Sufficient Conditions for Monotone Hazard Rate an Application to Latency-Probability Curves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Integral Inequalities for Operator Monotonic Functions on Hilbert Spaces Received May 6, 2020; Accepted June 24, 2020
Spec. Matrices 2020; 8:172–180 Research Article Open Access Silvestru Sever Dragomir* Some integral inequalities for operator monotonic functions on Hilbert spaces https://doi.org/10.1515/spma-2020-0108 Received May 6, 2020; accepted June 24, 2020 Abstract: Let f be an operator monotonic function on I and A, B 2 SAI (H) , the class of all selfadjoint op- erators with spectra in I. Assume that p : [0, 1] ! R is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an operator monotonic function on I, Z1 Z1 Z1 0 ≤ p (t) f ((1 − t) A + tB) dt − p (t) dt f ((1 − t) A + tB) dt 0 0 0 1 ≤ [p (1) − p (0)] [f (B) − f (A)] 4 in the operator order. Several other similar inequalities for either p or f is dierentiable, are also provided. Applications for power function and logarithm are given as well. Keywords: Operator monotonic functions, Integral inequalities, Čebyšev inequality, Grüss inequality, Os- trowski inequality MSC: 47A63, 26D15, 26D10. 1 Introduction Consider a complex Hilbert space (H, h·, ·i). An operator T is said to be positive (denoted by T ≥ 0) if hTx, xi ≥ 0 for all x 2 H and also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. A real valued continuous function f (t) on (0, ∞) is said to be operator monotone if f (A) ≥ f (B) holds for any A ≥ B > 0. In 1934, K. Löwner [7] had given a denitive characterization of operator monotone functions as follows: Theorem 1. -
Estimation of Common Location and Scale Parameters in Nonregular Cases Ahmad Razmpour Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Estimation of common location and scale parameters in nonregular cases Ahmad Razmpour Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Razmpour, Ahmad, "Estimation of common location and scale parameters in nonregular cases " (1982). Retrospective Theses and Dissertations. 7528. https://lib.dr.iastate.edu/rtd/7528 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
A Comparison of Unbiased and Plottingposition Estimators of L
WATER RESOURCES RESEARCH, VOL. 31, NO. 8, PAGES 2019-2025, AUGUST 1995 A comparison of unbiased and plotting-position estimators of L moments J. R. M. Hosking and J. R. Wallis IBM ResearchDivision, T. J. Watson ResearchCenter, Yorktown Heights, New York Abstract. Plotting-positionestimators of L momentsand L moment ratios have several disadvantagescompared with the "unbiased"estimators. For generaluse, the "unbiased'? estimatorsshould be preferred. Plotting-positionestimators may still be usefulfor estimatingextreme upper tail quantilesin regional frequencyanalysis. Probability-Weighted Moments and L Moments •r+l-" (--1)r • P*r,k Olk '- E p *r,!•[J!•. Probability-weightedmoments of a randomvariable X with k=0 k=0 cumulativedistribution function F( ) and quantile function It is convenient to define dimensionless versions of L mo- x( ) were definedby Greenwoodet al. [1979]to be the quan- tities ments;this is achievedby dividingthe higher-orderL moments by the scale measure h2. The L moment ratios •'r, r = 3, Mp,ra= E[XP{F(X)}r{1- F(X)} s] 4, '", are definedby ßr-" •r/•2 ß {X(u)}PUr(1 -- U)s du. L momentratios measure the shapeof a distributionindepen- dently of its scaleof measurement.The ratios *3 ("L skew- ness")and *4 ("L kurtosis")are nowwidely used as measures Particularlyuseful specialcases are the probability-weighted of skewnessand kurtosis,respectively [e.g., Schaefer,1990; moments Pilon and Adamowski,1992; Royston,1992; Stedingeret al., 1992; Vogeland Fennessey,1993]. 12•r= M1,0, r = •01 (1 - u)rx(u) du, Estimators Given an ordered sample of size n, Xl: n • X2:n • ''' • urx(u) du. X.... there are two establishedways of estimatingthe proba- /3r--- Ml,r, 0 =f01 bility-weightedmoments and L moments of the distribution from whichthe samplewas drawn. -
The Asymmetric T-Copula with Individual Degrees of Freedom
The Asymmetric t-Copula with Individual Degrees of Freedom d-fine GmbH Christ Church University of Oxford A thesis submitted for the degree of MSc in Mathematical Finance Michaelmas 2012 Abstract This thesis investigates asymmetric dependence structures of multivariate asset returns. Evidence of such asymmetry for equity returns has been reported in the literature. In order to model the dependence structure, a new t-copula approach is proposed called the skewed t-copula with individ- ual degrees of freedom (SID t-copula). This copula provides the flexibility to assign an individual degree-of-freedom parameter and an individual skewness parameter to each asset in a multivariate setting. Applying this approach to GARCH residuals of bivariate equity index return data and using maximum likelihood estimation, we find significant asymmetry. By means of the Akaike information criterion, it is demonstrated that the SID t-copula provides the best model for the market data compared to other copula approaches without explicit asymmetry parameters. In addition, it yields a better fit than the conventional skewed t-copula with a single degree-of-freedom parameter. In a model impact study, we analyse the errors which can occur when mod- elling asymmetric multivariate SID-t returns with the symmetric multi- variate Gauss or standard t-distribution. The comparison is done in terms of the risk measures value-at-risk and expected shortfall. We find large deviations between the modelled and the true VaR/ES of a spread posi- tion composed of asymmetrically distributed risk factors. Going from the bivariate case to a larger number of risk factors, the model errors increase. -
Pathological Real-Valued Continuous Functions
Pathological Real-Valued Continuous Functions by Timothy Miao A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honour's Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2013) Timothy Miao Abstract We look at continuous functions with pathological properties, in particular, two ex- amples of continuous functions that are nowhere differentiable. The first example was discovered by K. W. T. Weierstrass in 1872 and the second by B. L. Van der Waerden in 1930. We also present an example of a continuous strictly monotonic function with a vanishing derivative almost everywhere, discovered by Zaanen and Luxemburg in 1963. i Acknowledgements I would like to thank Razvan Anisca, my supervisor for this project, and Adam Van Tuyl, the course coordinator for Math 4301. Without their guidance, this project would not have been possible. As well, all the people I have learned from and worked with from the Department of Mathematical Sciences at Lakehead University have contributed to getting me to where I am today. Finally, I am extremely grateful for the support that my family has given during all of my education. ii Contents Abstract i Acknowledgements ii Chapter 1. Introduction 1 Chapter 2. Continuity and Differentiability 2 1. Preliminaries 2 2. Sequences of functions 4 Chapter 3. Two Continuous Functions that are Nowhere Differentiable 6 1. Example given by Weierstrass (1872) 6 2. Example given by Van der Waerden (1930) 10 Chapter 4. Monotonic Functions and their Derivatives 13 1. Preliminaries 13 2. Some notable theorems 14 Chapter 5. A Strictly Monotone Function with a Vanishing Derivative Almost Everywhere 18 1. -
A Bayesian Hierarchical Spatial Copula Model: an Application to Extreme Temperatures in Extremadura (Spain)
atmosphere Article A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain) J. Agustín García 1,† , Mario M. Pizarro 2,*,† , F. Javier Acero 1,† and M. Isabel Parra 2,† 1 Departamento de Física, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain; [email protected] (J.A.G.); [email protected] (F.J.A.) 2 Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: A Bayesian hierarchical framework with a Gaussian copula and a generalized extreme value (GEV) marginal distribution is proposed for the description of spatial dependencies in data. This spatial copula model was applied to extreme summer temperatures over the Extremadura Region, in the southwest of Spain, during the period 1980–2015, and compared with the spatial noncopula model. The Bayesian hierarchical model was implemented with a Monte Carlo Markov Chain (MCMC) method that allows the distribution of the model’s parameters to be estimated. The results show the GEV distribution’s shape parameter to take constant negative values, the location parameter to be altitude dependent, and the scale parameter values to be concentrated around the same value throughout the region. Further, the spatial copula model chosen presents lower deviance information criterion (DIC) values when spatial distributions are assumed for the GEV distribution’s Citation: García, J.A.; Pizarro, M.M.; location and scale parameters than when the scale parameter is taken to be constant over the region. Acero, F.J.; Parra, M.I. A Bayesian Hierarchical Spatial Copula Model: Keywords: Bayesian hierarchical model; extreme temperature; Gaussian copula; generalized extreme An Application to Extreme value distribution Temperatures in Extremadura (Spain). -
The Fixed-Point Theorem 8 March 2013 Lecturer: Andrew Myers
CS 6110 Lecture 21 The Fixed-Point Theorem 8 March 2013 Lecturer: Andrew Myers We saw that the semantics of the while command are a fixed point. We also saw that intuitively, the semantics are the limit of a series of approximations capturing a finite number of iterations of the loop, and giving a result of ? for greater numbers of iterations. In order to take a limit, we need greater structure, which led us to define partial orders. But ordering is not enough. 1 Complete partial orders (CPOs) Least upper bounds Given a partial order (S; v), and a subset B ⊆ S, y is an upper bound of B iff 8x 2 B:x v y. In addition, y is a least upper bound iff y is an upper bound and y v z for all upper bounds z of B. We may abbreviate “least upper bound” as LUB or lub. We notate the LUB of a subset B as F B. We may also make this an infix operator, F F writing i21::m xi = x1 t ::: t xm = fxigi21::m. This is also known as the join of elements x1; : : : ; xm. Chains A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements x0; x1; x2 ::: F such that x0 v x1 v x2 v :::). For any finite chain, its LUB is its last element (e.g., xi = xn). Infinite chains (!-chains, i.e. indexed by the natural numbers) may also have LUBs. Complete partial orders A complete partial order (CPO)1 is a partial order in which every chain has a least upper bound. -
Procedures for Estimation of Weibull Parameters James W
United States Department of Agriculture Procedures for Estimation of Weibull Parameters James W. Evans David E. Kretschmann David W. Green Forest Forest Products General Technical Report February Service Laboratory FPL–GTR–264 2019 Abstract Contents The primary purpose of this publication is to provide an 1 Introduction .................................................................. 1 overview of the information in the statistical literature on 2 Background .................................................................. 1 the different methods developed for fitting a Weibull distribution to an uncensored set of data and on any 3 Estimation Procedures .................................................. 1 comparisons between methods that have been studied in the 4 Historical Comparisons of Individual statistics literature. This should help the person using a Estimator Types ........................................................ 8 Weibull distribution to represent a data set realize some advantages and disadvantages of some basic methods. It 5 Other Methods of Estimating Parameters of should also help both in evaluating other studies using the Weibull Distribution .......................................... 11 different methods of Weibull parameter estimation and in 6 Discussion .................................................................. 12 discussions on American Society for Testing and Materials Standard D5457, which appears to allow a choice for the 7 Conclusion ................................................................ -
Location-Scale Distributions
Location–Scale Distributions Linear Estimation and Probability Plotting Using MATLAB Horst Rinne Copyright: Prof. em. Dr. Horst Rinne Department of Economics and Management Science Justus–Liebig–University, Giessen, Germany Contents Preface VII List of Figures IX List of Tables XII 1 The family of location–scale distributions 1 1.1 Properties of location–scale distributions . 1 1.2 Genuine location–scale distributions — A short listing . 5 1.3 Distributions transformable to location–scale type . 11 2 Order statistics 18 2.1 Distributional concepts . 18 2.2 Moments of order statistics . 21 2.2.1 Definitions and basic formulas . 21 2.2.2 Identities, recurrence relations and approximations . 26 2.3 Functions of order statistics . 32 3 Statistical graphics 36 3.1 Some historical remarks . 36 3.2 The role of graphical methods in statistics . 38 3.2.1 Graphical versus numerical techniques . 38 3.2.2 Manipulation with graphs and graphical perception . 39 3.2.3 Graphical displays in statistics . 41 3.3 Distribution assessment by graphs . 43 3.3.1 PP–plots and QQ–plots . 43 3.3.2 Probability paper and plotting positions . 47 3.3.3 Hazard plot . 54 3.3.4 TTT–plot . 56 4 Linear estimation — Theory and methods 59 4.1 Types of sampling data . 59 IV Contents 4.2 Estimators based on moments of order statistics . 63 4.2.1 GLS estimators . 64 4.2.1.1 GLS for a general location–scale distribution . 65 4.2.1.2 GLS for a symmetric location–scale distribution . 71 4.2.1.3 GLS and censored samples . -
Fixpoints and Applications
H250: Honors Colloquium – Introduction to Computation Fixpoints and Applications Marius Minea [email protected] Fixpoint Definition Given f : X → X, a fixpoint (fixed point) of f is a value c with f (c) = c. A function may have 0, 1, or many fixpoints. Examples: fixpoint for a real-valued function: intersection with y = x fixpoint for a permutation of 1 .. n Think of the function as a transformation (which may be repeated) Fixpoint: no change Intuitive Examples All-pairs shortest paths in graph Simpler: Path relation in graph Questions: When do such computations terminate? How to express this with fixpoints? Partially Ordered Sets Recall: partial order on a set: reflexive antisymmetric transitive A set A together with a partial order v on A is called a partially ordered set (poset) hA, vi Lattices Many familiar partial orders have additional properties: - any two elements have a unique least upper bound (join t) least x with a v x and b v x - any two elements have a unique greatest lower bound (meet u) A poset with these properties is called a lattice. Inductively: any finite set has a least upper / greatest lower bound. Complete lattice: any subset has least upper/greatest lower bound. =⇒ lattice has a top > and bottom ⊥ element. Iterating a function Define f n(x) = f ◦ f ◦ ... ◦ f (x). | {z } n times On a finite set, iteration will - close a cycle, or - reach a fixpoint (particular case) For an infinite set, iteration may be infinite (none of the above) Monotonic Functions Given a poset hS, vi, a function f : S → S is monotonic if it is either - increasing, ∀x∀y : x v y → f (x) v f (y) - decreasing, ∀x∀y : x v y → f (x) w f (y) Knaster-Tarski Fixpoint Theorem A monotonic function on a complete lattice has a least fixpoint and a greatest fixpoint. -
Monotonic Restrictions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEnlATICAL ANALYSIS AND APPLICATIONS 41, 384-390 (1973) Monotonic Restrictions CATHERINE V. SMALLWOOD Department of Mathematics, Polytechnic of North London, London, England Submitted by Leon Mirsky 1. In 1935 Erdijs and Szekeres [3] proved that every real sequence of ns + 1 terms possessesa monotonic subsequenceof 71+ 1 terms. (In fact, this result is best possible.) The theorem was subsequently proved very simply by Seidenberg [5] and, more recently, by Blackwell [2]. It implies that every real sequenceof n terms has a monotonic subsequenceof at least dn terms. Thus, every finite sequence of real numbers contains a comparatively long monotonic subsequence.The question naturally arises whether a similar result holds for infinite sequences.Although, of course, every infinite sequence of real numbers contains an infinite monotonic subsequence,we shall see that there are sequencesall of whose monotonic subsequencesare very sparse, with “density function” much less than l/dn. In Section 2 we investigate an analogous problem for real valued functions on an interval. We again find that these may possessonly very small “sets of monotonicity”, though the precise formulation of results depends on the class of functions considered. THEOREM 1. Let fi , fi , f. ,... be a sequence of positive functions on (1,2, 3,...) such that, for each r, fr(n) + co as n -+ co. Then there exists a sequence S of real numberswith the property that, ;f T is any monotonic sub- sequence of S and VT(n) is the number of elements of T amongthejrst n elements of S, w-+0 as n+c0 f An) for I = 1,2,.. -
Some Properties of the Set of Discontinuity Points of a Monotonic Function of Several Variables
Folia Mathematica Acta Universitatis Lodziensis Vol. 11, No. 1, pp. 53–57 c 2004 for University ofL´od´zPress SOME PROPERTIES OF THE SET OF DISCONTINUITY POINTS OF A MONOTONIC FUNCTION OF SEVERAL VARIABLES WANDA LINDNER‡ Abstract. In the note [1] the neccesary and sufficient condition for a set E ⊂ R2 to be the set of discontinuity points for some nondecreasing function f : R2 → R has been proved. The problem of the similar characterization for the function of more than two variables is still open. This paper provides the neccesary condition for the set E ⊂ Rn to be the set of discontinuity points of some nondecreasing function. 1. Introduction n Let x = (x1,x2,...,xn), y = (y1,y2,...,yn) ∈ R . Definition 1. We say, that x ≺ y iff (xi <yi) for every i ∈ {1, 2,...,n}. Definition 2. We say, that x y iff (xi ≤ yi) for every i ∈ {1, 2,...,n}. If one of the following relations occurs: x y or y x we say, that this points are comparable. Definition 3. The function f : Rn → R is called nondecreasing iff for every x, y ∈ Rn x y ⇒ f(x) ≤ f(y). Definition 4. The function f : Rn → R is called increasing iff for every x, y ∈ Rn (x 6= y) ∧ (x y) ⇒ f(x) <f(y). Proposition 1. The function f : Rn → R is nondecreasing (increasing) iff it is nondecreasing (increasing) as the function of one variable, with the others fixed. ‡Technical University ofL´od´z, Institute of Mathematics, Al. Politechniki 11, 90–924 L´od´z. Poland.