Space-time as a structured relativistic continuum J. J. S lawianowski, V. Kovalchuk, B. Go lubowska, A. Martens, E. E. Ro˙zko Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B, Pawi´nskiego str., 02-106 Warsaw, Poland e-mails:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] September 25, 2018 Abstract It is well known that there are various models of gravitation: the metrical Hilbert-Einstein theory, a wide class of intrinsically Lorentz- invariant tetrad theories (of course, generally-covariant in the space-time sense), and many gauge models based on various internal symmetry groups (Lorentz, Poincare, GL(n, R), SU(2, 2), GL(4, C), and so on). One be- lieves usually in gauge models and we also do it. Nevertheless, it is an interesting idea to develop the class of GL(4, R)-invariant (or rather GL(n, R)-invariant) tetrad (n-leg) generally covariant models. This is done below and motivated by our idea of bringing back to life the Thales of Miletus idea of affine symmetry. Formally, the obtained scheme is a generally-covariant tetrad (n-leg) model, but it turns out that generally- covariant and intrinsically affinely-invariant models must have a kind of non-accidental Born-Infeld-like structure. Let us also mention that they, being based on tetrads (n-legs), have many features common with con- tinuous defect theories. It is interesting that they possess some group- theoretical solutions and more general spherically-symmetric solutions. It is also interesting that within such framework the normal-hyperbolic sig- arXiv:1304.0736v2 [math-ph] 17 Feb 2016 nature of the space-time metric is not introduced by hand, but appears as a kind of solution, rather integration constants, of differential equations.