SEED LEAFLET No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medicinal Uses of Pithecellobium Dulce and Its Health Benefits
Journal of Pharmacognosy and Phytochemistry 2018; 7(2): 700-704 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(2): 700-704 Medicinal uses of Pithecellobium dulce and its Received: 24-01-2018 Accepted: 25-02-2018 health benefits Kaushik V Kulkarni Department, Quality Assurance, Kaushik V Kulkarni and Varsha R Jamakhandi DSTS Mandal’s College of Pharmacy, Solapur, Abstract Maharashtra, India Pithecellobium dulce has been utilized by antiquated individuals in treating various sorts of ailments due to its restorative properties. The bark and pulp being astringent and haemostatic are used to treat gum Varsha R Jamakhandi Department, Quality Assurance, ailments, toothache and bleeding. Bark extracts are used for chronic diarrhea, dysentery, constipation and DSTS Mandal’s College of tuberculosis. Extract of leaves is employed as a remedy for indigestion and to prevent spontaneous Pharmacy, Solapur, abortion and for gall bladder ailments and to treat both open and closed wounds. Ground seed is used for Maharashtra, India treating ulcers. Studies also shows that it might help in curing diabetes, inflammation, cancer, tuberculosis, veneral diseases, bilious disorders, fever, cold, sore throat, malaria, skin pigmentation, acne and pimples, dark spots, conjunctivitis, irritable bowel syndrome, pain, eczema, panophthalmitis, leprosy. Studies have evaluated its antioxidant, anti hyperlipidemic, anti-septic, anti-bacterial properties. Keywords: Pithecellobium dulce, treatment for constipation, fever, sore throat, anti-bacterial, abortificient 1. Introduction It originated from Mexico, then went to America, Central Asia and then to India. Although, these trees have been seen all along the highways in India, no one knew about its culinary use. It resembles tamarind and is widely called as Manila Tamarind. -
Butterfly Pea (Clitoria Ternatea) | Feedipedia
Butterfly pea (Clitoria ternatea) | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Butterfly pea (Clitoria ternatea) Automatic translation Description Nutritional aspects Nutritional tables References Sélectionner une langue ▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds Forage plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Butterfly pea, blue pea, kordofan pea, cordofan pea, Asian pigeonwings [English]; pois bleu [French]; clitoria azul, azulejo, Cereal grains and by-products papito, zapatico de la reina, zapotillo, conchita azul, campanilla, bandera, choroque, lupita, pito de parra, bejuco de conchitas Legume seeds and by-products [Spanish]; cunhã, Fula criqua [Portuguese]; kittelbloem [Dutch]; Blaue Klitorie [German]; tembang telang [Indonesian]; Bunga Oil plants and by-products telang [Malay]; Mavi Kelebek Sarmaşığı [Turkish]; Chi Đậu biếc [Vietnamese]; [Bengali]; 蝶豆 [Chinese]; Fruits and by-products [Hindi]; [Malayalam]; [Marathi]; [Tamul]; [Telugu]; Roots, tubers and by-products ดอกอญชั นั [Thai] Sugar processing by-products Plant oils and fats Species Other plant by-products Feeds of animal origin Clitoria ternatea L. [Fabaceae] Animal by-products Dairy products/by-products Synonyms Animal fats and oils Insects Clitoria albiflora Mattei; Clitoria bracteata Poir.; Clitoria mearnsii De Wild.; Clitoria tanganicensis Micheli; Clitoria zanzibarensis Other feeds Vatke Minerals Other products Feed categories Legume forages Legume seeds and by-products Forage plants Latin names Plant and animal families Related feed(s) Plant and animal species Description Resources The butterfly pea (Clitoria ternatea L.) is a vigorous, trailing, scrambling or climbing tropical legume. -
Evaluation of Wood Properties from Six Native Species of Forest Plantations in Costa Rica
BOSQUE 37(1): 71-84, 2016 DOI: 10.4067/S0717-92002016000100008 Evaluation of wood properties from six native species of forest plantations in Costa Rica Estudio de propiedades de la madera de seis especies nativas en plantaciones de Costa Rica Carolina Tenorio a, Róger Moya a*, Cynthia Salas a, Alexander Berrocal a * Corresponding author: a Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Apartado 159-7050, CIIBI-ITCR, Cartago, Costa Rica, [email protected] SUMMARY This study details information about physical, chemical and mechanical properties, drying, preservation and workability of wood from Cordia alliodora, Dipteryx panamensis, Enterolobium cyclocarpum, Hieronyma alchorneoides, Samanea saman and Vochysia ferruginea trees, growing in forest plantations in Costa Rica. Variation of the general properties in relation to height showed that heartwood percentage decreases, bark percentage increases and pith percentage is not affected. Dipteryx panamensis showed both the highest values for specific gravity and the highest mechanic resistance. Both chemical properties and extractives presence were different among species. Heartwood was not possible to preserve in any of the species, though sapwood was. Penetration varied from partial irregular or vascular in the species. The highest durability was for Hieronyma alchorneoides and Vochysia ferruginea, species classified as of high durability. Finally, all species had good performance in the workability tests. The previous results indicate that these species, used for trading reforestation in Costa Rica, have acceptable characteristics to be commercialized and used in wooden products. Key words: tropical species, Central America, wood variation, commercial wood. RESUMEN El presente estudio detalla información de las propiedades físicas, químicas, mecánicas, de secado, preservación y trabajabilidad de la madera de Cordia alliodora, Dipteryx panamensis, Enterolobium cyclocarpum, Hieronyma alchorneoides, Samanea saman y Vochysia ferruginea proveniente de plantaciones forestales en Costa Rica. -
Mimosa (Albizia Julibrissin)
W232 Mimosa (Albizia julibrissin) Becky Koepke-Hill, Extension Assistant, Plant Sciences Greg Armel, Assistant Professor, Extension Weed Specialist for Invasive Weeds, Plant Sciences Origin: Mimosa is native to Asia, from Iran to Japan. It was introduced to the United States in 1745 as an ornamental plant. Description: Mimosa is a legume with double-compound leaves that give the 20- to 40-foot tree a fern-like appear- ance. Each leaf has 10 to 25 leaflets and 40 to 60 subleaflets per leaflet. In the summer, the tree pro- duces pink puff flowers. Fruits are produced in the fall and are contained in tan seedpods. The tree often has multiple stems and a broad, spreading canopy. Seed- lings can be confused with other double-compound legumes, but mimosa does not have thorns or prickles like black locust (Robinia pseudoacacia), and has a woody base, unlike hemp sesbania (Sesbania exaltata). Habitat: Mimosa is cold-hardy to USDA hardiness zone 6 and is not found in elevations above 3,000 feet. Mimosa will thrive in full sun in a wide range of soils in any dis- turbed habitat, such as stream banks, roadsides and old fields. Mimosa can live in partial shade, but is almost never found in full shade or dense forests. Mi- mosa often spreads by seeds from nearby ornamental plantings, or by fill dirt containing mimosa seeds. It is a growing problem in aquatic environments, where mimosa gets started on the disturbed stream banks, and its seeds are carried by the running water. Environmental Impact: Mimosa is challenging to remove once it is estab- lished. -
(Leguminosae: Caesalpinioideae), a New Host Plant
de Moraes Manica et al., Forest Res 2012, 1:3 Forest Research http://dx.doi.org/10.4172/2168-9776.1000109 Open Access Rapid Communication Open Access Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae), A New Host Plant for Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Auchenorrhyncha: Flatidae) Clovis Luiz de Moraes Manica1, Ana Claudia Ruschel Mochko1, Marcus Alvarenga Soares2 and Evaldo Martins Pires1* 1Federal University of Mato Grosso, 78557-000 Sinop, Mato Grosso, Brazil 2Federal University of Vale do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil Abstract Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae) is a plant common in the forests of the Amazon, can still be found in forest fragments and also near to urban area. Adults and nymphs of Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Auchenorrhyncha: Flatidae) were found colonizing S. paniculatum in Sinop, Mato Grosso State, Brazil, during the months of June and July 2012. This is the first record of this insect in the municipality of Sinop and on plants of S. paniculatum which can be considered a new host plant for this specie, which can be considered as a new host plant for this insect due to the fact been observed all stages of the life cycle of P. phalaenoides. Keywords: Host plant; Adults; Immatures; Gregarious habit production of firewood and charcoal, can be compared to eucalyptus [3]. Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae) is a native plant of the Brazilian Amazon, can still be found in Guyana, Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Peru, Suriname and Venezuela [1]. In Brazil, there is reports to the Auchenorrhyncha: Flatidae) is recorded from Mexico through and states of Bahia, Goiás, Mato Grosso and Minas Gerais [2]. -
Ovicidal Activity of Pithecellobium Dulce (Family: Fabaceae) Leaf and Seed Extracts Against Fi Lariasis Vector Mosquito Culex Quinquefasciatus (Diptera: Culicidae)
Journal of Medicinal Herbs and Ethnomedicine 2015, 1: 116-119 http://sciencefl ora.org/journals/index.php/jmhe/ Regular Article doi: 10.5455/jmhe.2015-10-024 Ovicidal activity of Pithecellobium dulce (Family: Fabaceae) leaf and seed extracts against fi lariasis vector mosquito Culex quinquefasciatus (Diptera: Culicidae) Marimuthu Govindarajan1*, Mohan Rajeswary1, S. L. Hoti2, Giovanni Benelli3 1Department of Zoology, Phytochemistry and Nanotechnology, Unit of Vector Control, Annamalai University, Annamalainagar, Tamil Nadu, India, 2Regional Medical Research Centre (ICMR), Nehru Nagar, Belgaum, Karnataka, India, 3Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy RReceived:eceived: 27.08.2015 ABSTRACT AAccepted:ccepted: 05.10.2015 PPublished:ublished: 21.10.2015 Mosquito-borne diseases with an economic impact create a loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of **AddressAddress fforor ccorrespondence:orrespondence: resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol Dr. Marimuthu Govindarajan, techniques in the future. In view of recently increased interest in developing plant origin insecticides as an Unit of Vector Biology and alternative to chemical insecticide, in the present study ovicidal efficacy of different solvent leaf and seed extract Phytochemistry, Department of Zoology, Annamalai of Pithecellobium dulce against filariasis vector C. quinquefasciatus. The ovicidal efficacy of the crude leaf extracts University, Annamalai of P. dulce with five different solvents, such as benzene, hexane, ethyl acetate, methanol, and chloroform, was Nagar - 608 002, Tamil Nadu, tested against C. quinquefasciatus. Ovicidal activity was determined against C. -
Florida Keys Terrestrial Adaptation Planning (Keystap) Species
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330842954 FLORIDA KEYS TERRESTRIAL ADAPTATION PROJECT: Florida Keys Case Study on Incorporating Climate Change Considerations into Conservation Planning and Actions for Threatened and Endang... Technical Report · January 2018 CITATION READS 1 438 6 authors, including: Logan Benedict Jason M. Evans Florida Fish and Wildlife Conservation Commission Stetson University 2 PUBLICATIONS 1 CITATION 87 PUBLICATIONS 983 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Conservation Clinic View project Vinson Institute Policy Papers View project All content following this page was uploaded by Jason M. Evans on 27 April 2020. The user has requested enhancement of the downloaded file. USFWS Cooperative Agreement F16AC01213 Florida Keys Case Study on Incorporating Climate Change Considerations into Conservation Planning and Actions for Threatened and Endangered Species Project Coordinator: Logan Benedict, Florida Fish and Wildlife Conservation Commission Project Team: Bob Glazer, Florida Fish and Wildlife Conservation Commission Chris Bergh, The Nature Conservancy Steve Traxler, US Fish and Wildlife Service Beth Stys, Florida Fish and Wildlife Conservation Commission Jason Evans, Stetson University Project Report Photo by Logan Benedict Cover Photo by Ricardo Zambrano 1 | Page USFWS Cooperative Agreement F16AC01213 TABLE OF CONTENTS 1. ABSTRACT ............................................................................................................................................................... -
Soil Properties Improvement and Use of Adaptive Plants for Land Rehabilitation of Post Tin Mining Closure in Bangka Island, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 2, February 2020 E-ISSN: 2085-4722 Pages: 505-511 DOI: 10.13057/biodiv/d210211 Soil properties improvement and use of adaptive plants for land rehabilitation of post tin mining closure in Bangka Island, Indonesia PRATIWI1,♥, BUDI HADI NARENDRA1, BUDI MULYANTO2 1Forest Research and Development Center, Ministry of Environment and Forestry. Jl. Gunung Batu no. 5 Bogor 16118, West Java, Indonesia. Tel./fax.: +62-251-8633234, email: [email protected] 2Department of Soil Science and Land Resources, Faculty of Agriculture, Institut Pertanian Bogor. Jl. Meranti, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia Manuscript received: 26 November 2019. Revision accepted: 13 January 2020. Abstract. Pratiwi, Narendra BH, Mulyanto B. 2020. Soil properties improvement and use of adaptive plants for land rehabilitation of post tin mining closure in Bangka Island, Indonesia. Biodiversitas 21: 505-511. Indonesia is still facing several environmental problems due to improper mining activities, such as tin mining activities in Bangka island. The area of post tin mining closure in this island has left tailing area over unstructured overburden. This condition causes infertile land, which is indicated by low physical, chemical, and biological soil properties for supporting plant growth. Therefore, amelioration material is needed to increase soil fertility in rehabilitating this area. The purposes of the study are to improve soil properties and the use of adaptive plants for land rehabilitation of post tin mining closure. The observation was carried out on plots with ameliorant materials treatment, and no treatment as a control plot. Adaptive plants used are trembesi (Samanea saman), sengon buto (Enterolobium cyclocarpum), and ampupu (Eucalyptus urophylla); while ameliorant materials were mixture of overburden materials, NPK fertilizer, lime (dolomite), topsoil material, and compost, with proportion 49%, 1%, 10%, 20%, 20% of media weight respectively. -
Albizia Zygia Fabaceae
Albizia zygia (DC.) Macbr. Fabaceae - Mimosoideae LOCAL NAMES Igbo (nyie avu); Swahili (nongo); Yoruba (ayin rela) BOTANIC DESCRIPTION Albizia zygia is a deciduous tree 9-30 m tall with a spreading crown and a graceful architectural form. Bole tall and clear, 240 cm in diameter. Bark grey and smooth. Young branchlets densely to very sparsely clothed with minute crisped puberulence, usually soon disappearing but sometimes persistent. Leaves pinnate, pinnae in 2-3 pairs and broadening towards the apex, obliquely rhombic or obovate with the distal pair largest, apex obtuse, 29- 72 by 16-43 mm, leaves are glabrous or nearly so. Flowers subsessile; pedicels and calyx puberulous, white or pink; staminal tube exserted for 10-18 mm beyond corolla. Fruit pod oblong, flat or somewhat transversely plicate, reddish-brown in colour, 10-18 cm by 2-4 cm glabrous or nearly so. The seeds of A. zygia are smaller (7.5-10 mm long and 6.5 to 8.5 mm wide) and flatter than either of the other Albizia, but have the characteristic round shape, with a slightly swollen center. The genus was named after Filippo del Albizzi, a Florentine nobleman who in 1749 introduced A. julibrissin into cultivation. BIOLOGY A hermaphroditic species flowering in January, February, March, August, and September. Fruits ripen in January, February, March, April, November, and December. This tree hybridizes with A. gummifera. Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Albizia zygia (DC.) Macbr. Fabaceae - Mimosoideae ECOLOGY A light demanding pioneer species, it is rarely found in closed canopy forests dominated by Chlorophora regia and Ficus macrosperma. -
New Circumscription of Abarema (Leguminosae)
NEW CIRCUMSCRIPTION OF ABAREMA (LEGUMINOSAE) ¹Ethiéne Guerra, ¹Marcos Vinícius Batista Soares, ²Marli Pires Morim & ¹João Iganci ¹Programa de Pós-Graduação em Botânica, Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. ²Instituto de Pesquisas do Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. [email protected] The genus Abarema Pittier was described in 1927 based on Pithecellobium sect. Abaremotemon sensu Bentham of 1844. Since then, Abarema had many different taxonomic circumscriptions, incorporating and losing species, and showing different positions in relation to other close related genera. The genus is classified into the tribe Ingeae, within the informal group Abarema Alliance. In 1996, Barneby and Grimes advertised that the limits between Abarema and close related genera of the tribe Ingeae were still not well determined. A recent molecular phylogenetic study based on a large species sampling of the Abarema Alliance, showed that the genus type species, Abarema cochliacarpos (Gomes) Barneby & J.W.Grimes, is separate from the others Abarema species. Besides this, the species is positioned within Inga Alliance. Abarema cochliacarpos is an endemic species from Brazil, occurring in two biomes, the Atlantic Forest and the Cerrado. Lewis et al., in 1987, mentioned the occurrence of two morphotypes of Abarema cochliacarpos in Bahia state. Iganci et al., in 2012, also recognized other two morphotypes for the species in different regions of Rio de Janeiro state. For providing a robust new circumscription of Abarema, based on Abarema cochliacarpos, and for recognizing if each morphotype do represent different species or not, we realized a large revision on the herbaria data and an extensive field work, covering the total distribution of A. -
Albizia Julibrissin Durazz
Albizia julibrissin Durazz. Fabaceae - Mimosoideae LOCAL NAMES Chinese (ho hun,ho huan); Dutch (acacia van Constantinopel); English (pink siris,Persian acacia,pink silk tree,mimosa,silk mimosa tree,silk tree,silky acacia,pink mimosa); French (arbre à soie,acacie de Constantinople); German (persische Seidenakazie,Julibrissin- Albizzie); Hindi (karmaru,brind,lal,tandai,shishi,sirin,siris,kurmru); Italian (acacia di Constantinopoli,gaggia di Constaninopoli,gaggia arborea,albero de la seta); Japanese (nemu-no-ki); Nepali (kato siris) BOTANIC DESCRIPTION Bark (James H. Miller, USDA Forest Albizia julibrissin is a small to medium-sized tree 6-9 m tall with a Service, www.forestryimages.org) spreading crown. The bark is light brown, nearly smooth, and generally thin with lens shaped areas along the stem. Leaves large, up to 50 cm long, bipinnately compound with 10-35 pairs of leaflets, many oblong leaflets, each only 6-12 mm long by about 7.5-10 cm wide, and alternate along the stems. Leaves fold up under the night sky Flowers showy, fragrant pink, about 3.75 cm long, that resembling pompoms and are arranged in panicles at the ends of branches. Fruits are flat, straw-colored pods about 15 cm long containing light brown Quick growing, flat-topped crown. Branches oval-shaped seeds about 1.25 cm in length. in lateral tiers. Long feathery fern-like leaves up to 45cm long - provide light shade. Spectacular in flower - from early summer to The generic name commemorates the Florentine nobleman Filippo degli autumn. Ornamental used as avenue tree Albizzi, who introduced the plant into cultivation in the middle of the 18th and lawn shade. -
Albizia Lophantha (Willd.) Benth, PLUME ALBIZIA, PLUME ACACIA
Albizia lophantha (Willd.) Benth, PLUME ALBIZIA, PLUME ACACIA. Small tree, evergreen, unarmed, 1-trunked, in range to 8 m tall; main branches horizontal, with widely spaced leaves; trunk < 12 cm diameter; bark fibrous and tough, grayish brown, brownish below wax, dull, transversely wrinkled, weakly ridged with smooth longitudinally veins and finer wrinkles. Stems: ridged, somewhat zigzagged, streaked olive green and rosy brown and becoming dark purple on ridges, internodes mostly 50–70 mm long, canescent. Leaves: helically alternate, even-2-pinnately compound with 7–13(–15) pairs of primary leaflets, petiolate, with stipules; stipules 2, attached to stem, acuminate and scalelike, hairy, persistent; petiole typically 30–60 mm long, with a conspicuous pulvinus at base and an extrafloral nectary at midpoint, the nectary oval, ± 3 mm long, green; blade oblong to chevron-rectangular in outline, 180–210 × 110–140 mm, with primary leaflets spreading or ascending, spaced 9−14 mm apart along rachis; rachis strongly ridged, with canescent hairs and erect, reddish glandular hairs, primary leaflets lacking stipel and having an extrafloral nectary at junction of the terminal pair of primary leaflets and sometimes another nectary at junction of penultimate pair of primary leaflets; petiolules with conspicuous pulvinus, having an upper pair of minute appendages at tip; primary leaflets often diverging at about 30−60°, 50–120 mm long, symmetric in length but lower leaflet length < terminal < middle leaflet length, with 25–40 pairs of secondary leaflets along axis; secondary leaflets with sleep movements, overlapping, asymmetrically oblong to elliptic, 3.5–8 × 1–2 mm, oblique at base, entire, broadly acute at tip, pinnately veined, upper surface glabrous, lower surface strigose and glaucous.