Developing Creative AI to Generate Sculptural Objects

Total Page:16

File Type:pdf, Size:1020Kb

Developing Creative AI to Generate Sculptural Objects Developing Creative AI to Generate Sculptural Objects Songwei Ge∗, Austin Dill?, Eunsu Kang?, Chun-Liang Li?, Lingyao Zhang Manzil Zaheer, Barnabas Poczos Carnegie Mellon University Pittsburgh, PA, United States fchunlial, eunsuk, songweig, lingyaoz, abdill, manzil, [email protected] Abstract We explore the intersection of human and machine creativ- ity by generating sculptural objects through machine learning. This research raises questions about both the technical details of automatic art generation and the interaction between AI and people, as both artists and the audience of art. We introduce two algorithms for generating 3D point clouds and then dis- cuss their actualization as sculpture and incorporation into a holistic art installation. Specifically, the Amalgamated Deep- Dream (ADD) algorithm solves the sparsity problem caused by the naive DeepDream-inspired approach and generates cre- ative and printable point clouds. The Partitioned DeepDream (PDD) algorithm further allows us to explore more diverse 3D object creation by combining point cloud clustering algorithms Figure 1: Sculpture generated by creative AI, PDD. and ADD. sculptures. Nima et al. [27] introduced Vox2Netadapted from Keywords pix2pix GAN which can extract the abstract shape of the input Partitioned DeepDream, Amalgamated DeepDream, 3D, sculpture. DeepCloud [5] exploited an autoencoder to gener- Point Cloud, Sculpture, Art, Interactive Installation, Creative ate point clouds, and constructed a web interface with analog AI, Machine Learning input devices for users to interact with the generation process. Similar to the work of Lehman et al [22], the results generated Introduction by DeepCloud are limited to previously seen objects. In this paper, we introduce two ML algorithms to create Will Artificial Intelligence (AI) replace human artists or will original sculptural objects. As opposed to previous methods, it show us a new perspective into creativity? Our team of our results do not mimic any given forms and are original and artists and AI researchers explore artistic expression using creative enough not to be categorized into the dataset cate- Machine Learning (ML) and design creative ML algorithms gories. Our method extends an idea inspired by DeepDream to be possible co-creators for human artists. for 2D images to 3D point clouds. However, simply translat- In terms of AI-generated and AI-enabled visual artwork, ing the method generates low-quality objects with local and there has been a good amount of exploration done over the global sparsity issues that undermine the integrity of recon- past three years in the 2D image area traditionally belonging struction by 3D printing. Instead we propose Amalgamated to the realm of painting. Meanwhile, there has been very lit- DeepDream (ADD) which utilizes union operations during tle exploration in the area of 3D objects, which traditionally the process to generate both creative and realizable objects. would belong to the realm of sculpture and could be easily ex- Furthermore, we also designed another ML generation algo- tended into the area of art installations. The creative genera- rithm, Partitioned DeepDream (PDD), to create more diverse tion of 3D object research by Lehman et al. successfully gen- objects, which allows multiple transformations to happen on erated “evolved” forms, however, the final form was not far a single object. With the aid of mesh generation software and from the original form and could be said to merely mimic the 3D printing technology, the generated objects can be physi- original [22]. Another relevant study, Neural 3D Mesh Ren- cally realized. In our latest artwork, it has been incorporated derer [20] focuses on adjusting the rendered mesh based on into an interactive art installation. DeepDream [28] textures. In the art field, artist Egor Kraft’s Content Aware Studies project [11] explores the possibilities Creative AI: ADD and PDD of AI to reconstruct lost parts of antique Greek and Roman Artistic images created by AI algorithms have drawn great ∗Equal contribution attention from artists. AI algorithms are also attractive for their ability to generate 3D objects which can assist the pro- cess of sculpture creation. In graphics, there are many meth- ods to represent a 3D object such as mesh, voxel and point cloud. In our paper, we focus on point cloud data which are obtained from two large-scale 3D CAD model datasets: Mod- elNet40 [38] and ShapeNet [9]. These datasets are prepro- cessed by uniformly sampling from the surface of the CAD models to attain the desired number of points. Point cloud is a compact way to represent 3D object using a set of points on the external surfaces and their coordinates such as those shown in Figures2 and3. We introduce two algorithms, ADD and PDD, which are inspired by 2D DeepDream to gener- Figure 5: Encoding and decoding in latent space ate creative and realizable point clouds. In this section, we will briefly discuss the existing 3D object generation meth- final object X^. Specifically, an autoencoder is a kind of ods, and then elaborate the ADD and PDD algorithms and feedforward neural network used for dimensionality reduc- present some of the generated results. tion whose hidden units can be viewed as latent codes which capture the most important aspects of the object [30]. A rep- resentation of the process of encoding to and decoding from latent space can be seen in Figure5. ^ h = t · h1 + (1 − t) · h2 Figure 2: ModelNet40 [38] Figure 3: ShapeNet [9] x^ = Generator(h^); Learning to Generate Creative Point Clouds Using deep learning to generate new objects has been studied where 0 ≤ t ≤ 1. Empirical evidence shows that de- in different data types, such as music [35], images [15], 3D coding mixed codes usually produces semantically mean- voxels [39] and point clouds [1, 23]. An example of a simple ingful objects with features from the corresponding objects. generative model is shown in Figure4. This approach has also been applied to image creation [7]. One could adopt encoding-decoding algorithms for point clouds [40, 17, 23] based on the same idea. The sampling and interpolation results based on Li et al. [23] are shown in Figure6. (a) Sampling (b) Sampling (c) Sampling Figure 4: An example of generative model. (d) Interpolation (f) Interpolation Here a low-dimensional latent space h of the original ob- (e) Interpolation x ject space is learned in accordance with the underlying Figure 6: Results of Li et al. [23]. probability distribution. Z p(x) = p(h)p(xjh)dh (1) h Inspiration: DeepDream for Point Clouds In contrast A discriminator is usually used to help distinguish the gener- to simple generative models and interpolations, DeepDream ated object x^ and a real object x. Once the discriminator is leverages trained deep neural networks by enhancing patterns fooled, the generator can create objects that look very similar to create psychedelic and surreal images. For example in Fig- to the original ones [15]. However, these generative models ure7, the neural network detects features in the input images only learn to generate examples from the “same” distribution similar to the object classes of bird, fish and dog and then ex- of the given training data, instead of learning to generate “cre- aggerates these underlying features. Given a trained neural ative” objects [13, 27]. network fθ and an input image x, DeepDream aims to mod- ^ One alternative is to decode the convex combination h of ify x to maximize (amplify) fθ(x; a), where a is an activation latent codes h1; h2 of two objects in an autoencoder to get function of fθ. After this process, x is expected to display (a) Union of airplane and bottle (b) Union of cone, vase and lamp Figure 7: 2D DeepDream visualized Figure 9: Amalgamated input for ADD. some features that are captured by fθ(x; a). Algorithmically, DeepDream iteratively modifies x via a gradient update with Algorithm 1: Amalgamated DeepDream (ADD) a certain learning rate γ. input : trained fθ and input X xt = xt−1 + γrxfθ(x; a): (2) output: generated object X^ An extension of Deep- for x = X0;:::;Xn do x0 = x Dream is to use a clas- for t = 1 :::T do sification network as f θ x^ = xt−1 + γrxfθ(xt−1; a) and we replace a with the xt =x ^ outputs of the final layer if t is divisible by 10 then corresponding to certain xt = xt [ x labels. This is related down-sample xt to fix the number of points to adversarial attack [33] end and unrestricted adver- end sarial examples [6, 24]. X^ = X^ [ xT Unfortunately, di- end rectly extending the Figure 8: Naive DeepDream idea of DeepDream to with undesirable sparse surface. point clouds with neural networks for sets [29, 41] results in undesirable point clouds suffering from both local and global sparsity as shown in For object X with any number of points, we first randomly Figure8. To be specific, iteratively applying gradient update take it apart into several subsets with the number of points without any restrictions creates local holes in the surface of that is required by the classification model, and then modify the object. Besides, the number of input points per object the input image through gradient updating (2). In the end, is limited by the classification model. Consequently the we amalgamate all the transformed subsets into a final object. generated object is not globally dense enough to transform By doing this we can generate as dense objects as we want into mesh structure, let alone realize in the physical world. as long as the input object allows. To solve the local spar- To avoid local sparsity in the generated point cloud, one sity, when running the gradient update (2) for each subset we compromise is to run the naive 3D point cloud DeepDream amalgamate the transformed point clouds with the input point with fewer iterations or a smaller learning rate, but it re- clouds after every 10 iterations.
Recommended publications
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • ML-Based Interactive Data Visualization System for Diversity and Fairness Issues 1
    Jusub Kim : ML-based Interactive Data Visualization System for Diversity and Fairness Issues 1 https://doi.org/10.5392/IJoC.2019.15.4.001 ML-based Interactive Data Visualization System for Diversity and Fairness Issues Sey Min Department of Art & Technology Sogang University, Seoul, Republic of Korea Jusub Kim Department of Art & Technology Sogang University, Seoul, Republic of Korea ABSTRACT As the recent developments of artificial intelligence, particularly machine-learning, impact every aspect of society, they are also increasingly influencing creative fields manifested as new artistic tools and inspirational sources. However, as more artists integrate the technology into their creative works, the issues of diversity and fairness are also emerging in the AI-based creative practice. The data dependency of machine-learning algorithms can amplify the social injustice existing in the real world. In this paper, we present an interactive visualization system for raising the awareness of the diversity and fairness issues. Rather than resorting to education, campaign, or laws on those issues, we have developed a web & ML-based interactive data visualization system. By providing the interactive visual experience on the issues in interesting ways as the form of web content which anyone can access from anywhere, we strive to raise the public awareness of the issues and alleviate the important ethical problems. In this paper, we present the process of developing the ML-based interactive visualization system and discuss the results of this project. The proposed approach can be applied to other areas requiring attention to the issues. Key words: AI Art, Machine Learning, Data Visualization, Diversity, Fairness, Inclusiveness.
    [Show full text]
  • Q-Learning in Continuous State and Action Spaces
    -Learning in Continuous Q State and Action Spaces Chris Gaskett, David Wettergreen, and Alexander Zelinsky Robotic Systems Laboratory Department of Systems Engineering Research School of Information Sciences and Engineering The Australian National University Canberra, ACT 0200 Australia [cg dsw alex]@syseng.anu.edu.au j j Abstract. -learning can be used to learn a control policy that max- imises a scalarQ reward through interaction with the environment. - learning is commonly applied to problems with discrete states and ac-Q tions. We describe a method suitable for control tasks which require con- tinuous actions, in response to continuous states. The system consists of a neural network coupled with a novel interpolator. Simulation results are presented for a non-holonomic control task. Advantage Learning, a variation of -learning, is shown enhance learning speed and reliability for this task.Q 1 Introduction Reinforcement learning systems learn by trial-and-error which actions are most valuable in which situations (states) [1]. Feedback is provided in the form of a scalar reward signal which may be delayed. The reward signal is defined in relation to the task to be achieved; reward is given when the system is successfully achieving the task. The value is updated incrementally with experience and is defined as a discounted sum of expected future reward. The learning systems choice of actions in response to states is called its policy. Reinforcement learning lies between the extremes of supervised learning, where the policy is taught by an expert, and unsupervised learning, where no feedback is given and the task is to find structure in data.
    [Show full text]
  • Combinational Creativity and Computational Creativity
    Combinational Creativity and Computational Creativity By Ji HAN Dyson School of Design Engineering Imperial College London A thesis submitted for the degree of Doctor of Philosophy April 2018 Originality Declaration The coding of the Combinator and the Retriever was accomplished in collaboration with Feng SHI, a PhD colleague in the Creativity Design and Innovation Lab at the Dyson School of Design Engineering, Imperial College London, and co-author with me of relevant publications. Except where otherwise stated, this thesis is the result of my own research. This research was conducted in the Dyson School of Design Engineering at Imperial College London, between October 2014 and December 2017. I certify that this thesis has not been submitted in whole or in parts as consideration for any other degree or qualification at this or any other institute of learning. Ji HAN April 2018 II Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commericial No Derivitives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. Ji HAN April 2018 III List of Publications The following journal and conference papers were published during this PhD research. Journal Publications 1. Han J., Shi F., Chen L., Childs P. R. N., 2018. The Combinator – A computer-based tool for creative idea generation based on a simulation approach.
    [Show full text]
  • Building Intelligent Systems with Large Scale Deep Learning Jeff Dean Google Brain Team G.Co/Brain
    Building Intelligent Systems with Large Scale Deep Learning Jeff Dean Google Brain team g.co/brain Presenting the work of many people at Google Google Brain Team Mission: Make Machines Intelligent. Improve People’s Lives. How do we do this? ● Conduct long-term research (>200 papers, see g.co/brain & g.co/brain/papers) ○ Unsupervised learning of cats, Inception, word2vec, seq2seq, DeepDream, image captioning, neural translation, Magenta, ML for robotics control, healthcare, … ● Build and open-source systems like TensorFlow (see tensorflow.org and https://github.com/tensorflow/tensorflow) ● Collaborate with others at Google and Alphabet to get our work into the hands of billions of people (e.g., RankBrain for Google Search, GMail Smart Reply, Google Photos, Google speech recognition, Google Translate, Waymo, …) ● Train new researchers through internships and the Google Brain Residency program Main Research Areas ● General Machine Learning Algorithms and Techniques ● Computer Systems for Machine Learning ● Natural Language Understanding ● Perception ● Healthcare ● Robotics ● Music and Art Generation Main Research Areas ● General Machine Learning Algorithms and Techniques ● Computer Systems for Machine Learning ● Natural Language Understanding ● Perception ● Healthcare ● Robotics ● Music and Art Generation research.googleblog.com/2017/01 /the-google-brain-team-looking-ba ck-on.html 1980s and 1990s Accuracy neural networks other approaches Scale (data size, model size) 1980s and 1990s more Accuracy compute neural networks other approaches Scale
    [Show full text]
  • Computational Creativity
    Computational Creativity Hannu Toivonen University of Helsinki [email protected] www.cs.helsinki.fi/hannu.toivonen ECSS, Gothenburg, 9 Oct 2018 8.10.2018 1 The following video clips, pictures and audio files have been removed from this file to save space: – Video: Poemcatcher tests ”Brain Poetry” machine at Frankfurt Book Fair: https://www.youtube.com/watch?v=cNnbTQL8j B4 – Images produced by Deep Dream, see e.g. https://en.wikipedia.org/wiki/DeepDream – Audio clip: music produced by a programme by Turing and his colleagues www.helsinki.fi/yliopisto 9.10.2018 2 Remote Associates Test (RAT) – What word relates to all of these three words? – coin – silver coin – quick – quick silver – spoon – silver spoon – Measures the ability to discover relationships between remotely associated concepts – A (controversial) psychometrical test of creativity – Correlates with IQ and originality in brain storming www.helsinki.fi/yliopisto 8.10.2018 3 Modeling RATs computationally – A single RAT question is a quadruple – A probabilistic approach: find that maximizes – Maximize (cf. naïve Bayes) www.helsinki.fi/yliopisto 8.10.2018 4 Modeling RATs computationally – Learn word frequencies from a large corpus – Use Google 1 and 2-grams to estimate probabilities and – (Google n-grams: a large, publically available collection of word sequences and their probabilities) – A lot more could be done, but we want to keep things as simple as possible – Creative behavior without an explicit semantic resource (such as WordNet) www.helsinki.fi/yliopisto 8.10.2018
    [Show full text]
  • Audio Event Classification Using Deep Learning in an End-To-End Approach
    Audio Event Classification using Deep Learning in an End-to-End Approach Master thesis Jose Luis Diez Antich Aalborg University Copenhagen A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark Title: Abstract: Audio Event Classification using Deep Learning in an End-to-End Approach The goal of the master thesis is to study the task of Sound Event Classification Participant(s): using Deep Neural Networks in an end- Jose Luis Diez Antich to-end approach. Sound Event Classifi- cation it is a multi-label classification problem of sound sources originated Supervisor(s): from everyday environments. An auto- Hendrik Purwins matic system for it would many applica- tions, for example, it could help users of hearing devices to understand their sur- Page Numbers: 38 roundings or enhance robot navigation systems. The end-to-end approach con- Date of Completion: sists in systems that learn directly from June 16, 2017 data, not from features, and it has been recently applied to audio and its results are remarkable. Even though the re- sults do not show an improvement over standard approaches, the contribution of this thesis is an exploration of deep learning architectures which can be use- ful to understand how networks process audio. The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author. Contents 1 Introduction1 1.1 Scope of this work.............................2 2 Deep Learning3 2.1 Overview..................................3 2.2 Multilayer Perceptron...........................4
    [Show full text]
  • Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting
    water Article Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting Halit Apaydin 1 , Hajar Feizi 2 , Mohammad Taghi Sattari 1,2,* , Muslume Sevba Colak 1 , Shahaboddin Shamshirband 3,4,* and Kwok-Wing Chau 5 1 Department of Agricultural Engineering, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey; [email protected] (H.A.); [email protected] (M.S.C.) 2 Department of Water Engineering, Agriculture Faculty, University of Tabriz, Tabriz 51666, Iran; [email protected] 3 Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam 4 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam 5 Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China; [email protected] * Correspondence: [email protected] or [email protected] (M.T.S.); [email protected] (S.S.) Received: 1 April 2020; Accepted: 21 May 2020; Published: 24 May 2020 Abstract: Due to the stochastic nature and complexity of flow, as well as the existence of hydrological uncertainties, predicting streamflow in dam reservoirs, especially in semi-arid and arid areas, is essential for the optimal and timely use of surface water resources. In this research, daily streamflow to the Ermenek hydroelectric dam reservoir located in Turkey is simulated using deep recurrent neural network (RNN) architectures, including bidirectional long short-term memory (Bi-LSTM), gated recurrent unit (GRU), long short-term memory (LSTM), and simple recurrent neural networks (simple RNN). For this purpose, daily observational flow data are used during the period 2012–2018, and all models are coded in Python software programming language.
    [Show full text]
  • Training Deep Networks Without Learning Rates Through Coin Betting
    Training Deep Networks without Learning Rates Through Coin Betting Francesco Orabona∗ Tatiana Tommasi∗ Department of Computer Science Department of Computer, Control, and Stony Brook University Management Engineering Stony Brook, NY Sapienza, Rome University, Italy [email protected] [email protected] Abstract Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning-rate-free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms. 1 Introduction In the last years deep learning has demonstrated a great success in a large number of fields and has attracted the attention of various research communities with the consequent development of multiple coding frameworks (e.g., Caffe [Jia et al., 2014], TensorFlow [Abadi et al., 2015]), the diffusion of blogs, online tutorials, books, and dedicated courses. Besides reaching out scientists with different backgrounds, the need of all these supportive tools originates also from the nature of deep learning: it is a methodology that involves many structural details as well as several hyperparameters whose importance has been growing with the recent trend of designing deeper and multi-branches networks.
    [Show full text]
  • Bridging Reinforcement Learning and Creativity: Implementing Reinforcement Learning in Processing
    Bridging Reinforcement Learning and Creativity: Implementing Reinforcement Learning in Processing Jieliang Luo Media Arts & Technology Sam Green Computer Science University of California, Santa Barbara SIGGRAPH Asia 2018 Tokyo, Japan December 6th, 2018 Course Agenda • What is Reinforcement Learning (10 mins) ▪ Introduce the core concepts of reinforcement learning • A Brief Survey of Artworks in Deep Learning (5 mins) • Why Processing Community (5 mins) • A Q-Learning Algorithm (35 mins) ▪ Explain a fundamental reinforcement learning algorithm • Implementing Tabular Q-Learning in P5.js (40 mins) ▪ Discuss how to create a reinforcement learning environment ▪ Show how to implement the tabular q-learning algorithm in P5.js • Questions & Answers (5 mins) Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green Psychology Pictures Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green What is Reinforcement Learning • Branch of machine learning • Learns through trial & error, rewards & punishment • Draws from psychology, neuroscience, computer science, optimization Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green Reinforcement Learning Framework Agent Environment Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green https://www.youtube.com/watch?v=V1eYniJ0Rnk Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green https://www.youtube.com/watch?v=ZhsEKTo7V04 Bridging Reinforcement Learning and Creativity, Jieliang Luo & Sam Green Bridging Reinforcement
    [Show full text]
  • The Perceptron
    The Perceptron Volker Tresp Summer 2019 1 Elements in Learning Tasks • Collection, cleaning and preprocessing of training data • Definition of a class of learning models. Often defined by the free model parameters in a learning model with a fixed structure (e.g., a Perceptron) (model structure learning: search about model structure) • Selection of a cost function which is a function of the data and the free parameters (e.g., a score related to the number of misclassifications in the training data as a function of the model parameters); a good model has a low cost • Optimizing the cost function via a learning rule to find the best model in the class of learning models under consideration. Typically this means the learning of the optimal parameters in a model with a fixed structure 2 Prototypical Learning Task • Classification of printed or handwritten digits • Application: automatic reading of postal codes • More general: OCR (optical character recognition) 3 Transformation of the Raw Data (2-D) into Pattern Vectors (1-D), which are then the Rows in a Learning Matrix 4 Binary Classification for Digit \5" 5 Data Matrix for Supervised Learning 6 M number of inputs (input attributes) Mp number of free parameters N number of training patterns T xi = (xi;0; : : : ; xi;M ) input vector for the i-th pattern xi;j j-th component of xi T X = (x1;:::; xN ) (design matrix) yi target for the i-th pattern T y = (y1; : : : ; yN ) vector of targets y^i model prediction for xi T di = (xi;0; : : : ; xi;M ; yi) i-th pattern D = fd1;:::; dN g (training data) T x = (x0; x1; : : : ; xM ) , generic (test) input y target for x y^ model estimate fw(x) a model function with parameters w f(x) the\true"but unknown function that generated the data Fine Details on the Notation • x is a generic input and xj is its j-th component.
    [Show full text]
  • Learning Semantics of Raw Audio
    Learning Semantics of Raw Audio Davis Foote, Daylen Yang, Mostafa Rohaninejad Group name: “Audio Style Transfer” Introduction Variational Inference Numerically modeling semantics has given some useful exciting results in the We would like to have a latent space in which arithmetic operations domains of images [1] and natural language [2]. We would like to be able to correspond to semantic operations in the observed space. To that end, we operate on raw audio signals at a similar level of abstraction. Consider the adopt the following model, adapted from [1]: problem of trying to interpolate two voices into a voice that sounds “in We interpret the hidden variables � as the latent code. between” the two. Averaging the signals will result in the two voices There is a prior over latent codes �� � and a conditional speaking at once. If this operation were performed in a latent space in which distribution �� � � . In order to be able to encode a data dimensions have semantic meaning, then we would see results which match point, we also need to learn an approximation to the human perception of what this interpolation should mean. posterior distribution, �� � � . We can optimize all these We follow two distinct branches in pursuing this goal. First, motivated by parameters at once using the Auto-Encoding Variational aesthetic results in style transfer [3] and generation of novel styles [4], we Bayes algorithm [1]. Some very simple results (ours) of implement a deep classifier for various musical tags in hopes that the various sampling from this model trained on MNIST are shown: layer activations will encode meaningful high-level audio features.
    [Show full text]