Deriving Monotonic Function Envelopes from Observations* Herbert Kay Lyle H

Total Page:16

File Type:pdf, Size:1020Kb

Deriving Monotonic Function Envelopes from Observations* Herbert Kay Lyle H Deriving Monotonic Function Envelopes from Observations* Herbert Kay Lyle H. Ungar Department of Computer Sciences Department of Chemical Engineering University of Texas at Austin University of Pennsylvania Austin, TX 78712 Philadelphia, PA 19104 bert@cs .utexas.edu [email protected] .edu Abstract function f(x; 0) and then using regression analysis to determine the values 0 such that f(x; 0) .., g(x) . work in qualitative physics involves con- Much Traditional regression methods require knowledge of structing models of physical systems using func- the form of the estimation function f. For instance, tional descriptions such as "flow monotonically in- we may know that body weight is linearly related to creases with pressure." Semiquantitative meth- amount of body fat. We may then determine that ods improve model precision by adding numeri- f(weight; B) = weight - B is an appropriate model. cal envelopes to these monotonic functions . Ad Neural network methods have been developed for cases hoc methods are normally used to determine these where no information about f is known . This may be envelopes. This paper describes a systematic the case if f models a complex process whose physics is a envelope a method for computing bounding of poorly understood . Such networks are known to be ca- stream multivariate monotonic function given a pable of representing any functional relationship given of data. The derived envelope is computed by a large enough network. In this paper, we consider the determining a simultaneous confidence band for case where some intermediate level of knowledge about a special neural network which is guaranteed to f is known. In particular, we are interested in cases produce only monotonic functions. By compos- where we have knowledge of the monotonicity of f in ing these envelopes, more complex systems can be terms of the signs of where E x . For example, simulated using semiquantitative methods. xk we might know that outflowa from a tank monotonically increases with tank pressure. This type of knowledge Introduction is prevalent in qualitative descriptions of systems, so it makes sense to take advantage of it. Scientists and engineers build models of continuous Since the estimate is based on a finite set of data, it systems to better understand and control them. Ide- is not possible for it to be exact. We therefore require ally, these models are constructed based on the the our estimate to have an associated confidence measure underlying physical properties of the system. Unfortu- which takes into account the uncertainty introduced by nately, real systems are seldom well enough understood the finite sample size. For our semiquantitative repre- to construct precise models based solely on a priori sentation, we are therefore interested in deriving an knowledge of physical laws. Therefore, process data is envelope that bounds all possible functions that could often used to estimate some portions of the model. have generated the datastream with some probability Techniques for estimating a functional relationship P. between an output variable y and the input vector This paper describes a method for estimating and x typically assume that there is some determinis- computing bounding envelopes for multivariate func- tic function g and some random variate e such that tions based on a set of data and knowledge of the y = g(x) + e, where c is a normally distributed, mean monotonicity of the functional relationship . First, zero random variable with variance o-2 that represents we describe our method for computing an estimate measurement error and stochastic variations . The es- f(x; 0) ;zz~ g(x) based on a neural network that is con- timate is computed by using a parameterized fitting strained to produce only monotonic functions. Second, we describe our method for computing a bounding en- 'This work has taken place in the Qualitative Reasoning Group at the Artificial Intelligence Laboratory, The Uni- velope, which is based on linearizing the estimation versity of Texas at Austin. Research of the Qualitative function and then using F-statistics to compute a si- Reasoning Group is supported in past by NSF grants IRI- multaneous confidence band . Third, we present several 8905494, IRI-8904454, and IRI-9017047, by NASA contract examples of function fitting and its use in semiquanti- NCC 2-760, and by the Jet Propulsion Laboratory. tative simulation using QSIM. Next we discuss related work in neural networks and nonparametric analysis and finally we summarize the results and describe fu- ture work. Bounded monotonic functions are a key element of the semiquantitative representation used by simulators such as Q2 [Kuipers and Berleant, 1988], Q3 [Berleant and Kuipers, 1992], and Nsim [Kay and Kuipers, 1993] which predict behaviors from models that are incom- pletely specified . To date, the bounds for such func- tions have been derived in an ad hoc manner . The work described in this paper provides a systematic method for finding these functional bounds. It is par- ticularly appropriate for semiquantitative monitoring and diagnosis systems (such as MIMIC [Dvorak and Kuipers, 1989]) because process data is readily avail- Figure 1: A neural net-based function estimator . able in such applications. By combining our function This three-layer net computes the function bounding method with model abduction methods such (E' + w wO[nh+1,1]) . as MISQ [Richards et ad., 1992], we plan to construct ~~ Al [w.[.i,l]a i=, wi[i,j]xi i[n+l,i1)~ + a self-calibrating system which derives models directly from observations of the monitored process. Such a system will have the property that as more data is ac- at 11 . All nodes use sigmoidal basis functions and all quired from the process, the model and its predictions connections are weighted . In our notation, wili j] rep- will improve. resents the connection from input xi to hidden node j and woU,ll represents the connection from hidden node network represents the Computing the Estimate j to the output layer' . This function Computing the estimate of g requires that we make Q(S some assumptions about the nature of deterministic = + wo[nh+1,11) and stochastic portions of the model. We assume that nh n the relationship between y and x is y = g(x)+c where e s -_ WOLi,11 0 wi[ii]xi + wi[n+lj] is a normally distributed random variable with mean 0 j=1 L ~Ei=1 and variance Q' . Other assumptions, such as different noise probability distributions or multiplicative rather where v(x) is the sigmoidal function We can than additive noise coupling could be made. The above compute the weights by solving the nonlinear least model, however, is fairly general and it permits us to squares problem use powerful regression techniques for the computation of the estimate and its envelope . For situations where Win (yi - yi)z variance is not uniform, we can use variance stabiliza- i tion techniques to transform the problem so that it has where Pi = f(xi ; w) and w is a vector of all weights. a constant variance. Cybenko [Cybenko, 1989] and others have shown that In traditional regression analysis, the modeler sup- with a large enough number of hidden units, any con- plies a function f(x; B) together with a dataset to a tinuous function may be approximated by a network least-squares algorithm which determines the optimal of this form. values for 9 so that f (x; 9) :z~ g(x) . The estimated One drawback of using this estimation function is that it can overfit the given data. This results in the value of y is then y = f(x; 9) . In our case, however, estimate following the random variate e as well as the the only information available about f is the signs of deterministic part of the model which means that we its n partial derivatives where xk E x, so no ex- get a poor approximation of g3. We therefore reduce One way to work plicit equation for f can beaassumed . the scope of possible functions to include only mono- for f is to use a neural net without an explicit form tonic functions. To do this, note that if f is mono- function estimator. Figure 1 illustrates a network for tonically increasing in xk, then must be positive. determining y given a set of inputs x. The network a has three layers. The input layer contains one node for 'The bias terms permit the estimation function to shift each element xk and one bias node set to a constant the center of the sigmoid. value of 1 . The hidden layer consists of a set of nh 'The weight wi[n+l,i] represents the connection to the input variable as nodes which are connected to each input bias and the weight wo[nh+1,1] represents the connec- well as to the bias input. The output layer consists tion from the hidden layer bias node to the output node. of a single node which is connected to all the hidden 'Visually, the estimate will try to pass through every nodes as well as to another bias value which is fixed datapoint. By constraining the weights, we can force this deriva- tive to positive for all x, insuring that the resulting function is monotonic. The derivative in question is of = v' (s + Wo[ axk .n+1,1]) -p n~ ( n p t woU,110` E(w=[i,j]xi) + Wi[k,j]~ j=1 i=1 Since the derivative of the sigmoid function is positive for all values of its domain, will be positive if p is positive . This will be the caseaifbl<j<nwo[j,1] - wi[k,j] >- 0 . If the partial derivative is negative, then the inequal- ity is reversed .
Recommended publications
  • Some Integral Inequalities for Operator Monotonic Functions on Hilbert Spaces Received May 6, 2020; Accepted June 24, 2020
    Spec. Matrices 2020; 8:172–180 Research Article Open Access Silvestru Sever Dragomir* Some integral inequalities for operator monotonic functions on Hilbert spaces https://doi.org/10.1515/spma-2020-0108 Received May 6, 2020; accepted June 24, 2020 Abstract: Let f be an operator monotonic function on I and A, B 2 SAI (H) , the class of all selfadjoint op- erators with spectra in I. Assume that p : [0, 1] ! R is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an operator monotonic function on I, Z1 Z1 Z1 0 ≤ p (t) f ((1 − t) A + tB) dt − p (t) dt f ((1 − t) A + tB) dt 0 0 0 1 ≤ [p (1) − p (0)] [f (B) − f (A)] 4 in the operator order. Several other similar inequalities for either p or f is dierentiable, are also provided. Applications for power function and logarithm are given as well. Keywords: Operator monotonic functions, Integral inequalities, Čebyšev inequality, Grüss inequality, Os- trowski inequality MSC: 47A63, 26D15, 26D10. 1 Introduction Consider a complex Hilbert space (H, h·, ·i). An operator T is said to be positive (denoted by T ≥ 0) if hTx, xi ≥ 0 for all x 2 H and also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. A real valued continuous function f (t) on (0, ∞) is said to be operator monotone if f (A) ≥ f (B) holds for any A ≥ B > 0. In 1934, K. Löwner [7] had given a denitive characterization of operator monotone functions as follows: Theorem 1.
    [Show full text]
  • Pathological Real-Valued Continuous Functions
    Pathological Real-Valued Continuous Functions by Timothy Miao A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honour's Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2013) Timothy Miao Abstract We look at continuous functions with pathological properties, in particular, two ex- amples of continuous functions that are nowhere differentiable. The first example was discovered by K. W. T. Weierstrass in 1872 and the second by B. L. Van der Waerden in 1930. We also present an example of a continuous strictly monotonic function with a vanishing derivative almost everywhere, discovered by Zaanen and Luxemburg in 1963. i Acknowledgements I would like to thank Razvan Anisca, my supervisor for this project, and Adam Van Tuyl, the course coordinator for Math 4301. Without their guidance, this project would not have been possible. As well, all the people I have learned from and worked with from the Department of Mathematical Sciences at Lakehead University have contributed to getting me to where I am today. Finally, I am extremely grateful for the support that my family has given during all of my education. ii Contents Abstract i Acknowledgements ii Chapter 1. Introduction 1 Chapter 2. Continuity and Differentiability 2 1. Preliminaries 2 2. Sequences of functions 4 Chapter 3. Two Continuous Functions that are Nowhere Differentiable 6 1. Example given by Weierstrass (1872) 6 2. Example given by Van der Waerden (1930) 10 Chapter 4. Monotonic Functions and their Derivatives 13 1. Preliminaries 13 2. Some notable theorems 14 Chapter 5. A Strictly Monotone Function with a Vanishing Derivative Almost Everywhere 18 1.
    [Show full text]
  • The Fixed-Point Theorem 8 March 2013 Lecturer: Andrew Myers
    CS 6110 Lecture 21 The Fixed-Point Theorem 8 March 2013 Lecturer: Andrew Myers We saw that the semantics of the while command are a fixed point. We also saw that intuitively, the semantics are the limit of a series of approximations capturing a finite number of iterations of the loop, and giving a result of ? for greater numbers of iterations. In order to take a limit, we need greater structure, which led us to define partial orders. But ordering is not enough. 1 Complete partial orders (CPOs) Least upper bounds Given a partial order (S; v), and a subset B ⊆ S, y is an upper bound of B iff 8x 2 B:x v y. In addition, y is a least upper bound iff y is an upper bound and y v z for all upper bounds z of B. We may abbreviate “least upper bound” as LUB or lub. We notate the LUB of a subset B as F B. We may also make this an infix operator, F F writing i21::m xi = x1 t ::: t xm = fxigi21::m. This is also known as the join of elements x1; : : : ; xm. Chains A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements x0; x1; x2 ::: F such that x0 v x1 v x2 v :::). For any finite chain, its LUB is its last element (e.g., xi = xn). Infinite chains (!-chains, i.e. indexed by the natural numbers) may also have LUBs. Complete partial orders A complete partial order (CPO)1 is a partial order in which every chain has a least upper bound.
    [Show full text]
  • Fixpoints and Applications
    H250: Honors Colloquium – Introduction to Computation Fixpoints and Applications Marius Minea [email protected] Fixpoint Definition Given f : X → X, a fixpoint (fixed point) of f is a value c with f (c) = c. A function may have 0, 1, or many fixpoints. Examples: fixpoint for a real-valued function: intersection with y = x fixpoint for a permutation of 1 .. n Think of the function as a transformation (which may be repeated) Fixpoint: no change Intuitive Examples All-pairs shortest paths in graph Simpler: Path relation in graph Questions: When do such computations terminate? How to express this with fixpoints? Partially Ordered Sets Recall: partial order on a set: reflexive antisymmetric transitive A set A together with a partial order v on A is called a partially ordered set (poset) hA, vi Lattices Many familiar partial orders have additional properties: - any two elements have a unique least upper bound (join t) least x with a v x and b v x - any two elements have a unique greatest lower bound (meet u) A poset with these properties is called a lattice. Inductively: any finite set has a least upper / greatest lower bound. Complete lattice: any subset has least upper/greatest lower bound. =⇒ lattice has a top > and bottom ⊥ element. Iterating a function Define f n(x) = f ◦ f ◦ ... ◦ f (x). | {z } n times On a finite set, iteration will - close a cycle, or - reach a fixpoint (particular case) For an infinite set, iteration may be infinite (none of the above) Monotonic Functions Given a poset hS, vi, a function f : S → S is monotonic if it is either - increasing, ∀x∀y : x v y → f (x) v f (y) - decreasing, ∀x∀y : x v y → f (x) w f (y) Knaster-Tarski Fixpoint Theorem A monotonic function on a complete lattice has a least fixpoint and a greatest fixpoint.
    [Show full text]
  • Monotonic Restrictions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEnlATICAL ANALYSIS AND APPLICATIONS 41, 384-390 (1973) Monotonic Restrictions CATHERINE V. SMALLWOOD Department of Mathematics, Polytechnic of North London, London, England Submitted by Leon Mirsky 1. In 1935 Erdijs and Szekeres [3] proved that every real sequence of ns + 1 terms possessesa monotonic subsequenceof 71+ 1 terms. (In fact, this result is best possible.) The theorem was subsequently proved very simply by Seidenberg [5] and, more recently, by Blackwell [2]. It implies that every real sequenceof n terms has a monotonic subsequenceof at least dn terms. Thus, every finite sequence of real numbers contains a comparatively long monotonic subsequence.The question naturally arises whether a similar result holds for infinite sequences.Although, of course, every infinite sequence of real numbers contains an infinite monotonic subsequence,we shall see that there are sequencesall of whose monotonic subsequencesare very sparse, with “density function” much less than l/dn. In Section 2 we investigate an analogous problem for real valued functions on an interval. We again find that these may possessonly very small “sets of monotonicity”, though the precise formulation of results depends on the class of functions considered. THEOREM 1. Let fi , fi , f. ,... be a sequence of positive functions on (1,2, 3,...) such that, for each r, fr(n) + co as n -+ co. Then there exists a sequence S of real numberswith the property that, ;f T is any monotonic sub- sequence of S and VT(n) is the number of elements of T amongthejrst n elements of S, w-+0 as n+c0 f An) for I = 1,2,..
    [Show full text]
  • Some Properties of the Set of Discontinuity Points of a Monotonic Function of Several Variables
    Folia Mathematica Acta Universitatis Lodziensis Vol. 11, No. 1, pp. 53–57 c 2004 for University ofL´od´zPress SOME PROPERTIES OF THE SET OF DISCONTINUITY POINTS OF A MONOTONIC FUNCTION OF SEVERAL VARIABLES WANDA LINDNER‡ Abstract. In the note [1] the neccesary and sufficient condition for a set E ⊂ R2 to be the set of discontinuity points for some nondecreasing function f : R2 → R has been proved. The problem of the similar characterization for the function of more than two variables is still open. This paper provides the neccesary condition for the set E ⊂ Rn to be the set of discontinuity points of some nondecreasing function. 1. Introduction n Let x = (x1,x2,...,xn), y = (y1,y2,...,yn) ∈ R . Definition 1. We say, that x ≺ y iff (xi <yi) for every i ∈ {1, 2,...,n}. Definition 2. We say, that x y iff (xi ≤ yi) for every i ∈ {1, 2,...,n}. If one of the following relations occurs: x y or y x we say, that this points are comparable. Definition 3. The function f : Rn → R is called nondecreasing iff for every x, y ∈ Rn x y ⇒ f(x) ≤ f(y). Definition 4. The function f : Rn → R is called increasing iff for every x, y ∈ Rn (x 6= y) ∧ (x y) ⇒ f(x) <f(y). Proposition 1. The function f : Rn → R is nondecreasing (increasing) iff it is nondecreasing (increasing) as the function of one variable, with the others fixed. ‡Technical University ofL´od´z, Institute of Mathematics, Al. Politechniki 11, 90–924 L´od´z. Poland.
    [Show full text]
  • Continuous Random Variables If X Is a Random Variable (Abbreviated to R.V.) Then Its Cumulative Distribution Function (Abbreviated to C.D.F.) F Is Defined By
    MTH4106 Introduction to Statistics Notes 7 Spring 2012 Continuous random variables If X is a random variable (abbreviated to r.v.) then its cumulative distribution function (abbreviated to c.d.f.) F is defined by F(x) = P(X 6 x) for x in R. We write FX (x) if we need to emphasize the random variable X. (Take care to distinguish between X and x in your writing.) We say that X is a continuous random variable if its cdf F is a continuous function. In this case, F is differentiable almost everywhere, and the probability density function (abbreviated to p.d.f.) f of F is defined by dF f (x) = for x in . dx R Again, we write fX (x) if we need to emphasize X. If a < b and X is continuous then Z b P(a < X 6 b) = F(b) − F(a) = f (x)dx a = P(a 6 X 6 b) = P(a < X < b) = P(a 6 X < b). Moreover, Z x F(x) = f (t)dt −∞ and Z ∞ f (t)dt = 1. −∞ The support of a continuous random variable X is {x ∈ R : fX (x) 6= 0}. 1 The median of X is the solution of F(x) = 2 ; the lower quartile of X is the solution 1 3 of F(x) = 4 ; and the upper quartile of X is the solution of F(x) = 4 . The top decile 1 of X is the solution of F(x) = 9/10; this is the point that separates the top tenth of the distribution from the lower nine tenths.
    [Show full text]
  • B, Be Two Real Numbers and Consider a Function F: La,B[ + ~, T + F(T) and a Point to E La,B[
    APPENDIX I DINI DERIVATIVES AND MONOTONIC FUNCTIONS 1. The Dini Derivatives 1.1. Let a, b, a < b, be two real numbers and consider a function f: la,b[ + ~, t + f(t) and a point to E la,b[. We assume that the reader is familiar with the notions of lim sup f (t) and lim inf f (t) . t .... to t + to The same concepts of lim sup and inf, but for t + to + mean simply that one considers, in the limiting processes, only the values of t > to' A similar meaning is attached to Remember that, without regularity assumptions on f, any lim sup or inf exists if we accept the possible values + 00 or - 00. The extended real line will be designated here­ after by !Ji. Thus~ =!Ji' U {_oo} U {+oo}. The four Dini deriv~tives of f at to are now de­ fined by the following equations: + f (t) - f(tO) D f(tO) lim sup t + t o+ t - to f (t) - f(tO) D+f(t ) lim inf O t - t + t o+ to f (t) - f (to) lim sup t _ t t + t o- 0 346 APPENDIX I: DINI DERIVATIVES AND MONOTONIC FUNCTIONS f(t) - f(tO) D_f (to) = lim inf ____--101- t + t o- t - to They are called respectively the upper right, lower right, upper left and lower left derivatives of f at to' Further, the function t + D+f(t) on ]a,b[ into ~ is called the upper right derivative of f on the interval ]a,b[, and similarly for D+, D- and D.
    [Show full text]
  • Several Identities Involving the Falling And
    Acta Univ. Sapientiae, Mathematica, 8, 2 (2016) 282{297 DOI: 10.1515/ausm-2016-0019 Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers Feng Qi Institute of Mathematics, Henan Polytechnic University, China College of Mathematics, Inner Mongolia University for Nationalities, China Department of Mathematics, College of Science, Tianjin Polytechnic University, China email: [email protected] Xiao-Ting Shi Fang-Fang Liu Department of Mathematics, Department of Mathematics, College of Science, College of Science, Tianjin Polytechnic University, China Tianjin Polytechnic University, China email: [email protected] email: [email protected] Abstract. In the paper, the authors find several identities, including a new recurrence relation for the Stirling numbers of the first kind, in- volving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers. 1 Notation and main results It is known that, for x 2 R, the quantities x(x - 1) ··· (x - n + 1); n ≥ 1 n-1 Γ(x + 1) hxin = = (x - `) = 1; n = 0 Γ(x - n + 1) `=0 Y 2010 Mathematics Subject Classification: 11B73, 11B83 Key words and phrases: identity, Cauchy number, Lah number, Stirling number, falling factorial, rising factorial, Fa`adi Bruno formula 282 Identities involving Cauchy, Lah, and Stirling numbers 283 and x(x + 1) ··· (x + n - 1); n ≥ 1 n-1 Γ(x + n) (x)n = = (x + `) = 1; n = 0 Γ(x) `=0 Y are respectively called the falling and rising factorials, where n!nz Γ(z) = lim n ; z 2 n f0; -1; -2; : : : g n C k=0(z + k) is the classical gamma!1 function,Q see [1, p.
    [Show full text]
  • A Note on the Main Theorem for Absolutely Monotonic Functions
    On the correctness of the main theorem for absolutely monotonic functions Sitnik S.M. Abstract We prove that the main theorem for absolutely monotonic functions on (0, ∞) from the book Mitrinovi´cD.S., Peˇcari´cJ.E., Fink A.M. "Classical And New Inequalities In Analysis", Kluwer Academic Publishers, 1993, is not valid without additional restrictions. In the classical book [1], chapter XIII, page 365, there is a definition of absolutely monotonic on (0, ∞) functions. Definition. A function f(x) is said to be absolutely monotonic on (0, ∞) if it has derivatives of all orders and k f ( )(x) > 0, x ∈ (0, ∞), k =0, 1, 2,.... (1) For absolutely monotonic functions the next integral representation is essen- tial: ∞ xt f(x)= e dσ(t), (2) Z0 where σ(t) is bounded and nondecreasing and the integral converges for all x ∈ (0, ∞). Also the basic set of inequalities is considered. Let f(x) be an absolutely monotonic function on (0, ∞). Then k k k 2 f ( )(x)f ( +2)(x) > f ( +1)(x) , k =0, 1, 2,.... (3) After this definition in the book [1] the result which we classify as the main theorem for absolutely monotonic functions on (0, ∞) is formulated (theorem 1, page 366). arXiv:1202.1210v2 [math.CA] 15 Aug 2014 The main theorem for absolutely monotonic functions. The above definition (1), integral representation (2) and basic set of inequal- ities (3) are equivalent. It means: (1) ⇔ (2) ⇔ (3). (4) In the book [1] for (1) ⇔ (2) the reference is given to [2], and an equivalence (2) ⇔ (3) is proved, it is in fact a consequence of Chebyschev inequality.
    [Show full text]
  • Integration with Respect to Functions of Unbounded
    INTEGRATION WITH RESPECT TO FUNCTIONS OF UNBOUNDED VARIATION J.K. Brooks - D.Candeloro 31/12/2001 1 Introduction R b In this paper we shall study the problem of constructing an integral (C) a fdg, where f and g are real valued functions defined on an interval [a, b] and g is a continuous function, not necessarily of bounded variation. Of special interest is the case when B is normalized Brownian motion on [0,T ] and g is the continuous Brown- ian sample path B(·, ω). One of our main results is that if f is continuous, then R T f(B(·, ω)) is B(·, ω)−integrable (Definition 5.5) and (C) 0 f(B(t, ω))dB(t, ω) is equal to ((S) R T −0f(B)dB)(ω), the Stratonovitch stochastic integral, for each path ω. Thus for such integrands, a pathwise integration is possible for the Stratonovitch stochastic integral. As a result, if f ∈ C1, then by means of Itˆo’s formula, a pathwise integration R t can be given for (I) 0 f(B)dB, the Itˆo stochastic integral (section 2). The (C) appearing before the above integrals is in honor of R. Caccioppoli, who studied in [1] an integration theory with respect to continuous functions of un- bounded variation. Although Caccioppoli’s paper has serious gaps, he formulated an ingenious approach involving an approximating sequence (gn) of continuous func- tions of bounded variation which converges to g. In our paper we shall present a construction of a “generating sequence” of functions (gn) which occur in [1].
    [Show full text]
  • Single Crossing Differences on Distributions
    Single-Crossing Differences on Distributions∗ Navin Kartiky SangMok Leez Daniel Rappoportx November 2, 2018 Abstract We study when choices among lotteries are monotonic (with respect to some or- der) in an expected-utility agent’s preference parameter or type. The requisite property turns out to be that the expected utility difference between any pair of lotteries is single- crossing in the agent’s type. We characterize the set of utility functions that have this property; we identify the orders over lotteries that generate choice monotonicity for any such utility function. We discuss applications to cheap-talk games, costly signal- ing games, and collective choice problems. Our analysis provides some new results on monotone comparative statics and aggregating single-crossing functions. Keywords: monotone comparative statics, choice under uncertainty, interval equilibria ∗We thank Nageeb Ali, Federico Echenique, Mira Frick, Ben Golub, Ryota Iijima, Ian Jewitt, Alexey Kush- nir, Shuo Liu, Daniele Pennesi, Jacopo Perego, Lones Smith, Bruno Strulovici, and various audiences for helpful comments. yDepartment of Economics, Columbia University. E-mail: [email protected] zDepartment of Economics, Washington University in St. Louis. E-mail: [email protected] xBooth School of Business, University of Chicago. E-mail: [email protected] 1 Contents 1. Introduction3 1.1. Overview.......................................3 1.2. Related Literature..................................6 2. Main Results8 2.1. Single-Crossing Expectational Differences....................8 2.2. Strict Single-Crossing Expectational Differences................ 17 2.3. Monotone Comparative Statics.......................... 17 3. Applications 20 3.1. Cheap Talk with Uncertain Receiver Preferences................ 20 3.2. Collective Choice.................................. 23 3.3. Costly Signaling................................... 25 4. Extensions 28 4.1.
    [Show full text]