CLASSICAL DIFFERENTIAL GEOMETRY Curves and Surfaces in Euclidean Space Gert Heckman Radboud University Nijmegen
[email protected] March 7, 2019 1 Contents Preface 2 1 Smooth Curves 4 1.1 PlaneCurves ........................... 4 1.2 SpaceCurves ........................... 9 2 Surfaces in Euclidean Space 13 2.1 TheFirstFundamentalForm . 13 2.2 TheSecondFundamentalForm . 14 3 Examples of Surfaces 19 3.1 SurfacesofRevolution . 19 3.2 ChartsfortheSphere .. .. .. .. .. .. 19 3.3 RuledSurfaces .......................... 22 4 Theorema Egregium of Gauss 24 4.1 TheGaussRelations . .. .. .. .. .. .. 24 4.2 The Codazzi–Mainardi and Gauss Equations . 26 4.3 TheRemarkableTheoremofGauss. 28 4.4 The upper and lower index notation . 33 5 Geodesics 37 5.1 TheGeodesicEquations . 37 5.2 Geodesic Parallel Coordinates . 39 5.3 Geodesic Normal Coordinates . 41 6 Surfaces of Constant Curvature 45 6.1 Riemanniansurfaces . 45 6.2 TheRiemannDisc ........................ 46 6.3 The Poincar´eUpper Half Plane . 48 6.4 TheBeltramiTrumpet. 49 2 Preface These are lectures on classicial differential geometry of curves and surfaces in Euclidean space R3, as it developped in the 18th and 19th century. Their principal investigators were Gaspard Monge (1746-1818), Carl Friedrich Gauss (1777-1855) and Bernhard Riemann (1826-1866). In Chapter 1 we discuss smooth curves in the plane R2 and in space R3. The main results are the definition of curvature and torsion, the Frenet equations for the derivative of the moving frame, and the fundamental theo- rem for smooth curves being essentially charcterized by their curvature and torsion. The theory of smooth curves is also a preparation for the study of smooth surfaces in R3 via smooth curves on them.