Real Forms of Complex Semi-Simple Lie Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Real Forms of Complex Semi-Simple Lie Algebras Real forms of complex semi-simple Lie algebras Gurkeerat Chhina We give a survey of real forms on complex semi-simple Lie algebras. This is a big piece of the puzzle in understanding real forms on complex semi-simple Lie groups. The material is from Onishchik and Vinberg Chapter 5 x1. 1 Real forms and real structures ∼ Recall from Max's talk that a real form h ⊂ g is subalgebra such that h ⊗R C = g. In other words, and R-basis of h is a C basis for g. The key example is gln(R) ⊂ gln(C) (this is the split real form). There is a 1-to-1 correspondence between real forms of a complex Lie algebra g and anti-linear involutive automorphisms σ. Given h ⊂ g, we produce the automorphism σ given by complex conjugation with respect to h. Given an anti-linear involutive automorphism σ we produce h = gσ = fx 2 g : σ(x) = xg. For simplicity, we call such an automorphism a real structure on g. −1 Proposition 1.1. Let σ; σ0 be real structures and φ 2 Aut(g). Then φσφ−1 is a real structure, and gφσφ = 0 φ(gσ). Furthermore, gσ =∼ gσ if and only if σ0 = φσφ−1 for some φ 2 Aut(g) This shows us that we need to classify involutions up to conjugacy in Aut(g). We can make similar definitions on the group side. Let H be a Lie subgroup of G considered as a real Lie group. H is a real form if the tangent algebra h ⊂ g is a real form, and G = HG0. A real structure is a real differentiable, involutive homomorphism S such that dS is a real structure on the tangent algebra g. Alternatively, it is an involutive, anti-holomorphic automorphism. If G is connected, then GS is a real form of G with tangent algebra gdS. The same holds for algebraic groups if we assume irreducibility. Our example ∗ n in this case is the torus (C ) , with the real structure (z1; : : : ; zn) 7! (z1;:::; zn), which determines the real ∗ n −1 −1 form (R ) . The other example we have is (z1; : : : ; zn) 7! (z1 ;:::; zn ) which determines the real form f(z1; : : : ; zn): jzij = 1g. As an example of why the theory of real forms of complex semi-simple Lie groups is more complicated than ∼ that of the Lie algebras, we consider the following example. It is a fact that π1(SL2(R)) = Z. Thus SL2 admits a simply connected cover, which we shall call G, but G cannot be embedded as a real form of any complex Lie group, G0. In fact, G does not admit a real algebraic group structure, nor is the identity com- ponent of an irreducible real algebraic group. Now back to the Lie algebras. Let g be a complex Lie algebra, and let gR be the same algebra considered over R. In gR, multiplication by i is a linear transformation I satisfying I2 = −Id (1) I[X; Y ] = [X; IY ] (2) This leads us to define a complex structure on a real Lie algebra g~ to be a linear transformation satisfying (1) and (2). This lets us turn g~ into a complex Lie algebra via (a + bi)X = aX + bIX. Of course, the linear transformation −I is also a complex structure, which allows us to construct another complex Lie algebra denoted g¯. An isomorphism g =∼ g¯ is a anti-linear automorphism of g. Thus if g has a real form, then g =∼ g¯. 1 Proposition 1.2. Any complex semi-simple Lie algebra admits a real form. To construct it, consider the canconical set of generators Xi;Yi;Hi for g. Consider the real subalgebra h generated by these. This is a real form with corresponding real structure τ, which sends each of Xi;Yi;Hi to itself. Proposition 1.3. If g is a complex semi-simple Lie algebra, then gR(C) =∼ g ⊕ g. If h is another complex semi-simple Lie algebra such that hR = gR, then h = g. First, by Prop 1.2, we know that g =∼ g¯. Then one considers the Lie algebra g ⊕ g¯, and shows that σ(x; y) = (y; x) is a real form, and that (x; x) 7! x is an isomorphism (g ⊕ g¯)σ =∼ gR. Theorem 1.4. A non-commutative real Lie algebra is simple if and only if it is isomorphic to a real form of a complex simple Lie algebra or the realification gR of a complex simple Lie algebra. Thus to classify real simple Lie algebras, one classifies complex simple Lie algebras (which is done via Dynkin diagrams), and then non-isomorphic real forms of them. We give one example of a genuinely non-trivial real form, before discussing an important real form in detail. Example 1.5. Consider the quadratic form 2 2 2 2 x1 + ··· + x` − x`+1 − · · · − x`+k (3) Let O`;k be the group of pseudo-orthogonal matrices (they preserve the quadratic form (3)), and let SO`;k E` 0 be the subgroup of unimodular matrices. Let I`;k = be the matrix of of the form (3), and 0 −Ek E` 0 2 ¯ let L`;k = so that L`;k = I`;k. The transformation S(A) = I`;kAI`;k is a real structure on 0 iEk −1 O`+k(C) and SO`+k(C). The corresponding real forms are L`;kO`;kL`;k and L`;kSO`;kL`;k. The real form X iY on the tangent algebra is L so L−1 which consists of matrices of the form for X; Y; Z real `;k `;k `;k −iY T Z matrices, XT = −X, ZT = −Z. 2 The compact form Onishchik and Vinberg define a Lie algebra over R to be compact if there is a positive definite invariant scalar product. The more useful definitions are given as exercises. Proposition 2.1. The killing form on a compact Lie algebra is negative-semi definite. A real Lie algebra is semi-simple and compact if and only if the killing form is negative-definite. Proposition 2.2. The tangent algebra of a compact Lie group is compact. Conversely, given a compact Lie algebra g, there is a connected compact Lie group with tangent algebra g. If g is semi-simple, we can take G = Intg. Definition 2.3. Given a complex Lie algebra g with real structure σ, The Hermitian form on g is hσ(x; y) = −κ(x; σ(y)) Proposition 2.4. Now let G be a connected complex semi-simple Lie group with tangent algebra g. Let S be a real structure on G and σ = dS the tangent real structure. Then the following are equivalent: 1. GS is compact. 2. gσ is compact. 3. hσ is positive definite. 2 Thus given G, if we can find such an s and show that hσ is positive definite, then we conclude that G has a compact real form. This turns out to be the case, using the construction of a Cartan involution (it turns out that any two Cartan involutions on a real semi-simple Lie algebra are equivalent). To start, we use the real form τ constructed in proposition 1.2. This is an anti-linear automorphism that sends each of Xi;Yi;Hi to itself. However, as we saw, this gives us the split form, and not the compact form like we want. Thus we have to modify it. Consider another choice of generators for g: {−Yi; −Xi; −Hig. There is a unique isomorphism of g that sends one set of generators to the other. Call this isomorphism µ. 2 We observe that µ = id. We have µ(Xi) = −Yi, µ(Yi) = −Xi, and µ(Hi) = −Hi. The real structure we want is σ = τµ = µτ, and it is known as the Cartan involution. It turns out that σ arises as dS for some S, and that hσ is positive definite. Hence we have the following: Theorem 2.5. Any connected complex semi-simple Lie group G has a compact real form H. The corre- sponding tangent algebra h is a compact real form of g. Example 2.6. The compact real form of sln is sun, and the corresponding lie group we produce is SUn - these are real lie algebras/groups. 3 Involutive automorphisms Recall that we wish to classify real forms of complex Lie algebras, and to do so, we need to classify the anti-linear involutive automorphisms up to conjugacy in Aut(g). For this reason we make the following definition. Definition 3.1. Let σ; τ be two real structures. The real forms gσ and gτ are said to be compatible if any of the following are satisfied: 1. στ = τσ 2. τ(gσ) = gσ 3. σ(gτ ) = gτ 4. θ = στ is an involutive automorphism. Let g be a semi-simple Lie algebra, with compact form u, produced by Section 2. Let τ be the corresponding real structure, and let σ be any other real structure. Consider θ = στ and the Hermetian form hτ . 2 Proposition 3.2. hτ (θx; y) = hτ (x; θy). Consequently, p = θ is a positive definite self-adjoint (with respect to hτ ) operator. Now we can define logs and exponentials of operators, so we can also define pt = exp(t log(p)) for any t 2 R. Because the image of exp will be a positive definite operator, we have that pt defines a one parameter family inside Aut(g). Proposition 3.3. σptσ = τptτ = p−t Proposition 3.4. Taking φ = p1=4, we have σ(φτφ−1) = (φτφ−1)σ.
Recommended publications
  • Cohomology Theory of Lie Groups and Lie Algebras
    COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf.
    [Show full text]
  • Lecture Notes on Compact Lie Groups and Their Representations
    Lecture Notes on Compact Lie Groups and Their Representations CLAUDIO GORODSKI Prelimimary version: use with extreme caution! September , ii Contents Contents iii 1 Compact topological groups 1 1.1 Topological groups and continuous actions . 1 1.2 Representations .......................... 4 1.3 Adjointaction ........................... 7 1.4 Averaging method and Haar integral on compact groups . 9 1.5 The character theory of Frobenius-Schur . 13 1.6 Problems.............................. 20 2 Review of Lie groups 23 2.1 Basicdefinition .......................... 23 2.2 Liealgebras ............................ 25 2.3 Theexponentialmap ....................... 28 2.4 LiehomomorphismsandLiesubgroups . 29 2.5 Theadjointrepresentation . 32 2.6 QuotientsandcoveringsofLiegroups . 34 2.7 Problems.............................. 36 3 StructureofcompactLiegroups 39 3.1 InvariantinnerproductontheLiealgebra . 39 3.2 CompactLiealgebras. 40 3.3 ComplexsemisimpleLiealgebras. 48 3.4 Problems.............................. 51 3.A Existenceofcompactrealforms . 53 4 Roottheory 55 4.1 Maximaltori............................ 55 4.2 Cartansubalgebras ........................ 57 4.3 Case study: representations of SU(2) .............. 58 4.4 Rootspacedecomposition . 61 4.5 Rootsystems............................ 63 4.6 Classificationofrootsystems . 69 iii iv CONTENTS 4.7 Problems.............................. 73 CHAPTER 1 Compact topological groups In this introductory chapter, we essentially introduce our very basic objects of study, as well as some fundamental examples. We also establish some preliminary results that do not depend on the smooth structure, using as little as possible machinery. The idea is to paint a picture and plant the seeds for the later development of the heavier theory. 1.1 Topological groups and continuous actions A topological group is a group G endowed with a topology such that the group operations are continuous; namely, we require that the multiplica- tion map and the inversion map µ : G G G, ι : G G × → → be continuous maps.
    [Show full text]
  • A Taxonomy of Irreducible Harish-Chandra Modules of Regular Integral Infinitesimal Character
    A taxonomy of irreducible Harish-Chandra modules of regular integral infinitesimal character B. Binegar OSU Representation Theory Seminar September 5, 2007 1. Introduction Let G be a reductive Lie group, K a maximal compact subgroup of G. In fact, we shall assume that G is a set of real points of a linear algebraic group G defined over C. Let g be the complexified Lie algebra of G, and g = k + p a corresponding Cartan decomposition of g Definition 1.1. A (g,K)-module is a complex vector space V carrying both a Lie algebra representation of g and a group representation of K such that • The representation of K on V is locally finite and smooth. • The differential of the group representation of K coincides with the restriction of the Lie algebra representation to k. • The group representation and the Lie algebra representations are compatible in the sense that πK (k) πk (X) = πk (Ad (k) X) πK (k) . Definition 1.2. A (Hilbert space) representation π of a reductive group G with maximal compact subgroup K is called admissible if π|K is a direct sum of finite-dimensional representations of K such that each K-type (i.e each distinct equivalence class of irreducible representations of K) occurs with finite multiplicity. Definition 1.3 (Theorem). Suppose (π, V ) is a smooth representation of a reductive Lie group G, and K is a compact subgroup of G. Then the space of K-finite vectors can be endowed with the structure of a (g,K)-module. We call this (g,K)-module the Harish-Chandra module of (π, V ).
    [Show full text]
  • Introduction to Representations Theory of Lie Groups
    Introduction to Representations Theory of Lie Groups Raul Gomez October 14, 2009 Introduction The purpose of this notes is twofold. The first goal is to give a quick answer to the question \What is representation theory about?" To answer this, we will show by examples what are the most important results of this theory, and the problems that it is trying to solve. To make the answer short we will not develop all the formal details of the theory and we will give preference to examples over proofs. Few results will be proved, and in the ones were a proof is given, we will skip the technical details. We hope that the examples and arguments presented here will be enough to give the reader and intuitive but concise idea of the covered material. The second goal of the notes is to be a guide to the reader interested in starting a serious study of representation theory. Sometimes, when starting the study of a new subject, it's hard to understand the underlying motivation of all the abstract definitions and technical lemmas. It's also hard to know what is the ultimate goal of the subject and to identify the important results in the sea of technical lemmas. We hope that after reading this notes, the interested reader could start a serious study of representation theory with a clear idea of its goals and philosophy. Lets talk now about the material covered on this notes. In the first section we will state the celebrated Peter-Weyl theorem, which can be considered as a generalization of the theory of Fourier analysis on the circle S1.
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • Orbits of Real Forms in Complex Flag Manifolds 71
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010), 69-109 Orbits of real forms in complex flag manifolds ANDREA ALTOMANI,COSTANTINO MEDORI AND MAURO NACINOVICH Abstract. We investigate the CR geometry of the orbits M of a real form G0 of a complex semisimple Lie group G in a complex flag manifold X = G/Q.Weare mainly concerned with finite type and holomorphic nondegeneracy conditions, canonical G0-equivariant and Mostow fibrations, and topological properties of the orbits. Mathematics Subject Classification (2010): 53C30 (primary); 14M15, 17B20, 32V05, 32V35, 32V40, 57T20 (secondary). Introduction In this paper we study a large class of homogeneous CR manifolds, that come up as orbits of real forms in complex flag manifolds. These objects, that we call here parabolic CR manifolds, were first considered by J. A. Wolf (see [28] and also [12] for a comprehensive introduction to this topic). He studied the action of a real form G0 of a complex semisimple Lie group G on a flag manifold X of G.Heshowed that G0 has finitely many orbits in X,sothat the union of the open orbits is dense in X, and that there is just one that is closed. He systematically investigated their properties, especially for the open orbits and for the holomorphic arc components of general orbits, outlining a framework that includes, as special cases, the bounded symmetric domains. We aim here to give a contribution to the study of the general G0-orbits in X, by considering and utilizing their natural CR structure. In [2] we began this program by investigating the closed orbits.
    [Show full text]
  • Math 222 Notes for Apr. 1
    Math 222 notes for Apr. 1 Alison Miller 1 Real lie algebras and compact Lie groups, continued Last time we showed that if G is a compact Lie group with Z(G) finite and g = Lie(G), then the Killing form of g is negative definite, hence g is semisimple. Now we’ll do a converse. Proposition 1.1. Let g be a real lie algebra such that Bg is negative definite. Then there is a compact Lie group G with Lie algebra Lie(G) =∼ g. Proof. Pick any connected Lie group G0 with Lie algebra g. Since g is semisimple, the center Z(g) = 0, and so the center Z(G0) of G0 must be discrete in G0. Let G = G0/Z(G)0; then Lie(G) =∼ Lie(G0) =∼ g. We’ll show that G is compact. Now G0 has an adjoint action Ad : G0 GL(g), with kernel ker Ad = Z(G). Hence 0 ∼ G = Im(Ad). However, the Killing form Bg on g is Ad-invariant, so Im(Ad) is contained in the subgroup of GL(g) preserving the Killing! form. Since Bg is negative definite, this subgroup is isomorphic to O(n) (where n = dim(g). Since O(n) is compact, its closed subgroup Im(Ad) is also compact, and so G is compact. Note: I found a gap in this argument while writing it up; it assumes that Im(Ad) is closed in GL(g). This is in fact true, because Im(Ad) = Aut(g) is the group of automorphisms of the Lie algebra g, which is closed in GL(g); but proving this fact takes a bit of work.
    [Show full text]
  • Lie Algebras from Lie Groups
    Preprint typeset in JHEP style - HYPER VERSION Lecture 8: Lie Algebras from Lie Groups Gregory W. Moore Abstract: Not updated since November 2009. March 27, 2018 -TOC- Contents 1. Introduction 2 2. Geometrical approach to the Lie algebra associated to a Lie group 2 2.1 Lie's approach 2 2.2 Left-invariant vector fields and the Lie algebra 4 2.2.1 Review of some definitions from differential geometry 4 2.2.2 The geometrical definition of a Lie algebra 5 3. The exponential map 8 4. Baker-Campbell-Hausdorff formula 11 4.1 Statement and derivation 11 4.2 Two Important Special Cases 17 4.2.1 The Heisenberg algebra 17 4.2.2 All orders in B, first order in A 18 4.3 Region of convergence 19 5. Abstract Lie Algebras 19 5.1 Basic Definitions 19 5.2 Examples: Lie algebras of dimensions 1; 2; 3 23 5.3 Structure constants 25 5.4 Representations of Lie algebras and Ado's Theorem 26 6. Lie's theorem 28 7. Lie Algebras for the Classical Groups 34 7.1 A useful identity 35 7.2 GL(n; k) and SL(n; k) 35 7.3 O(n; k) 38 7.4 More general orthogonal groups 38 7.4.1 Lie algebra of SO∗(2n) 39 7.5 U(n) 39 7.5.1 U(p; q) 42 7.5.2 Lie algebra of SU ∗(2n) 42 7.6 Sp(2n) 42 8. Central extensions of Lie algebras and Lie algebra cohomology 46 8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a symplectic vector space 47 8.2 Lie algebra cohomology 48 { 1 { 9.
    [Show full text]
  • REPRESENTATION THEORY of REAL GROUPS Contents 1
    REPRESENTATION THEORY OF REAL GROUPS ZIJIAN YAO Contents 1. Introduction1 2. Discrete series representations6 3. Geometric realizations9 4. Limits of discrete series 14 Appendix A. Various cohomology theories 15 References 18 1. Introduction 1.1. Introduction. The goal of these notes is to survey some basic concepts and constructions in representation theory of real groups, in other words, \at the infinite places". In particular, some of the definitions reviewed here should be helpful towards the formulation of the Langlands program. To be more precise, we first fix some notation for the introduction and the rest of the survey. Let G be a connected reductive group over R and G = G(R). Let K ⊂ G be an R-subgroup such that K := K(R) ⊂ G is a maximal compact subgroup. Let G0 ⊂ GC be the 1 unique compact real form containing K. By a representation of G we mean a complete locally convex topological C-vector space V equipped with a continuous action G × V ! V . We denote a representation by (π; V ) with π : G ! GL(V ): 2 Following foundations laid out by Harish-Chandra, we focus our attention on irreducible admissible representations of G (Definition 1.2), which are more general than (irreducible) unitary representations and much easier to classify, essentially because they are \algebraic". More precisely, by restricting to the K-finite subspaces V fin we arrive at (g;K)- modules. By a theorem of Harish-Chandra (recalled in Subsection 1.2), there is a natural bijection between Irreducible admissible G- Irreducible admissible representations (g;K)-modules ∼! infinitesimal equivalence isomorphism In particular, this allows us to associate an infinitesimal character χπ to each irreducible ad- missible representation π (Subsection 1.3), which carries useful information for us later in the survey.
    [Show full text]
  • Cohomology of Compact Lie Groups
    Utrecht University Department of mathematics Cohomology of compact Lie groups Bachelor thesis mathematics (TWIN) Author: Supervisor: L.A. Visscher prof. dr. E.P. van den Ban June 2019 Contents Introduction . .2 0.1 Preliminaries . .3 0.2 Basics of Lie groups and Lie algebras . .5 1 Left-invariant forms and cohomology 8 1.1 Left-invariant forms and the Lie algebra . .8 1.2 Relating the deRham cohomology to the cohomology of left-invariant forms . 11 2 Intermezzo: Tensor products and exterior algebras 17 2.1 Tensor products . 17 2.2 Exterior algebra . 19 2.3 Tensor products of algebras . 21 3 Hodge decomposition theorem for compact Lie groups 23 3.1 Bi-invariant forms . 23 3.2 Riemannian manifolds . 26 3.3 The Hodge star operator . 26 3.4 The Hodge Laplacian and Hodge's theorem for compact connected Lie groups 28 4 Theorem of Hopf 32 4.1 Preliminaries . 33 4.2 Primitive elements . 35 4.3 Proof of the theorem . 37 Appendix B: Representations 41 Bibliography 43 1 Introduction In this thesis we will take a look at the de Rham cohomology of Lie groups. For general smooth manifolds this cohomology is often hard to determine, however for compact Lie groups we will show that this can be made a lot simpler. The group structure of a Lie group plays an important role in this, among other things it allows us to define so called `left-invariant forms' on the manifold. We will see that the complex of these forms is closely related to the exterior algebra of the Lie algebra.
    [Show full text]
  • Lie Groups and Lie Algebras
    CHAPTER II LIE GROUPS AND LIE ALGEBRAS A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups in the compact open topology. However, the group of all diffeomorphisms of a manifold is too big to form a Lie group in any reasonable topology. The tangent space g at the identity element of a Lie group G has a rule of composition (X,Y) -- [X,Y] derived from the bracket operation on the left invariant vector fields on G. The vector space g with this rule of composition is called the Lie algebra of G. The structures of g and G are related by the exponen- tial mapping exp: g - G which sends straight lines through the origin in g onto one-paramater subgroups of G. Several properties of this mapping are developed already in §1 because they can be derived as special cases of properties of the Exponential mapping for a suitable affine connection on G. Although the structure of g is determined by an arbitrary neighborhood of the identity element of G, the exponential mapping sets up a far-reaching relationship between g and the group G in the large. We shall for example see in Chapter VII that the center of a compact simply connected Lie group G is explicitly determined by the Lie algebra g.
    [Show full text]
  • Integration on Manifolds
    CHAPTER 4 Integration on Manifolds §1 Introduction Until now we have studied manifolds from the point of view of differential calculus. The last chapter introduces to our study the methods of integraI calculus. As the new tools are developed in the next sections, the reader may be somewhat puzzied about their reievancy to the earlierd material. Hopefully, the puzziement will be resolved by the chapter's en , but a pre­ liminary ex ampIe may be heIpful. Let p(z) = zm + a1zm-1 + + a ... m n, be a complex polynomial on p.a smooth compact region in the pIane whose boundary contains no zero of In Sectionp 3 of the previous chapter we showed that the number of zeros of inside n, counting multiplicities, equals the degree of the map argument principle, A famous theorem in complex variabie theory, called the asserts that this may also be calculated as an integraI, f d(arg p). òO 151 152 CHAPTER 4 TNTEGRATION ON MANIFOLDS You needn't understand the precise meaning of the expression in order to appreciate our point. What is important is that the number of zeros can be computed both by an intersection number and by an integraI formula. r Theo ems like the argument principal abound in differential topology. We shall show that their occurrence is not arbitrary orStokes fo rt uitoustheorem. but is a geometrie consequence of a generaI theorem known as Low­ dimensionaI versions of Stokes theorem are probably familiar to you from calculus : l. Second Fundamental Theorem of Calculus: f: f'(x) dx = I(b) -I(a).
    [Show full text]