Inside Volatility Arbitrage

Total Page:16

File Type:pdf, Size:1020Kb

Inside Volatility Arbitrage Inside Volatility Arbitrage The Secrets of Skewness ALIREZA JAVAHERI John Wiley & Sons, Inc. Inside Volatility Arbitrage Founded in 1807, John Wiley & Sons is the oldest independent publish- ing company in the United States. With offices in North America, Europe, Australia, and Asia, Wiley is globally committed to developing and market- ing print and electronic products and services for our customers’ professional and personal knowledge and understanding. The Wiley Finance series contains books written specifically for finance and investment professionals as well as sophisticated individual investors and their financial advisors. Book topics range from portfolio management to e-commerce, risk management, financial engineering, valuation and financial instrument analysis, as well as much more. For a list of available titles, visit our Web site at www.WileyFinance.com. Inside Volatility Arbitrage The Secrets of Skewness ALIREZA JAVAHERI John Wiley & Sons, Inc. Copyright © 2005 by Alireza Javaheri. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data Javaheri, Alireza. Inside volatility arbitrage : the secrets of skewness / Alireza Javaheri. p. cm. Includes bibliographical references and index. ISBN 0-471-73387-3 (cloth) 1. Stocks–Proces–Mathematical models. 2. Stochastic processes. I. Title. HG4636.J38 2005 332.63’222’0151922–dc22 2005004696 Printed in the United States of America 10987654321 Contents Illustrations ix Acknowledgments xv Introduction xvii Summary xvii Contributions and Further Research xxiii Data and Programs xxiv CHAPTER 1 The Volatility Problem 1 Introduction 1 The Stock Market 2 The Stock Price Process 2 Historic Volatility 3 The Derivatives Market 4 The Black-Scholes Approach 5 The Cox-Ross-Rubinstein Approach 6 Jump Diffusion and Level-Dependent Volatility 7 Jump Diffusion 8 Level-Dependent Volatility 10 Local Volatility 14 The Dupire Approach 14 The Derman-Kani Approach 17 Stability Issues 18 Calibration Frequency 19 Stochastic Volatility 20 Stochastic Volatility Processes 20 GARCH and Diffusion Limits 21 The Pricing PDE Under Stochastic Volatility 24 The Market Price of Volatility Risk 25 The Two-Factor PDE 26 The Generalized Fourier Transform 27 The Transform Technique 27 Special Cases 28 The Mixing Solution 30 The Romano-Touzi Approach 30 v vi CONTENTS A One-Factor Monte Carlo Technique 32 The Long-Term Asymptotic Case 34 The Deterministic Case 34 The Stochastic Case 35 A Series Expansion on Volatility-of-Volatility 37 Pure-Jump Models 40 Variance Gamma 40 Variance Gamma with Stochastic Arrival 43 Variance Gamma with Gamma Arrival Rate 45 CHAPTER 2 The Inference Problem 46 Introduction 46 Using Option Prices 49 Direction Set (Powell) Method 49 Numeric Tests 50 The Distribution of the Errors 50 Using Stock Prices 54 The Likelihood Function 54 Filtering 57 The Simple and Extended Kalman Filters 59 The Unscented Kalman Filter 62 Kushner’s Nonlinear Filter 65 Parameter Learning 67 Parameter Estimation via MLE 81 Diagnostics 95 Particle Filtering 98 Comparing Heston with Other Models 120 The Performance of the Inference Tools 127 The Bayesian Approach 144 Using the Characteristic Function 157 Introducing Jumps 158 Pure Jump Models 168 Recapitulation 184 Model Identification 185 Convergence Issues and Solutions 185 CHAPTER 3 The Consistency Problem 187 Introduction 187 The Consistency Test 189 The Setting 190 Contents vii The Cross-Sectional Results 190 Robustness Issues for the Cross-Sectional Method 190 Time-Series Results 193 Financial Interpretation 194 The Peso Theory 197 Background 197 Numeric Results 199 Trading Strategies 199 Skewness Trades 200 Kurtosis Trades 200 Directional Risks 200 An Exact Replication 202 The Mirror Trades 203 An Example of the Skewness Trade 203 Multiple Trades 208 High Volatility-of-Volatility and High Correlation 209 Non-Gaussian Case 213 VGSA 215 AWord of Caution 218 Foreign Exchange, Fixed Income, and Other Markets 219 Foreign Exchange 219 Fixed Income 220 References 224 Index 236 Illustrations Figures 1.1 The SPX Historic Rolling Volatility from 2000/01/03 to 2001/12/31. 4 1.2 The SPX Volatility Smile on February 12, 2002 with Index = $1107.50, 1 Month and 7 Months to Maturity. 8 1.3 The CEV Model for SPX on February 12, 2002 with Index = $1107.50, 1 Month to Maturity. 11 1.4 The BCG Model for SPX on February 12, 2002 with Index = $1107.50, 1 Month to Maturity. 12 1.5 The GARCH Monte Carlo Simulation with the Square- Root Model for SPX on February 12, 2002 with Index = $1107.50, 1 Month to Maturity. 24 1.6 The SPX implied surface as of 03/09/2004. 31 1.7 Mixing Monte Carlo Simulation with the Square-Root Model for SPX on February 12, 2002 with Index = $1107.50, 1 Month and 7 Months to Maturity. 33 1.8 Comparing the Volatility-of-Volatility Series Expansion with the Monte Carlo Mixing Model. 38 1.9 Comparing the Volatility-of-Volatility Series Expansion with the Monte Carlo Mixing Model. 39 1.10 Comparing the Volatility-of-Volatility Series Expansion with the Monte Carlo Mixing Model. 39 1.11 The Gamma Cumulative Distribution Function P(ax)for Various Values of the Parameter a.42 1.12 The Modified Bessel Function of Second Kind for a Given Parameter. 42 1.13 The Modified Bessel Function of Second Kind as a Function of the Parameter. 43 2.1 The S&P500 Volatility Surface as of 05/21/2002 with Index = 1079.88.51 2.2 Mixing Monte Carlo Simulation with the Square-Root Model for SPX on 05/21/2002 with Index = $1079.88, Maturity 08/17/2002 Powell (direction set) optimization method was used for least-square calibration. 51 ix x ILLUSTRATIONS 2.3 Mixing Monte Carlo Simulation with the Square-Root Model for SPX on 05/21/2002 with Index = $1079.88, Maturity 09/21/2002. 52 2.4 Mixing Monte Carlo Simulation with the Square-Root Model for SPX on 05/21/2002 with Index = $1079.88, Maturity 12/21/2002. 52 2.5 Mixing Monte Carlo Simulation with the Square-Root Model for SPX on 05/21/2002 with Index = $1079.88, Maturity 03/22/2003. 53 2.6 A Simple Example for the Joint Filter. 69 2.7 The EKF Estimation (Example 1) for the Drift Parameter ω.71 2.8 The EKF Estimation (Example 1) for the Drift Parameter θ.72 2.9 The EKF Estimation (Example 1) for the Volatility- of-Volatility Parameter ξ.72 2.10 The EKF Estimation (Example 1) for the Correlation Parameter ρ.73 2.11 Joint EKF Estimation for the Parameter ω.78 2.12 Joint EKF Estimation for the Parameter θ.79 2.13 Joint EKF Estimation for the Parameter ξ.79 2.14 Joint EKF Estimation for the Parameter ρ.80 2.15 Joint EKF Estimation for the Parameter ω Applied to the Heston Model as Well as to a Modified Model Where the Noise Is Reduced by a Factor 252.81 2.16 The SPX Historic Data (1996–2001) is Filtered via EKF and UKF. 84 2.17 The EKF and UKF Absolute Filtering Errors for the Same Time Series. 85 2.18 Histogram for Filtered Data via EKF versus the Normal Distribution. 86 2.19 Variograms for Filtered Data via EKF and UKF. 97 2.20 Variograms for Filtered Data via EKF and UKF. 98 2.21 Filtering Errors: Extended Kalman Filter and Extended Par- ticle Filter Are Applied to the One-Dimensional Heston Model. 115 2.22 Filtering Errors: All Filters Are Applied to the One- Dimensional Heston Model. 116 2.23 Filters Are Applied to the One-Dimensional Heston Model. 117 2.24 The EKF and GHF Are Applied to the One-Dimensional Heston Model. 118 2.25 The EPF Without and with the Metropolis-Hastings Step Is Applied to the One-Dimensional Heston Model.
Recommended publications
  • Module 6 Option Strategies.Pdf
    zerodha.com/varsity TABLE OF CONTENTS 1 Orientation 1 1.1 Setting the context 1 1.2 What should you know? 3 2 Bull Call Spread 6 2.1 Background 6 2.2 Strategy notes 8 2.3 Strike selection 14 3 Bull Put spread 22 3.1 Why Bull Put Spread? 22 3.2 Strategy notes 23 3.3 Other strike combinations 28 4 Call ratio back spread 32 4.1 Background 32 4.2 Strategy notes 33 4.3 Strategy generalization 38 4.4 Welcome back the Greeks 39 5 Bear call ladder 46 5.1 Background 46 5.2 Strategy notes 46 5.3 Strategy generalization 52 5.4 Effect of Greeks 54 6 Synthetic long & arbitrage 57 6.1 Background 57 zerodha.com/varsity 6.2 Strategy notes 58 6.3 The Fish market Arbitrage 62 6.4 The options arbitrage 65 7 Bear put spread 70 7.1 Spreads versus naked positions 70 7.2 Strategy notes 71 7.3 Strategy critical levels 75 7.4 Quick notes on Delta 76 7.5 Strike selection and effect of volatility 78 8 Bear call spread 83 8.1 Choosing Calls over Puts 83 8.2 Strategy notes 84 8.3 Strategy generalization 88 8.4 Strike selection and impact of volatility 88 9 Put ratio back spread 94 9.1 Background 94 9.2 Strategy notes 95 9.3 Strategy generalization 99 9.4 Delta, strike selection, and effect of volatility 100 10 The long straddle 104 10.1 The directional dilemma 104 10.2 Long straddle 105 10.3 Volatility matters 109 10.4 What can go wrong with the straddle? 111 zerodha.com/varsity 11 The short straddle 113 11.1 Context 113 11.2 The short straddle 114 11.3 Case study 116 11.4 The Greeks 119 12 The long & short straddle 121 12.1 Background 121 12.2 Strategy notes 122 12..3 Delta and Vega 128 12.4 Short strangle 129 13 Max pain & PCR ratio 130 13.1 My experience with option theory 130 13.2 Max pain theory 130 13.3 Max pain calculation 132 13.4 A few modifications 137 13.5 The put call ratio 138 13.6 Final thoughts 140 zerodha.com/varsity CHAPTER 1 Orientation 1.1 – Setting the context Before we start this module on Option Strategy, I would like to share with you a Behavioral Finance article I read couple of years ago.
    [Show full text]
  • Risk and Return in Yield Curve Arbitrage
    Norwegian School of Economics Bergen, Fall 2020 Risk and Return in Yield Curve Arbitrage A Survey of the USD and EUR Interest Rate Swap Markets Brage Ager-Wick and Ngan Luong Supervisor: Petter Bjerksund Master’s Thesis, Financial Economics NORWEGIAN SCHOOL OF ECONOMICS This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible – through the approval of this thesis – for the theories and methods used, or results and conclusions drawn in this work. Acknowledgements We would like to thank Petter Bjerksund for his patient guidance and valuable insights. The empirical work for this thesis was conducted in . -scripts can be shared upon request. 2 Abstract This thesis extends the research of Duarte, Longstaff and Yu (2007) by looking at the risk and return characteristics of yield curve arbitrage. Like in Duarte et al., return indexes are created by implementing a particular version of the strategy on historical data. We extend the analysis to include both USD and EUR swap markets. The sample period is from 2006-2020, which is more recent than in Duarte et al. (1988-2004). While the USD strategy produces risk-adjusted excess returns of over five percent per year, the EUR strategy underperforms, which we argue is a result of the term structure model not being well suited to describe the abnormal shape of the EUR swap curve that manifests over much of the sample period. For both USD and EUR, performance is much better over the first half of the sample (2006-2012) than over the second half (2013-2020), which coincides with a fall in swap rate volatility.
    [Show full text]
  • CAIA® Level I Workbook
    CAIA® Level I Workbook Practice questions, exercises, and keywords to test your knowledge SEPTEMBER 2021 CAIA Level I Workbook, September 2021 CAIA Level I Workbook Table of Contents Preface ........................................................................................................................................... 3 Workbook ...................................................................................................................................................................... 3 September 2021 Level I Study Guide ....................................................................................................................... 3 Errata Sheet .................................................................................................................................................................... 3 The Level II Examination and Completion of the Program ................................................................................. 3 Review Questions & Answers ................................................................................................. 4 Chapter 1 What is an Alternative Investment? ......................................................................................... 4 Chapter 2 The Environment of Alternative Investments ........................................................................... 6 Chapter 3 Quantitative Foundations ........................................................................................................ 8 Chapter 4 Statistical Foundations ...........................................................................................................10
    [Show full text]
  • Volatility Risk Premium: New Dimensions
    Deutsche Bank Markets Research Europe Derivatives Strategy Date 20 April 2017 Derivatives Spotlight Caio Natividade Volatility Risk Premium: New [email protected] Dimensions Silvia Stanescu [email protected] Vivek Anand Today's Derivatives Spotlight delves into systematic options research. It is the first in a series of collaborative reports between our derivatives and [email protected] quantitative research teams that aim to systematically identify and capture value across global volatility markets. Paul Ward, Ph.D [email protected] This edition zooms into the volatility risk premia (VRP), one of the key sources of return in options markets. VRP strategies are popular across the investor Simon Carter community, but suffer from structural shortcomings. This report looks to [email protected] improve on those. Going beyond traditional methods, we introduce a P-distribution that best Pam Finelli represents our projected future returns and associated probabilities, based on [email protected] their drivers. Other topics are also highlighted as we construct our P- distribution, namely a new multivariate volatility risk factor model, our Global Spyros Mesomeris, Ph.D Sentiment Indicator, and the treatment of event-based versus non-event based [email protected] returns. +44 20 754 52198 We formulate a strategy which should improve the way in which the VRP is harnessed. It utilizes alternative delta hedging methods and timing. Risk Statement: while this report does not explicitly recommend specific options, we note that there are risks to trading derivatives. The loss from long options positions is limited to the net premium paid, but the loss from short option positions can be unlimited.
    [Show full text]
  • Smile Arbitrage: Analysis and Valuing
    UNIVERSITY OF ST. GALLEN Master program in banking and finance MBF SMILE ARBITRAGE: ANALYSIS AND VALUING Master’s Thesis Author: Alaa El Din Hammam Supervisor: Prof. Dr. Karl Frauendorfer Dietikon, 15th May 2009 Author: Alaa El Din Hammam Title of thesis: SMILE ARBITRAGE: ANALYSIS AND VALUING Date: 15th May 2009 Supervisor: Prof. Dr. Karl Frauendorfer Abstract The thesis studies the implied volatility, how it is recognized, modeled, and the ways used by practitioners in order to benefit from an arbitrage opportunity when compared to the realized volatility. Prediction power of implied volatility is exam- ined and findings of previous studies are supported, that it has the best prediction power of all existing volatility models. When regressed on implied volatility, real- ized volatility shows a high beta of 0.88, which contradicts previous studies that found lower betas. Moment swaps are discussed and the ways to use them in the context of volatility trading, the payoff of variance swaps shows a significant neg- ative variance premium which supports previous findings. An algorithm to find a fair value of a structured product aiming to profit from skew arbitrage is presented and the trade is found to be profitable in some circumstances. Different suggestions to implement moment swaps in the context of portfolio optimization are discussed. Keywords: Implied volatility, realized volatility, moment swaps, variance swaps, dispersion trading, skew trading, derivatives, volatility models Language: English Contents Abbreviations and Acronyms i 1 Introduction 1 1.1 Initial situation . 1 1.2 Motivation and goals of the thesis . 2 1.3 Structure of the thesis . 3 2 Volatility 5 2.1 Volatility in the Black-Scholes world .
    [Show full text]
  • A Brief Analysis of Option Implied Volatility and Strategies
    Economics World, July-Aug. 2018, Vol. 6, No. 4, 331-336 doi: 10.17265/2328-7144/2018.04.009 D DAVID PUBLISHING A Brief Analysis of Option Implied Volatility and Strategies Zhou Heng University of Adelaide, Adelaide, Australia With the implementation of reform of financial system and the opening-up of financial market in China, knowing and properly utilizing financial derivatives becomes an inevitable road. The phenomenon of B-S-M option pricing model underpricing deep-in/out option prices is called volatility smile. The substantial reasons are conflicts between model’s presumptions and reality; moreover, the market trading mechanism brings extra uncertainties and risks to option writers when doing delta hedging. Implied volatility research and random volatility research have been modifying B-S-M model. Giving a practical case may let reader have an intuitive and in-depth understanding. Keywords: financial derivatives, option pricing, option strategies Introduction Since the first standardized “exchanged-traded” forward contracts were successfully traded in 1864, more and more financial institutions and companies were starting to use financial derivatives not only for generating revenue, but also aiming for controlling the risk exposure. Currently, derivatives can be divided into four categories which are forwards, options, futures, and swaps. This essay will mainly focus on options and further discussing what causes the option’s implied volatility and how to utilize implied volatility in a practical way. Causing the Implied Volatility Implied volatility plays an important role in valuing an option, and it is derived from Black-Scholes option pricing model. Several theories explained the reason. Market Trading Mechanism Basically, deep-out of money options have less probability to get valuable comparing with less deep-out of money options and at-the money options at expiration date.
    [Show full text]
  • Applications of Realized Volatility, Local Volatility and Implied Volatility Surface in Accuracy Enhancement of Derivative Pricing Model
    APPLICATIONS OF REALIZED VOLATILITY, LOCAL VOLATILITY AND IMPLIED VOLATILITY SURFACE IN ACCURACY ENHANCEMENT OF DERIVATIVE PRICING MODEL by Keyang Yan B. E. in Financial Engineering, South-Central University for Nationalities, 2015 and Feifan Zhang B. Comm. in Information Management, Guangdong University of Finance, 2016 B. E. in Finance, Guangdong University of Finance, 2016 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN FINANCE In the Master of Science in Finance Program of the Faculty of Business Administration © Keyang Yan, Feifan Zhang, 2017 SIMON FRASER UNIVERSITY Term Fall 2017 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Keyang Yan, Feifan Zhang Degree: Master of Science in Finance Title of Project: Applications of Realized Volatility, Local Volatility and Implied Volatility Surface in Accuracy Enhancement of Derivative Pricing Model Supervisory Committee: Associate Professor Christina Atanasova _____ Professor Andrey Pavlov ____________ Date Approved: ___________________________________________ ii Abstract In this research paper, a pricing method on derivatives, here taking European options on Dow Jones index as an example, is put forth with higher level of precision. This method is able to price options with a narrower deviation scope from intrinsic value of options. The finding of this pricing method starts with testing the features of implied volatility surface. Two of three axles in constructed three-dimensional surface are respectively dynamic strike price at a given time point and the decreasing time to maturity within the life duration of one strike-specified option.
    [Show full text]
  • Thriving During Covid-19
    SALT SALT 2020 ANNUAL HEDGE FUND SURVEY : THIRD QUARTER UPDATE The 2020 hedge fund survey published in June, which ranked the 50 top-perform- FIM Asset Management. But but so has the market’s de- STRATEGIES within each major strategy as she now believes the rise in coupling from the real econ- managers have approached ing funds over the trailing five years through 2019, found as a group they outper- equities, which she had initial- omy, explains Riutta-Nykvist. There are two main expla- risk and opportunities in dif- formed their peers and the market by a wide margin during the sharp sell-off of ly attributed to a Bear Market But she cautions volatility will nations behind why the ferent ways. Survey’s Fifty funds have 2020’s first quarter. And as markets rebounded over the next two quarters, their Rally, is likely “markets looking remain as investors increas- Two, active fund manage- forward to a time when Covid ingly recognize the growing outpaced the hedge fund in- average returns ended September far ahead of those generated by the hedge fund dustry and the market. One, ment--by managers who have has been contained and damage inflicted by Covid-19 generated consistently sound industry and the S&P 500. economies have broken out of and the uncertainty surround- uncertainty and volatility, which has so far character- returns with only moderate to by Eric Uhlfelder recession.” ing the rollout and delivery of low risk over the long term— effective vaccines. ized 2020, has created wide All would agree massive gov- performance dispersion has seemingly been better ernment stimulus has helped, at preserving capital when Return Index was 5.6%--par- adoxically the same return HISTORICAL HEDGE FUND STRATEGY PERFORMANCE THROUGH SEPTEMBER 2020 THRIVING registered by the JP Morgan Ranked Based on 2019 Returns Global Government Bond Index.
    [Show full text]
  • Arbitrage and Beliefs∗
    Arbitrage and Beliefs∗ Paymon Khorramiy Alexander K. Zentefisz May 4, 2021 Abstract We study a segmented-markets setting in which self-fulfilling volatility can arise. The only requirements for this volatility to come about are (i) asset price movements re- distribute wealth across markets (e.g., equities rise as bonds fall) and (ii) a stabilizing force keeps valuation ratios stationary (e.g., cash flow growth rises when valuations rise). We prove that when self-fulfilling volatility exists, arbitrage opportunities must also exist, and vice versa. The tight theoretical connection between price volatility and arbitrage is detectable in currency markets by studying deviations from covered interest parity. JEL Codes: D84, G11, G12 Keywords: limits to arbitrage, segmented markets, volatility, self-fulfilling prices, multiple equilibria, covered interest parity ∗We are very grateful to Nick Barberis, Jess Benhabib, Harjoat Bhamra, Wenxin Du, Stefano Giglio, Daniel Grosshans, Stefan Nagel, Jung Sakong, Andre Veiga, Pietro Veronesi, Raman Uppal, and especially Stavros Panageas and Dimitri Vayanos for extremely helpful comments. We would also like to thank conference participants at CESifo’s Macro/Money/International conference and seminar participants at Imperial College and INSEAD for valuable feedback. yImperial College London, [email protected] zYale School of Management, [email protected] Arbitrages exist. Empirical research has documented several examples of trades fea- turing positive profits with zero hold-to-maturity risk. Moving beyond the neoclassical frictionless model of financial markets, a theoretical literature emphasizing limits to ar- bitrage aims to rationalize such trades.1 More broadly, limits to arbitrage help reconcile high asset returns and extreme price volatility under tame levels of fundamental risk, helping bridge an important gap in financial economics.
    [Show full text]
  • Lyncestis LLP / V1 - Volatility Trading Program Arbitrage Trading Strategy / Equities Accepting New Investors: Yes Non-US Investors Only
    Ascent Capital Management CTA Report Report Start Date: Jan-2016 - Report End Date: Aug-2021 Lyncestis LLP / V1 - Volatility Trading Program Arbitrage Trading Strategy / Equities Accepting New Investors: Yes Non-US Investors Only Performance Since January 2016 Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 -1.68% 1.80% 6.22% 1.20% 1.54% -0.19% -1.36% -1.30% -1.09% 1.09% 0.91% 4.14% 2017 2.37% 1.75% 1.34% -0.43% 0.08% -0.80% 1.97% 0.10% 1.81% 0.71% 0.90% -0.03% 2018 -0.97% 2.77% -0.92% 1.86% 1.79% -2.63% 3.35% 2.72% 0.40% 0.61% 1.94% -0.30% 2019 3.39% 1.90% 2.31% -0.80% 1.14% 2.15% 1.77% 2.32% -0.58% 2.30% -0.29% 1.83% 2020 0.53% 1.15% 0.26% 0.48% 2.68% -0.93% 1.28% -0.03% 0.48% 0.07% 1.27% 0.99% 2021 -1.33% -1.37% 1.29% 0.94% 1.46% -0.68% -0.21% 1.46% 2016 2017 2018 2019 2020 2021 YTD ROR 11.55% 10.16% 10.96% 18.79% 8.49% 1.51% Max DD -3.88% -1.14% -2.63% -0.79% -0.93% -2.68% The Notes Below Are An Integral Part of this Report | Track Record Compiled By: N/A Program Description: V1-VOLATILITY TRADING PROGRAM is basically a market neutral, volatility arbitrage trading strategy. It exploits the term structure (contango and backwardation) of the VIX futures premium.
    [Show full text]
  • Volatility Surface Calibration in Illiquid Market Environment
    VOLATILITY SURFACE CALIBRATION IN ILLIQUID MARKET ENVIRONMENT László Nagy Mihály Ormos Department of Finance Budapest University of Technology and Economics Magyar tudósok körútja 2, Budapest H-1117, Hungary E-mail: [email protected], [email protected] KEYWORDS Besides, our risk neutral risk assessment should be SVI, SSVI, gSVI, stochastic volatility, arbitrage free consequent. Otherwise, calendar and butterfly arbitrage pricing opportunities appear; ABSTRACT C(K, τ1) < C(K, τ2) if and only if τ1 < τ2 (1) In this paper, we show the fragility of widely-used 퐾3−퐾1 K2−K1 C(K1, τ) − C(K2, τ) + C(K3, τ) > 0 (2) Stochastic Volatility Inspired (SVI) methodology. K3−K2 K3−K2 Especially, we highlight the sensitivity of SVI to the fitting penalty function. We compare different weight where C(K, τ) represents the price of a European call functions and propose to use a novel methodology, the option with strike 퐾 and maturity 휏. implied vega weights. Moreover, we unveil the relationship between vega weights and the minimization Considering the behavior of compound interest the task of observed and fitted price differences. Besides, Black-Scholes log-normal model is applicable. we show that implied vega weights can stabilize SVI surfaces in illiquid market conditions. dSt = rStdt + σStdWt (3) INTRODUCTION Also we have seen the volatility surface is not flat hence this model needs some adjustments. The most Vanilla options are traded with finite number of strikes straightforward correction leads to the Local Volatility and maturities. Thus, we can observe only some points model (Dupire 1994). of the implied volatility surface.
    [Show full text]
  • How Profitable Is Capital Structure Arbitrage?
    How ProÞtable Is Capital Structure Arbitrage? Fan Yu1 University of California, Irvine First Draft: September 30, 2004 This Version: June 3, 2005 1I am grateful to Yong Rin Park for excellent research assistance, and Vineer Bhansali, Jef- ferson Duarte, Darrell DufÞe, Robert Jarrow, Haitao Li, Francis Longstaff, Donald Smith, Stuart Turnbull, and seminar/conference participants at Boston University, California State University- Fullerton, Cornell University (ORIE), PIMCO, University of California-Irvine, University of Washington, and the 15th Derivative Securities Conference at the FDIC for comments. I would especially like to thank Philippe Jorion for drawing my attention to this facscinating topic and Gary Zhu for educating me on the credit default swaps market. Address correspondence to Fan Yu, The Paul Merage School of Business, University of California-Irvine, Irvine, CA 92697-3125, E-mail: [email protected]. How ProÞtable Is Capital Structure Arbitrage? Abstract This paper examines the risk and return of the so-called “capital structure arbitrage,” which exploits the mispricing between a company’s debt and equity. SpeciÞcally, a structural model connects a company’s equity price with its credit default swap (CDS) spread. Based on the deviation of CDS market spreads from their theoretical counterparts, a convergence-type trading strategy is proposed and analyzed using 135,759 daily CDS spreads on 261 obligors. At the level of indi- vidual trades, the risk of the strategy arises when the arbitrageur shorts CDS and the market spread subsequently skyrockets, forcing the arbitrageur into early liq- uidation and engendering large losses. An equally-weighted portfolio of all trades produces Sharpe ratios similar to those of other Þxed-income arbitrage strategies and hedge fund industry benchmarks.
    [Show full text]