REPRESENTATION THEORY of REAL GROUPS Contents 1

Total Page:16

File Type:pdf, Size:1020Kb

REPRESENTATION THEORY of REAL GROUPS Contents 1 REPRESENTATION THEORY OF REAL GROUPS ZIJIAN YAO Contents 1. Introduction1 2. Discrete series representations6 3. Geometric realizations9 4. Limits of discrete series 14 Appendix A. Various cohomology theories 15 References 18 1. Introduction 1.1. Introduction. The goal of these notes is to survey some basic concepts and constructions in representation theory of real groups, in other words, \at the infinite places". In particular, some of the definitions reviewed here should be helpful towards the formulation of the Langlands program. To be more precise, we first fix some notation for the introduction and the rest of the survey. Let G be a connected reductive group over R and G = G(R). Let K ⊂ G be an R-subgroup such that K := K(R) ⊂ G is a maximal compact subgroup. Let G0 ⊂ GC be the 1 unique compact real form containing K. By a representation of G we mean a complete locally convex topological C-vector space V equipped with a continuous action G × V ! V . We denote a representation by (π; V ) with π : G ! GL(V ): 2 Following foundations laid out by Harish-Chandra, we focus our attention on irreducible admissible representations of G (Definition 1.2), which are more general than (irreducible) unitary representations and much easier to classify, essentially because they are \algebraic". More precisely, by restricting to the K-finite subspaces V fin we arrive at (g;K)- modules. By a theorem of Harish-Chandra (recalled in Subsection 1.2), there is a natural bijection between Irreducible admissible G- Irreducible admissible representations (g;K)-modules ∼! infinitesimal equivalence isomorphism In particular, this allows us to associate an infinitesimal character χπ to each irreducible ad- missible representation π (Subsection 1.3), which carries useful information for us later in the survey. The strategy to understand unitary representations (up to infinitesimal equivalence) is there- fore clear: first classify all irreducible admissible (g;K)-modules, then distinguish unitary ones 1 For example, take G = GLn, K = O(n) and G0 = U(n). The corresponding Cartan involutions of the split real form G and compact real form G0 are respectively the trivial one and the Chevalley involution, up to GLn(C)-conjugation. 2In the majority of the notes we will pretend that (π; V ) is a Hilbert space representation for simplicity. 1 2 from the rest. The first step is more or less fully understood by work of Harish-Chandra, Lang- lands and others. In particular, Langlands proves the \Langlands classification”, as well as the archimedean Langlands correspondence, which states that there is a natural bijection between L-packets of irreducible admissible (Relevant) Langlands pa- representations of G rameters of G ∼! infinitesimal equivalence conjugation by G_ For quasi-split groups G over R, every Langlands parameter is relevant. For G = GLn, each L-packet consists of a single (infinitesimal equivalence class of) admissible representations. The second step, namely to classify all unitary representations, seems more difficult and has not been completed. One of the simplest classes of irreducible admissible representations are discrete series { they unitary representations that are square integrable in a suitable sense. Such representations form a discrete subset in the unitary dual Gb of G (under the Fell topology), hence the name. They are in a certain sense infinite dimensional analogs of highest weight representations. We discuss discrete series in Section2, where examples of SL 2 = GL2 are considered Using the theory of global characters, Harish-Chandra showed that discrete series exist precisely when rank(G) = rank(K). Moreover, one can describe discrete series representations of G via the Harich-Chandra parameters, as stated in Theorem 2.9. We then discuss explicit realizations of discrete representations. The classical story of realizing highest weight representations of compact groups are given by the Borel{Weil{Bott's theorem, which states that if G is a compact real Lie group with flag variety X = GC=B for some complex Borel subgroup B ⊂ GC, then the coherent cohomology of holomorphic line bundles Lλ is non-trivial precisely when λ is regular after a ρ-shift, in which case is appears in one degree and is the irreducible representation of highest weight λ (for the precise statement and its proof see Theorem 3.1). Moreover, all highest weight representations of G appear this way. When G is non-compact, Langlands conjectured that a similar story should hold when X is replaced by the open subdomain D which is an orbit under the G-action 3 and when the coherent cohomology is replaced by the L2-cohomology. Langlands predicted that the corresponding irreducible representation of G should be a discrete series representation and this procedure exhausts all discrete series. Langlands's conjecture is now a theorem of Schmid, which we explain in Subsection 3.2. Finally, we end this survey by a brief discussion on limits of discrete series and some properties of (non-generate) limits of discrete series. Acknowledgement. Most of the results stated in the survey are due to Harish-Chandra and Schmid. Due to the depth of the theorems stated in the survey, only brief outlines are provided instead of detailed proofs. I would like to thank professor Schmid for patiently explaining many of his results to me, which helps me immensely in understanding his proofs and organizing this survey article. 1.2. Admissible representations. Let G be a reductive group over R as in the introduction, let G = G(R) and g its Lie algebra. 1.2.1. Smooth vectors. Let V = (V; π) be a representation of G. Recall that a vector v 2 V is 1 d C if for each X 2 g, its derivative Xv = dt exp(tX)v t=0 exists. This allows us to inductively define Ck. The smooth vectors in V form a subspace V sm = fv 2 V v is Ck for all k ≥ 1g ⊂ V: 3D = D(∆+) depends on a choice of positive roots, or equivalent a Borel subalgebra b ⊂ g 3 In other words, these are vectors v such that g 7! π(g)v defines a smooth map G ! V . It is not difficult to see that V sm is a subrepresentation of G. Moreover, the representation of g on V sm by taking derivatives is a Lie algebra representation. 1 Next recall the action of the Hecke algebra H = Cc (G) on V given by Z π(f)v := f(g)π(g)v dg G for any f 2 H and v 2 V . First we observe that this \averaging" process makes the vectors sufficiently smooth. More precisely, we have π(f)v 2 V sm for each f 2 H; v 2 V . To see this, rewrite d Z Xπ(f)v = f(g) π exp(tX)g v dg dt G t=0 d Z = f exp(−tX)g π(g)v dg dt G t=0 Z = fX (g) π(g)v dg = π(fX )v G d 1 sm where fX (g) := f(exp(−tX)g) , which lies in Cc (G). Therefore π(f)v 2 V by induction. dt t=0 From this it allows that Corollary 1.1. The subrepresentation V sm ⊂ V is dense. 1.2.2. K-finite vectors. Restricting a representation to its compact subgroups is a valuable tool in representation theory, and in our setup leads to the notion of (g;K)-modules. First let us recall that a representation (V; π) of G is unitary if it is a Hilbert space represen- tation such that the action of G is unitary. Let V = (V; π; h · i) be a Hilbert space representation, then V jK is unitarizable: we define a Hermitian form ( · ) by Z (v1; v2) := hπ(g)v1; π(g)v2idg; K which is K-invariant by construction. It induces the same topology on V as the original Her- mitian form h · i. Let σ be an equivalent class of irreducible representation of K, then the σ-isotypic component of V is ∼ V (σ) = fv 2 V : Chπ(K)vi = σg: A vector v 2 V is K-finite if it is contained in V (σ) for some irreducible representation σ of K. The subspace of K-finite vectors in V is V fin := ⊕ V (σ) σ2Kb where the (algebraic) direct sum is taken over equivalent classes of irreducible representations of K 4. Definition 1.2. A representation (π; V ) of G is admissible if • πjK is unitary; • each V (σ) appearing in V fin has finite multiplicity/dimension. Remark 1.3. From the discussion above, for a Hilbert space representation, to check admissi- bility it suffices to check the second condition. 4By our discussion on unitarizability above, the equivalent classes of irreducible representations can be identified with the unitary dual Kb 4 Theorem 1.4 (Harish-Chandra). Suppose that G is connected reductive as above, then every irreducible unitary representation of G is admissible. 1.2.3. (g;K)-modules. The K-finite vectors V fin ⊂ V in an admissible representation (V; π) (which is usually much smaller) is a lot easier to analyze. Note that the G-action does not in general preserve K-finiteness, so we consider its Lie algebra action and are led to the following definition Definition 1.5. A(g;K)-module is a vector space V with a g (as Lie algebra) action and K action satisfying the following conditions (1) V is a countable algebraic direct sum V = ⊕iVi with each Vi a finite dimensional K- invariant sub-representation. 5 (2) For any X 2 k = Lie(K) and v 2 V , we have d X · v = π exp(tX)v dt t=0 (3) For any k 2 K; X 2 g and v 2 V , we have π(k) X · π(k−1)v = (Ad(k)X) · v We similarly define admissible (g;K)-modules { namely V is admissible if the Vi's in part (1) of the definition can be chosen to be distinct K-representation.
Recommended publications
  • A NEW APPROACH to RANK ONE LINEAR ALGEBRAIC GROUPS An
    A NEW APPROACH TO RANK ONE LINEAR ALGEBRAIC GROUPS DANIEL ALLCOCK Abstract. One can develop the basic structure theory of linear algebraic groups (the root system, Bruhat decomposition, etc.) in a way that bypasses several major steps of the standard development, including the self-normalizing property of Borel subgroups. An awkwardness of the theory of linear algebraic groups is that one must develop a lot of material before one can even characterize PGL2. Our goal here is to show how to develop the root system, etc., using only the completeness of the flag variety, its immediate consequences, and some facts about solvable groups. In particular, one can skip over the usual analysis of Cartan subgroups, the fact that G is the union of its Borel subgroups, the connectedness of torus centralizers, and the normalizer theorem (that Borel subgroups are self-normalizing). The main idea is a new approach to the structure of rank 1 groups; the key step is lemma 5. All algebraic geometry is over a fixed algebraically closed field. G always denotes a connected linear algebraic group with Lie algebra g, T a maximal torus, and B a Borel subgroup containing it. We assume the structure theory for connected solvable groups, and the completeness of the flag variety G/B and some of its consequences. Namely: that all Borel subgroups (resp. maximal tori) are conjugate; that G is nilpotent if one of its Borel subgroups is; that CG(T )0 lies in every Borel subgroup containing T ; and that NG(B) contains B of finite index and (therefore) is self-normalizing.
    [Show full text]
  • Lecture Notes on Compact Lie Groups and Their Representations
    Lecture Notes on Compact Lie Groups and Their Representations CLAUDIO GORODSKI Prelimimary version: use with extreme caution! September , ii Contents Contents iii 1 Compact topological groups 1 1.1 Topological groups and continuous actions . 1 1.2 Representations .......................... 4 1.3 Adjointaction ........................... 7 1.4 Averaging method and Haar integral on compact groups . 9 1.5 The character theory of Frobenius-Schur . 13 1.6 Problems.............................. 20 2 Review of Lie groups 23 2.1 Basicdefinition .......................... 23 2.2 Liealgebras ............................ 25 2.3 Theexponentialmap ....................... 28 2.4 LiehomomorphismsandLiesubgroups . 29 2.5 Theadjointrepresentation . 32 2.6 QuotientsandcoveringsofLiegroups . 34 2.7 Problems.............................. 36 3 StructureofcompactLiegroups 39 3.1 InvariantinnerproductontheLiealgebra . 39 3.2 CompactLiealgebras. 40 3.3 ComplexsemisimpleLiealgebras. 48 3.4 Problems.............................. 51 3.A Existenceofcompactrealforms . 53 4 Roottheory 55 4.1 Maximaltori............................ 55 4.2 Cartansubalgebras ........................ 57 4.3 Case study: representations of SU(2) .............. 58 4.4 Rootspacedecomposition . 61 4.5 Rootsystems............................ 63 4.6 Classificationofrootsystems . 69 iii iv CONTENTS 4.7 Problems.............................. 73 CHAPTER 1 Compact topological groups In this introductory chapter, we essentially introduce our very basic objects of study, as well as some fundamental examples. We also establish some preliminary results that do not depend on the smooth structure, using as little as possible machinery. The idea is to paint a picture and plant the seeds for the later development of the heavier theory. 1.1 Topological groups and continuous actions A topological group is a group G endowed with a topology such that the group operations are continuous; namely, we require that the multiplica- tion map and the inversion map µ : G G G, ι : G G × → → be continuous maps.
    [Show full text]
  • A Taxonomy of Irreducible Harish-Chandra Modules of Regular Integral Infinitesimal Character
    A taxonomy of irreducible Harish-Chandra modules of regular integral infinitesimal character B. Binegar OSU Representation Theory Seminar September 5, 2007 1. Introduction Let G be a reductive Lie group, K a maximal compact subgroup of G. In fact, we shall assume that G is a set of real points of a linear algebraic group G defined over C. Let g be the complexified Lie algebra of G, and g = k + p a corresponding Cartan decomposition of g Definition 1.1. A (g,K)-module is a complex vector space V carrying both a Lie algebra representation of g and a group representation of K such that • The representation of K on V is locally finite and smooth. • The differential of the group representation of K coincides with the restriction of the Lie algebra representation to k. • The group representation and the Lie algebra representations are compatible in the sense that πK (k) πk (X) = πk (Ad (k) X) πK (k) . Definition 1.2. A (Hilbert space) representation π of a reductive group G with maximal compact subgroup K is called admissible if π|K is a direct sum of finite-dimensional representations of K such that each K-type (i.e each distinct equivalence class of irreducible representations of K) occurs with finite multiplicity. Definition 1.3 (Theorem). Suppose (π, V ) is a smooth representation of a reductive Lie group G, and K is a compact subgroup of G. Then the space of K-finite vectors can be endowed with the structure of a (g,K)-module. We call this (g,K)-module the Harish-Chandra module of (π, V ).
    [Show full text]
  • Algebraic D-Modules and Representation Theory Of
    Contemporary Mathematics Volume 154, 1993 Algebraic -modules and Representation TheoryDof Semisimple Lie Groups Dragan Miliˇci´c Abstract. This expository paper represents an introduction to some aspects of the current research in representation theory of semisimple Lie groups. In particular, we discuss the theory of “localization” of modules over the envelop- ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph A. Wolf and the author on the localization of Harish-Chandra modules [7], [8], [13], [17], [18]. These results can be viewed as a vast generalization of the classical theorem of Armand Borel and Andr´e Weil on geometric realiza- tion of irreducible finite-dimensional representations of compact semisimple Lie groups [3]. 1. Introduction Let G0 be a connected semisimple Lie group with finite center. Fix a maximal compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the corresponding Cartan involution, i.e., σ is the involution of g such that k is the set of its fixed points. Let K be the complexification of K0. The group K has a natural structure of a complex reductive algebraic group. Let π be an admissible representation of G0 of finite length. Then, the submod- ule V of all K0-finite vectors in this representation is a finitely generated module over the enveloping algebra (g) of g, and also a direct sum of finite-dimensional U irreducible representations of K0.
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • Orbits of Real Forms in Complex Flag Manifolds 71
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010), 69-109 Orbits of real forms in complex flag manifolds ANDREA ALTOMANI,COSTANTINO MEDORI AND MAURO NACINOVICH Abstract. We investigate the CR geometry of the orbits M of a real form G0 of a complex semisimple Lie group G in a complex flag manifold X = G/Q.Weare mainly concerned with finite type and holomorphic nondegeneracy conditions, canonical G0-equivariant and Mostow fibrations, and topological properties of the orbits. Mathematics Subject Classification (2010): 53C30 (primary); 14M15, 17B20, 32V05, 32V35, 32V40, 57T20 (secondary). Introduction In this paper we study a large class of homogeneous CR manifolds, that come up as orbits of real forms in complex flag manifolds. These objects, that we call here parabolic CR manifolds, were first considered by J. A. Wolf (see [28] and also [12] for a comprehensive introduction to this topic). He studied the action of a real form G0 of a complex semisimple Lie group G on a flag manifold X of G.Heshowed that G0 has finitely many orbits in X,sothat the union of the open orbits is dense in X, and that there is just one that is closed. He systematically investigated their properties, especially for the open orbits and for the holomorphic arc components of general orbits, outlining a framework that includes, as special cases, the bounded symmetric domains. We aim here to give a contribution to the study of the general G0-orbits in X, by considering and utilizing their natural CR structure. In [2] we began this program by investigating the closed orbits.
    [Show full text]
  • The Recursive Nature of Cominuscule Schubert Calculus
    Manuscript, 31 August 2007. math.AG/0607669 THE RECURSIVE NATURE OF COMINUSCULE SCHUBERT CALCULUS KEVIN PURBHOO AND FRANK SOTTILE Abstract. The necessary and sufficient Horn inequalities which determine the non- vanishing Littlewood-Richardson coefficients in the cohomology of a Grassmannian are recursive in that they are naturally indexed by non-vanishing Littlewood-Richardson co- efficients on smaller Grassmannians. We show how non-vanishing in the Schubert calculus for cominuscule flag varieties is similarly recursive. For these varieties, the non-vanishing of products of Schubert classes is controlled by the non-vanishing products on smaller cominuscule flag varieties. In particular, we show that the lists of Schubert classes whose product is non-zero naturally correspond to the integer points in the feasibility polytope, which is defined by inequalities coming from non-vanishing products of Schubert classes on smaller cominuscule flag varieties. While the Grassmannian is cominuscule, our necessary and sufficient inequalities are different than the classical Horn inequalities. Introduction We investigate the following general problem: Given Schubert subvarieties X, X′,...,X′′ of a flag variety, when is the intersection of their general translates (1) gX ∩ g′X′ ∩···∩ g′′X′′ non-empty? When the flag variety is a Grassmannian, it is known that such an intersection is non-empty if and only if the indices of the Schubert varieties, expressed as partitions, satisfy the linear Horn inequalities. The Horn inequalities are themselves indexed by lists of partitions corresponding to such non-empty intersections on smaller Grassmannians. This recursive answer to our original question is a consequence of work of Klyachko [15] who linked eigenvalues of sums of hermitian matrices, highest weight modules of sln, and the Schubert calculus, and of Knutson and Tao’s proof [16] of Zelevinsky’s Saturation Conjecture [28].
    [Show full text]
  • Ind-Varieties of Generalized Flags: a Survey of Results
    Ind-varieties of generalized flags: a survey of results∗ Mikhail V. Ignatyev Ivan Penkov Abstract. This is a review of results on the structure of the homogeneous ind-varieties G/P of the ind-groups G = GL∞(C), SL∞(C), SO∞(C), Sp∞(C), subject to the condition that G/P is a inductive limit of compact homogeneous spaces Gn/Pn. In this case the subgroup P ⊂ G is a splitting parabolic subgroup of G, and the ind-variety G/P admits a “flag realization”. Instead of ordinary flags, one considers generalized flags which are, generally infinite, chains C of subspaces in the natural representation V of G which satisfy a certain condition: roughly speaking, for each nonzero vector v of V there must be a largest space in C which does not contain v, and a smallest space in C which contains v. We start with a review of the construction of the ind-varieties of generalized flags, and then show that these ind-varieties are homogeneous ind-spaces of the form G/P for splitting parabolic ind-subgroups P ⊂ G. We also briefly review the characterization of more general, i.e. non-splitting, parabolic ind-subgroups in terms of generalized flags. In the special case of an ind-grassmannian X, we give a purely algebraic-geometric construction of X. Further topics discussed are the Bott– Borel–Weil Theorem for ind-varieties of generalized flags, finite-rank vector bundles on ind-varieties of generalized flags, the theory of Schubert decomposition of G/P for arbitrary splitting parabolic ind-subgroups P ⊂ G, as well as the orbits of real forms on G/P for G = SL∞(C).
    [Show full text]
  • Linear Algebraic Groups
    Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G.
    [Show full text]
  • Math 222 Notes for Apr. 1
    Math 222 notes for Apr. 1 Alison Miller 1 Real lie algebras and compact Lie groups, continued Last time we showed that if G is a compact Lie group with Z(G) finite and g = Lie(G), then the Killing form of g is negative definite, hence g is semisimple. Now we’ll do a converse. Proposition 1.1. Let g be a real lie algebra such that Bg is negative definite. Then there is a compact Lie group G with Lie algebra Lie(G) =∼ g. Proof. Pick any connected Lie group G0 with Lie algebra g. Since g is semisimple, the center Z(g) = 0, and so the center Z(G0) of G0 must be discrete in G0. Let G = G0/Z(G)0; then Lie(G) =∼ Lie(G0) =∼ g. We’ll show that G is compact. Now G0 has an adjoint action Ad : G0 GL(g), with kernel ker Ad = Z(G). Hence 0 ∼ G = Im(Ad). However, the Killing form Bg on g is Ad-invariant, so Im(Ad) is contained in the subgroup of GL(g) preserving the Killing! form. Since Bg is negative definite, this subgroup is isomorphic to O(n) (where n = dim(g). Since O(n) is compact, its closed subgroup Im(Ad) is also compact, and so G is compact. Note: I found a gap in this argument while writing it up; it assumes that Im(Ad) is closed in GL(g). This is in fact true, because Im(Ad) = Aut(g) is the group of automorphisms of the Lie algebra g, which is closed in GL(g); but proving this fact takes a bit of work.
    [Show full text]
  • Lie Algebras from Lie Groups
    Preprint typeset in JHEP style - HYPER VERSION Lecture 8: Lie Algebras from Lie Groups Gregory W. Moore Abstract: Not updated since November 2009. March 27, 2018 -TOC- Contents 1. Introduction 2 2. Geometrical approach to the Lie algebra associated to a Lie group 2 2.1 Lie's approach 2 2.2 Left-invariant vector fields and the Lie algebra 4 2.2.1 Review of some definitions from differential geometry 4 2.2.2 The geometrical definition of a Lie algebra 5 3. The exponential map 8 4. Baker-Campbell-Hausdorff formula 11 4.1 Statement and derivation 11 4.2 Two Important Special Cases 17 4.2.1 The Heisenberg algebra 17 4.2.2 All orders in B, first order in A 18 4.3 Region of convergence 19 5. Abstract Lie Algebras 19 5.1 Basic Definitions 19 5.2 Examples: Lie algebras of dimensions 1; 2; 3 23 5.3 Structure constants 25 5.4 Representations of Lie algebras and Ado's Theorem 26 6. Lie's theorem 28 7. Lie Algebras for the Classical Groups 34 7.1 A useful identity 35 7.2 GL(n; k) and SL(n; k) 35 7.3 O(n; k) 38 7.4 More general orthogonal groups 38 7.4.1 Lie algebra of SO∗(2n) 39 7.5 U(n) 39 7.5.1 U(p; q) 42 7.5.2 Lie algebra of SU ∗(2n) 42 7.6 Sp(2n) 42 8. Central extensions of Lie algebras and Lie algebra cohomology 46 8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a symplectic vector space 47 8.2 Lie algebra cohomology 48 { 1 { 9.
    [Show full text]
  • Geometry of Compact Complex Manifolds Associated to Generalized Quasi-Fuchsian Representations
    Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations David Dumas and Andrew Sanders 1 Introduction This paper is concerned with the following general question: which aspects of the complex- analytic study of discrete subgroups of PSL2C can be generalized to discrete subgroups of other semisimple complex Lie groups? To make this more precise, we recall the classical situation that motivates our discussion. A torsion-free cocompact Fuchsian group Γ < PSL2R acts freely, properly discontinuously, 2 and cocompactly by isometries on the symmetric space PSL2R=PSO(2) ' H . The quotient 2 S = ΓnH is a closed surface of genus g > 2. When considering Γ as a subgroup of 3 PSL2C, it is natural to consider either its isometric action on the symmetric space H ' PSL =PSU(2) or its holomorphic action on the visual boundary 1 ' PSL =B . 2C PC 2C PSL2C The latter action has a limit set Λ = 1 and a disconnected domain of discontinuity PR Ω = H t H. The quotient ΓnΩ is a compact K¨ahler manifold|more concretely, it is the union of two complex conjugate Riemann surfaces. Quasiconformal deformations of such groups Γ give quasi-Fuchsian groups in PSL2C. Each such group acts on 1 in topological conjugacy with a Fuchsian group, hence the limit PC set Λ is a Jordan curve, the domain of discontinuity has two contractible components, and the quotient manifold is a union of two Riemann surfaces (which are not necessarily complex conjugates of one another). If G is a complex simple Lie group of adjoint type (such as PSLnC, n > 2), there is a distinguished homomorphism ιG : PSL2C ! G introduced by Kostant [Kos59] and called the principal three-dimensional embedding.
    [Show full text]