )-)< G 9 43#3C EXPERIMENTALISTS THINK SILICON IS REALLY FUN TO USE ITS PLACE IN NOVEL COMPOUNDS IS CERTAIN TO AMUSE THEY SIT ALL DAY IN LABORATORIES MAKING ALL THIS SLUDGE "LOADED WITH THE SILICON
    [Show full text]
  • Bonding and Structure of Disilenes and Related Unsaturated Group-14 Element Compounds
    No. 5] Proc. Jpn. Acad., Ser. B 88 (2012) 167 Review Bonding and structure of disilenes and related unsaturated group-14 element compounds † By Mitsuo KIRA*1, (Communicated by Hitosi NOZAKI, M.J.A.) Abstract: Structure and properties of silicon-silicon doubly bonded compounds (disilenes) are shown to be remarkably different from those of alkenes. X-Ray structural analysis of a series of acyclic tetrakis(trialkylsilyl)disilenes has shown that the geometry of these disilenes is quite flexible, and planar, twist or trans-bent depending on the bulkiness and shape of the trialkylsilyl substituents. Thermal and photochemical interconversion between a cyclotetrasilene and the corresponding bicyclo[1.1.0]tetrasilane occurs via either 1,2-silyl migration or a concerted electrocyclic reaction depending on the ring substituents without intermediacy of the corresponding tetrasila-1,3-diene. Theoretical and spectroscopic studies of a stable spiropentasiladiene have revealed a unique feature of the spiroconjugation in this system. Starting with a stable dialkylsilylene, a number of elaborated disilenes including trisilaallene and its germanium congeners are synthesized. Unlike carbon allenes, the trisilaallene has remarkably bent and fluxional geometry, suggesting the importance of the :-<* orbital mixing. 14-Electron three-coordinate disilene- palladium complexes are found to have much stronger :-complex character than related 16-electron tetracoordinate complexes. Keywords: silicon, germanium, double bond, synthesis, structure, theoretical calculations
    [Show full text]
  • SUBSTITUTED CHLOROSILANES THESIS Presented to the Graduate
    q MASS SPECTRAL STUDY OF TRIMETHYLSILYLMETHYL- SUBSTITUTED CHLOROSILANES THESIS Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Keith Randal Pope, B.S. Denton, Texas December, 1982 Pope, Keith Randal, Mass Spectral Study of Trimethylsilyl- methyl substituted Chlorosilanes. Master of Science (Chemistry), December, 1982, 47, pp., 5 tables, bibliography, 22 titles. The mass spectra of the compounds [Me 3 SiCH2 nSiCl 4 n (n=1-3) were studied in detail. MIKES and CID spectra were used in conjunction with the observance of metastable processes to develop consistent fragmentation schemes. Particular attention is drawn to the formation of charged and neutral species containing the silicon-carbon double bond, including 2-silaallene, under conditions of electron impact. TABLE OF CONTENTS Page LIST OF TABLES. ............ ii LIST OF ILLUSTRATIONS. ................. iii Chapter I. INTRODUCTION.o..........................1 II. RESULTS AND DISCUSSION ....... ..... 9 III. EXPERIMENTAL .......................... 39 APPENDIX. ............................. ........ 45 BIBLIOGRAPHY,*........................... ........ 46 i LIST OF TABLES Table Page I, [Me 3 SiCH2 InSiCl 4 -n . 9 II. Mass Spectrum of Trimethylsilyl- methyltrichlorosilane (I). ......... 11 III. Metastable Peaks Observed in the Mass Spectra of Compounds I-III. 13 IV. Mass Spectrum of Bis(trimethylsilylmethyl)- dichlorosilane (II)..................... 16 V. Mass Spectrum of Tris(trimethylsilylmethyl)- chlorosilane (III) .. ....... 27 ii LIST OF ILLUSTRATIONS Figure Page 1 Inverse Nier-Johnson Geometry with field-free regions A,B,C....... .......... 5 2 Mass Spectrum of Trimethylsilylmethyl- trichlorosilane (I)............. 12 3 Mass Spectrum of Bis(trimethylsilylmethyl)- dichlorosilane (II),.................. 17 4 Unimolecular MIKES Spectrum of m/e 257.0. .0 20 5 CID Spectrum of m/e 257..........
    [Show full text]
  • Ideal Gas Thermochemistry of Silicon Inorganic Organic and Ion Compounds
    This is the peer reviewed version of the following article: Alexander Burcat, Elke Goos, Ideal gas thermochemical properties of silicon containing inorganic, organic compounds, radicals, and ions, Int J Chem Kinet. 2018;50:633–650, which has been published in final form at http://dx.doi.org/10.1002/kin.21188. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 1 Ideal Gas Thermochemical Properties of Silicon containing Inorganic, Organic Compounds, Radicals and Ions. Alexander Burcat Faculty of Aerospace Engineering, Technion- Israel Institute of Technology, Haifa 32000, Israel, [email protected] and Elke Goos, Institute of Combustion Technology, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR, German Aerospace Center), Pfaffenwaldring 38, 70569 Stuttgart, Germany. [email protected] ABSTRACT The ideal gas thermochemical properties such as standard heat of formation, entropy and heat capacities of 112 inorganic and 35 organic neutral compounds, radicals and ions containing silicon were calculated using molecular properties obtained with the G3B3 (or G3//B3LYP) method. Among them were linear and cyclic silanes, silenes, hydrocarbonsilanes, fluorine and oxygen containing compounds. Many of their molecular and thermodynamic properties were calculated for the first time and 16 of them had no CAS No. Additionally the thermochemical properties were presented in the NASA 7-term polynomial format for the temperature range of 200 K to 6000 K commonly used in chemical kinetic modeling and simulation programs. The polynomials are available in the supplement to this article free of charge. 2 KEYWORDS Thermodynamic data, Thermochemistry, Thermochemical properties, Heat of formation, Entropy, Enthalpy, Heat capacity, NASA format, Quantum chemical calculation, G3B3 composite approach, Silicon hydride, Silanes, Silicon fluoride, Silicon hydrocarbon, Silicon ions, Silicon compounds, Database INTRODUCTION Silicon containing substances are widely used and important for the mankind.
    [Show full text]
  • Substituent Effects on the Reactivity of the Silicon-Carbon Double Bond
    Acc. Chem. Res. 2001, 34, 129-136 1970s.10 While a respectable number of ªstableº derivatives Substituent Effects on the have been isolated and identified, most silenessespecially Reactivity of the Silicon-Carbon relatively simple onessare transients, formed as reactive intermediates in various thermal and photochemical Double Bond reactions of organosilicon compounds. Because of this, their direct detection and study requires either matrix TRACY L. MORKIN AND WILLIAM J. LEIGH* isolation or fast time-resolved spectroscopic techniques. Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario Canada L8S 4M1 While many simple silenes were studied in the 1980s by low-temperature matrix isolation techniques, information Received April 28, 2000 on their absolute reactivities in solution or gas phases requires the use of time-resolved methods that have only ABSTRACT become readily available in more recent years. This Laser flash photolysis of various organosilicon compounds such as aryl-, vinyl-, and alkynyldisilanes, silacyclobutanes and silacy- Account describes our efforts to employ these techniquess clobutenes, and R-silylketenes and -diazomethanes leads to the laser flash photolysis methods in particularsto study the formation of reactive silenes which can be detected directly in mechanisms of some of the more commonly known solution, allowing detailed studies of the kinetics and mechanisms of their reactions with nucleophiles. Over 30 transient silenes have reactions of silenes, and to systematically assess the effects now been studied by these methods, providing the opportunity to of substituents on the kinetic stability of the silicon- systematically assess the effects of substituents at silicon and carbon double bond. carbon on the reactivity of the SidC bond.
    [Show full text]
  • Top Elastomeric Materials Guide
    Craftech Industries® Top Elastomeric Materials Guide Craftech Industries®, 2014 8 Dock Street, Hudson, NY 12534 Website: www.craftechind.com Blog: info.craftechind.com/blog E-mail: [email protected] Phone: 518-828-5001 or 800-833-5130 Fax: 518-828-9468 Craftech Industries® Top Elastomeric Materials Guide 4 Elastomer Material Descriptions 6 Elastomer Mechanical Properties 7 Elastomer Chemical Resistance Data Elastomer Material Descriptions ELASTOMER TYPE DESCRIPTION STRENGTH(S) LIMITATION(S) VITON® A fluoroelastomer utilized when Performs well in high Relatively high cost both high temperature and temperatures and in the material with limited chemical resistance are required. presence of acids when the hardness range. Poor proper grade is selected. resistance to ketones, Very good weathering and low molecular weight ozone resistant properties. esters, alcohols and nitro- containing compounds. SILICONE Used in applications where Excellent high temperature Poor resistance to solvents, high temperature performance resistance. Excellent oils, concentrated acids, is required. Due to its purity weather, UV, and ozone and steam. Tensile strength when processed, Silicone is often resistance. and tear resistance are both used in food processing and poor. pharmaceutical fields. Used for industrial applications because of its long service life. BUNA-N Used in applications where Very good resistance to oils, Poor resistance to UV, gasoline, oil, and greases may solvents, and fuels. ozone and weathering. be present. This material is also Does not perform well with known under other generic names ketones and chlorinated such as Nitrile, Buna or NBR. hydrocarbons. EPDM An elastomer that is a popular Very good resistance to Poor resistance to oils (ethylene propylene choice for outdoor applications ozone, UV, and sunlight.
    [Show full text]