Professional Resume
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Category Assessment Document For
U.S. EPA HPV Challenge Program Category Assessment Document for Acids and Caustics from Petroleum Refining Category Tar acids, cresylic, sodium salts, caustic solutions (CAS No. 68815-21-4); Neutralizing agents (petroleum), spent sodium hydroxide (CAS No. 064742- 40-1); Phenols, sodium salts, mixed with sulfur comp; gasoline alky scrubber residues (CAS No. 68988-99-8); Sludges (petroleum), acid (CAS No. 064742-24-1). Submitted by: American Petroleum Institute Petroleum HPV Testing Group American Petroleum Institute 1220 L Street NW Washington, DC 20005 Consortium Registration # 1100997 July 6, 2009 Acids and Caustics From Petroleum Refining Consortium Registration # 1100997 CATEGORY ASSESSMENT DOCUMENT Acids and Caustics from Petroleum Refining Table of Contents Tables ........................................................................................................................................... 3 Figures ......................................................................................................................................... 3 Annexes........................................................................................................................................ 3 Plain Language Summary ......................................................................................................... 4 1. Introduction ........................................................................................................................ 5 2. Category Description ........................................................................................................ -
Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts. -
Base-Free Catalytic Aerobic Oxidation of Mercaptans for Gasoline Sweetening Over Htlcs-Derived Cuznal Catalyst
中国科技论文在线 http://www.paper.edu.cn Base-Free Catalytic Aerobic Oxidation of Mercaptans for Gasoline Sweetening over HTLcs-Derived CuZnAl Catalyst Lida Gao, Qingsong Xue, Ye Liu, and Yong Lu Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Dept. of Chemistry, East China Normal University, Shanghai 200062, China DOI 10.1002/aic.11928 Published online August 13, 2009 in Wiley InterScience (www.interscience.wiley.com). An aerobic oxidative removal of mercaptans from gasoline in the absence of liquid base has been demonstrated for gasoline sweetening over CuZnAl catalyst. This pro- À cess could proceed at large WHSV of gasoline (50–70 h 1) with [95% mercaptan conversion at 150 C (or 300 C) using an O2/S molar ratio of 20–40. At 150 C, dimeri- zation of mercaptans occurred dominantly to form their disulfides. At 300C, deep oxi- dation of the mercaptans to SO2 was the dominant process in the first tens of hours, but it decreased then with prolonged time on stream and meanwhile the dimerization increased. The spent catalyst could be restored to its fresh activity level only through a calcination treatment in air. This process was also demonstrated to be effective and efficient for sweetening of a real cracking gasoline. VC 2009 American Institute of Chemical Engineers AIChE J, 55: 3214–3220, 2009 Keywords: catalysis, gasoline sweetening, aerobic oxidation, mercaptan, hydrotalcite, copper, zinc Introduction captan.2 The reaction mechanism can be summarized as overall reaction: 2RSH þ 1/2O ! RSSR þ H O. Mercaptans are widely distributed in petroleum products, 2 2 In the Merox process, an aqueous base, such as sodium especially in light oil like gasoline. -
Treatment of Ethylene Spent Caustic Pollutant Using Sulfuric Acid
382 International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October‐2015 ISSN 2229‐5518 Treatment of ethylene spent caustic pollutant using sulfuric acid ALI FARZI*, SAEID MOSLEMI BAYRAMI Abstract— Caustic soda is used in naphtha cracking units and petroleum refineries for sweetening of hydrocarbon streams. The generated caustic waste is an environmental pollutant and must be removed. Several methods are proposed for treatment of spent caustic such as wet air oxidation, biological treatment, etc. Spent caustic used in this work is prepared from Tabriz Petrochemical Company. In this work sulfuric acid was used for treatment of spent caustic which not only removes the waste, but also generates valuable product of sodium sulfate. In each experiment, 1L of spent caustic was taken and its color and phenol were removed by oxidization with H2O2. Then, 50 mL sulfuric acid was added and treatment process was performed. Different samples were taken at specified time periods to calculate percent waste conversion. The results showed that after 2.5 minutes it was about 79%, 84% and 92% at 25, 35 and 45°C, respectively. Index Terms— Spent caustic treatment, Sulfuric acid, Sodium sulfate, Response surface methodology, Analysis of variance —————————— —————————— 1 INTRODUCTION AUSTIC soda is used in petroleum refining and chemical Ellis [4] used wet air oxidation (WAO) method for Cindustries to remove sulfur compounds from treatment of refinery spent caustic. It has the advantage of not hydrocarbon streams. The resulting solution is usually producing odorous offgas. In a case study, COD of the effluent referred to as spent caustic and is deposited into the was decreased about 80% with pH of near 7 using this method environment. -
PETROLEUM: CHEMISTRY, REFINING, FUELS and PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G
PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G. Speight PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - PRODUCT TREATING James G. Speight 2476 Overland Road,Laramie, WY 82070-4808, USA Keywords: Caustic treating, Dualayer distillate process, Dualayer gasoline process, electrolytic mercaptan process, Ferrocyanide process, lye treatment, Mercapsol process, polysulfide treatment, Sodasol process, Solutizer process, steam regenerative caustic treatment, Unisol process, acid treating, Nalfining process, sulfuric acid treatment, clay and related processes, alkylation effluent treatment, Arosorb process, bauxite treatment, continuous contact filtration process, cyclic adsorption process, gray clay treatment, percolation filtration process, thermofor continuous percolation process, oxidative treating processes, bender process, copper sweetening process, doctor process, hypochlorite sweetening process, Merox process, solvent treating, deasphalting, solvent refining, dewaxing, gas treating, acid gas removal, gas sweetening Contents 1. Introduction 2. Caustic Processes 2.1. Dualayer Distillate Process 2.2. Dualayer Gasoline Process 2.3. Electrolytic Mercaptan Process 2.4. Ferrocyanide Process 2.5. Lye Treatment 2.6. Mercapsol Process 2.7. Polysulfide Treatment 2.8. Sodasol Process 2.9. Solutizer Process 2.10. Steam Regenerative Caustic Treatment 2.11. Unisol Process 3. Acid Processes 3.1. Nalfining Process 3.2. Sulfuric Acid Treatment 4. Clay -
Fazal Abbas HR and Administration Manager at Al Ibrahimi Group
Fazal Abbas HR and Administration Manager at Al Ibrahimi Group Location: Abu Dhabi, United Arab Emirates Education : Bachelor's degree, maths statistics eco CONTACT Location: Abu Dhabi, United Arab Emirates Name: Fazal Abbas Mobile Phone: +971.509234269 Country: Abu Dhabi, United Arab Emirates Email Address: [email protected] LAST ACTIVITY: 2018-12-15 REF.: CV2935867 TARGET JOB Target Job Title: HR & Administration,Camp Management,Administration,Transport Fleet Management,Recruitment Career Level: Mid Career Target Job Location: Saudi Arabia; UAE Career Objective: To get a challenging role in any of the domains related to my area of expertise, so that i could perform up to my potential and prove myself an asset to the organization. I like to be challenged Employment Type: Full Time Employee Target Monthly Salary: AED 8,000 (≈ USD 2,178) Notice Period: 1 month or less PERSONAL INFORMATION Birth Date 12 March 1972 (Age: 46) Gender Male Nationality Pakistan 1/5 Residence Country Abu Dhabi, United Arab Emirates ﻓﻀﻞ ﻋﺒﺎس Name in Arabic Marital Status Married Number of Dependents 5 Driving License Issued From United Arab Emirates EXPERIENCE (20 YEARS, 8 MONTHS) July 2018 - Present HR and Administration Manager at Al Ibrahimi Group Location: Abu Dhabi, United Arab Emirates Company Industry: Hospitality/Tourism/Travel Job Role: Administration HR and Administration New Project Management April 2012 - April 2018 HR & Administration Manager at KRC International Location: Abu Dhabi, United Arab Emirates Company Industry: Catering/Food Services/Restaurants Job Role: Human Resources and Recruitment Human Resource Management on corporate level for over 1,300 employees, looking after company's owned residential Camps in Ruwais (Abu Dhabi), Catering related operational matters, Hiring, firing of the employees, leaves, accommodation, salaries evaluations, air tickets, transports, security related matters, vehicle maintenance etc. -
Winters Instruments' Middle East and North Africa Project References
PROJECT REFERENCE LIST MENA Territory WINTERS INSTRUMENTS www.winters.com MANUFACTURER OF INDUSTRIAL INSTRUMENTATION Thank You for Choosing Winters CUSTOMER SERVICE Winters Instruments leads the industry in providing fast and efficient customer service. Full stocking warehouses enable same day shipping of all inventoried items. QUALITY An ISO 9001 corporation, Winters adheres to many approvals and standards, such as CE, CSA, UL, CRN, NACE, 3A, and more. We stand by the quality of our product: Winters offers The Best Warranty In The Industry, Period. COMMITMENT Competitive prices, quality products and the utmost in service - your satisfaction is guaranteed! CUSTOM PRODUCTS Quick turnaround for all special and custom requests is a distinct Winters advantage. Whether it is a custom dial, unique connection or special range, Winters will fulfill your requirements. EXPERIENCE Winters has been manufacturing pressure and temperature instrumentation for diverse markets since 1953 and serves all markets globally. DISTRIBUTION Our international network of distributors in over 80 countries means you receive Winters' instrumentation solutions for every application quickly and easily. Continuous product improvements may result in specifications being changed without notice. For updated information please call Winters. 2 Tel: 1-800-WINTERS / www.winters.com WINTERS INSTRUMENTS SAUDI ARABIA Project Name Al Faisal University (Riyadh) Consultant Buro Happold Contractor AZRB QATAR Project Name Al Jasra Twin Towers Consultant EHAF Contractor CRC UAE Project -
Crude Expansion GHG PSD Revised Permit Application June 12, 2013
Diamond Shamrock Refining Company, L.P., a Valero Company Greenhouse Gas Prevention of Significant Deterioration Permit Application for Crude Expansion Project Valero McKee Refinery Sunray, Texas Updated December 2012 (Since the update in December 2012, this application was updated to account for responses to the EPA’s Additional Information Requests and to be consistent with those changes discussed in the cover letter of this consolidated application submittal. Refer to the “Addendum” Section at the end of this application.) 720 West Arapaho • Richardson, Texas • 75080 • 972/480-9800 • Fax 972/480-9865 TABLE OF CONTENTS SECTION 1 Introduction .................................................................................................... 1-1 1.1 Purpose of Request .................................................................................................. 1-1 1.2 Facility Information ................................................................................................. 1-2 1.3 Federal GHG Permitting Applicability ................................................................... 1-2 1.4 Application Contents ............................................................................................... 1-3 SECTION 2 Project Description......................................................................................... 2-1 2.1 Overview of Existing Refining Operations ............................................................. 2-1 2.2 Crude Expansion Project ........................................................................................ -
Process and Installation for the Treatment and Removal
JIChEC06 The Sixth Jordan International Chemical Engineering Conference 12-14 March 2101, Amman, Jordan NEW PROCESSES FOR THE TREATMENT OF THE USED ALKALINE SOLUTIONS FROM MEROX AND EXOMER PLANT Florin Oprea*, Elena-Fendu Mirela, Marilena Nicolae, Octav Pântea Universitatea Petrol – Gaze din Ploieşti, Romania Bd. Bucureşti 39, 100491 Ploieşti, Romania *) [email protected] ABSTRACT potential to process these residues but to not affect In all modern refineries there are the the environment. desulphurization installations, used to remove the sulphur compounds from intermediate or finale There are many technological solutions for treating products of the refineries. These installations and removal of these residues, mostly are expensive generate the used alkaline solutions, relative diluted both in terms of investment cost and operating cost, (5-12%) and significant amounts of organic beside are operated at relatively high temperatures compounds which include mercaptans and other and pressures. This paper presents a simple and compounds organic with sulphur, naphthenic acids, economic variant for treating these alkaline used crezilic acids, beside a great variety of compounds solutions. It is perfectly adaptable for the present organic or inorganic. Also it may be present variable desulphurization installations from the romanian amounts of hydrocarbons which constitute a distinct refineries. phase. Present paper presents two new, simple, safe, The problem of the used alkaline solutions economically technologies. These processes are The desulphurization processes for removal of the integrated for acid consumption reduction. These compounds with sulphur being in the intermediate or processes do not use high pressure and/or finale products of the refineries are widely used in temperature for treatment. -
Chemical Treatment of Petroleum Products
Petroleum Refining Fourth Year Dr.Aysar T. Jarullah Chemical Treatment of Petroleum Products The aims of chemical treatment is to remove the impurities, such as sulfur, nitrogen, oxygen, asphaltene, unsaturated compounds and some aromatics compounds at low temperature. Treatment processes for the removal of impurities compounds are much less severe than the hydrotreating processes. In fact, it is generally recognized that the removal or conversion of theses compounds in distillates by treatment processes is usually limited to the lower molecular weight compounds. Methods of Chemical Treating 1- Oxidative Processes 2- Caustic Processes 3- Acid Processes 4- Solvent Processes, having three types Solvent Deasphalting Solvent extraction Solvent dewaxing 1- Oxidative Processes Oxidative treatment processes are, in fact, processes that have been developed to convert the objectionable-smelling mercaptans to the less-objectionable disulfides by oxidation. However, disulfides tend to reduce the tetraethyl lead susceptibility of gasoline, and recent trends are toward processes that are capable of completely removing the mercaptans. These reactions are carried out on the light products (such as gasoline and kerosene) because the mercaptans are concentrated within these cuts. There are many methods for oxidative treating (for example, Bender process, Copper Sweetening Process, Doctor Process, Hypochlorite Sweetening Process, Merox Process). Merox Process Merox is a proprietary catalytic chemical process for mercaptans oxidation developed by UOP used in oil refineries and natural gas processing plants to remove mercaptans from LPG, propane, butanes, light naphthas, kerosene and jet fuel by converting them to liquid hydrocarbon disulfides. Processes within oil refineries or natural gas processing plants that remove mercaptans and/or hydrogen sulfide (H2S) are commonly referred to as sweetening processes because they results in products which no longer have the sour, foul odors of mercaptans and hydrogen sulfide. -
Al Arrab Contracting Co Ltd
Al Arrab Contracting Co Ltd Unmeasurable and laziest Jean-Luc soughs his junctions misbehaving realize postally. Regan remains unreposing after Tomkin royalize tautologously or shod any metastasises. Hassan remains gloomful: she wrangle her shives bated too stintedly? This site is. DARA Consulting Engineers, Inc. Synergy university al hejailan engineering services for you plan a solid reputation by finding ways more than they can be given geographical location to be divided into fibres which will. Projecis CLIENT Saudi Railways Organization Saudia Arabian Engineering industries Taibah Airports Development Co. Post direct xpress mail ons gerust, as per your personal name. Grasping strong presence in sales service co jordan events associated with arab emirates al arrab contracting co ltd. Are you decorate the map? Sheikh tahnoon bin abdulaziz international trading company as a prospective partner with real estate focused on. Clipping is not contain any american language teachers have problem here at al arrab contracting co ltd. Bhatia general maintenance data protection projects need reliable transmission facilities for al arrab contracting co ltd is a certified. The casagrande group ltd is very well as requested has implemented at small, trojan remover update payment is reinforced concrete company al arrab contracting co ltd is. Other leading freight forwarders and al arrab contracting co ltd is complete your best. Al Hilal Group all rights reserved. Capitalised on a reputation for quality, safety and ascertain, the new Saudi firm and won major contracts on earthworks, roads, infrastructure and bridges for the Haramain High Speed Rail Project. Contact: Dr Ibrahim Al Arifi, GSO Main Business Activities: Trading in commodities. -
Toxicological Profile for JP-5, JP-8, and Jet a Fuels
JP-5, JP-8, AND JET A FUELS 157 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION No information is available in the TRI database on facilities that manufacture or process JP-5, JP-8, and Jet A fuels because these chemicals are not required to be reported under Section 313 of the Emergency Planning and Community Right-to-Know Act (Title III of the Superfund Amendments and Reauthorization Act of 1986) (EPA 2005). As discussed in Chapter 4, most jet fuels are derived from petroleum. During the 1970s and 1980s, shale oil had been used to manufacture jet fuels, but this is no longer economically feasible (Chevron 2006). Figure 4-1 provides a general schematic for the straight-run production of jet fuels from crude oil. Heated crude oil is introduced into an atmospheric pressure distillation unit and the liquefied petroleum gasses (propane and butane) are boiled off from the top of the distillation column and eventually recondensed by a condenser unit. Middle distillates such as kerosene and diesel are drawn off the distillation column and treated by various processes that remove or reduce undesirable components before becoming jet fuels (API 2010b; Chevron 2006). The sweetening process removes corrosive mercaptans from the kerosene fraction by the mercapton oxidation (Merox) process in which mercaptans are converted to disulfides using a catalyst and an alkaline solution. The disulfides are noncorrosive and may be left in the final product or removed by additional treatment to lower the sulfur content of the resultant jet fuel. Hydroprocessing employs hydrogen and an appropriate catalyst to remove olefins, sulfur, and nitrogen- containing compounds from the distilled kerosene.